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1. Introduction 
 

Fast growing developments in materials engineering led 

to microscopically inhomogeneous spatial composite 

materials named Functionally graded materials (FGMs) 

which have extensive applications for various systems and 

devices, such as aerospace, aircraft, automobile and defense 

structures and most recently the electronic devices. 

According to the fact that FG materials have been placed in 

the category of composite materials, the volume fractions of 

two or more material constituents such as a pair of ceramic-

metal are supposed to change continuously throughout the 

gradient directions. The FGM materials are made to take 

advantage of desirable features of its constituent phases, for 

example, in a thermal protection system, the ceramic 

constituents are capable to withstand extreme temperature 

environments due to their better thermal resistance 

characteristics, while the metal constituents provide 

stronger mechanical performance and diminishes the 

possibility of catastrophic fracture (Ebrahimi and Barati 

2016a-c). Hence, possessing novel mechanical properties, 

FGMs have gained its applicability in several engineering 

fields, such as biomedical engineering, nuclear engineering 

and mechanical engineering.  

Furthermore, noticeable development in the application 

of structural elements such as beams and plates with micro 

or nano length scale in micro/nano electro-mechanical 
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systems (MEMS/ NEMS), due to their outstanding 

chemical, mechanical, and electrical properties, led to a 

provocation in modelling of micro/nano scale structures 

(Alizada and Sofiyev 2011, Ebrahimi et al. 2016, Ebrahimi 

and Hosseini 2016a, b, Ebrahimi and Nasirzadeh 2015, 

Ebrahimi and Barati 2016d, e). In these applications, it is 

observed that the size effect has a major role on dynamic 

behavior of material. After the invention of carbon 

nanotubes (CNTs) by Iijima (1991), nanoscale engineering 

materials have exposed to considerable attention in modern 

science and technology. These structures possess 

extraordinary mechanical, thermal, electrical and chemical 

performances that are superior to the conventional structural 

materials. Therefore nanostructures attract great interest by 

researchers based on molecular dynamics and continuum 

mechanics. The problem in using the classical theory is that 

the classical continuum mechanics theory does not take into 

account the size effects in micro/nano scale structures. The 

classical continuum mechanics over predicts the responses 

of micro/nano structures (Ebrahimi et al. 2016b, 2017). 

Another way to capture the size effects is to rely on 

molecular dynamic simulations which is considered as a 

powerful and accurate implement to study of structural 

components at nanoscale. But even the molecular dynamic 

simulation at nano scale is computationally exorbitant for 

modeling the nanostructures with large numbers of atoms. 

So a conventional form of continuum mechanics that can 

capture the small scale effect is required. Eringen’s nonlocal 

elasticity theory is the most commonly used continuum 

mechanics theory that includes small scale effects with 

good accuracy to model micro/nano scale devices and 

systems. The nonlocal elasticity theory assumes that the 
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stress state at a reference point is a function of the strain at 

all neighbor points of the body. Hence, this theory could 

take into consideration the effects of small scales. In order 

to successfully design of structures at nanoscale, it is very 

important to take all essential characteristics of their 

mechanical behaviors at this size regime. To achieve this 

goal, based on the nonlocal constitutive relation of Eringen, 

a number of studies have been conducted attempting to 

develop nonlocal beam models for predicting the 

mechanical responses of nanobeams. The potential of 

application of nonlocal Euler-Bernoulli beam theory to 

materials in micro and nano scale proposed by Peddieson et 

al. (2003) as the first researchers to suggest nonlocal 

elasticity theory to nanostructures. Then, the nonlocal 

elasticity theory gained considerable attention among the 

nanotechnology society and utilization of this theory 

extended in different mechanical analyses. Reddy (2007) 

formulated various available beam models, including the 

Euler-Bernoulli, Timoshenko, Reddy, and Levinson beam 

theories through nonlocal differential relations of Eringen. 

In other scientific work, Wang and Liew (2007) carried out 

the static analysis of micro and nano scale structures based 

on nonlocal continuum mechanics using Euler-Bernoulli 

and Timoshenko beam theory. Aydogdu (2009) presented a 

general nonlocal beam model for analysis bending, 

buckling, and vibration of nanobeams using different beam 

theories. Civalek et al. (2010) proposed formulation of the 

governing equations of nonlocal Euler-Bernoulli beams to 

investigate bending of cantilever microtubules via the 

differential quadrature method. In another study, Thai 

(2012) suggested a nonlocal higher order beam theory to 

study mechanical responses of nanobeams. Simsek (2014) 

proposed a non-classical beam model based on the 

Eringen’s nonlocal elasticity theory for nonlinear vibration 

of nanobeams with various boundary conditions. Size-

dependent nonlinear forced vibration analysis of magneto-

electro-thermo-elastic Timoshenko nanobeams based upon 

the nonlocal elasticity theory is studied by Ansari et al. 

(2015). Moreover a semi-analytical vibration and buckling 

analysis of FG nanobeams is carried out by Ebrahimi et al. 

(2015a), Ebrahimi and Salari (2015a-e). Beneficial 

applications of functionally graded materials in micro/nano 

structures are greatly known in last years. To applying 

accurately this kinds of novel materials in MEMS/NEMS, 

their dynamic behaviors should be examined. Asghari et al. 

(2010, 2011) studied the vibration behavior of the 

functionally graded EBT and TBT microbeams using 

modified couple stress theory. The mechanical behaviors of 

FGM beams with axially or transversally power law 

distribution was examined by Alshorbagy et al. (2011). Ke 

and Wang (2011) exploited the small scale effects on 

dynamic stability of FGM microbeams based upon 

Timoshenko beam model. The free vibration of FG 

microbeams analyzed by Ansari et al. (2011) by using strain 

gradient TBT. They also concluded that the values of 

material graduation exponent have a remarkable influence 

in the vibration behavior of the functionally graded 

microbeams. Employing modified couple stress theory the 

nonlinear vibration of microbeams made of FGMs with 

von-Karman geometric nonlinearity presented by Ke et al. 

(2012). It was revealed that linear frequency as well as 

nonlinear frequency rise prominently since the thickness of 

microbeam and material length scale parameter are 

comparable. Recently, Eltaher et al. (2012, 2013a) 

presented a finite element analysis for free vibration of FG 

nanobeams using nonlocal EBT. They also exploited the 

static and stability responses of FG nanobeams based on 

nonlocal continuum theory (Eltaher et al. 2013b). More 

recently, using nonlocal TBT and EBT, Simsek and Yurtcu 

(2013) investigated bending and buckling of FG nanobeam 

by analytical method. Uymaz (2013) presented forced 

vibration analysis of functionally graded beams using 

nonlocal elasticity. Rahmani and Pedram (2014) analyzed 

the size effects on vibration of FG nanobeams based on 

nonlocal TBT. Nonlinear free vibration of FG nanobeams 

with fixed ends, i.e., simply supported-simply supported 

(SS) and simply supported-clamped (SC), using the 

nonlocal elasticity within the frame work of EBT with von 

kármán type nonlinearity is studied by Nazemnezhad and 

Hosseini-Hashemi (2014). Also, recently Hosseini-Hashemi 

et al. (2014) investigated free vibration of FG nanobeams 

with consideration surface effects and piezoelectric field 

using nonlocal elasticity theory. Most recently Ebrahimi and 

Salari (2015f) presented a semi-analytical method for 

vibrational and buckling analysis of FG 

nanobeams considering the physical neutral axis position. 

Niknam and Aghdam (2015) presented a closed form 

solution for both natural frequency and buckling load of 

nonlocal FG beams resting on nonlinear elastic foundation. 

Ebrahimi and Barati (2015) presented a nonlocal higher-

order shear deformation beam theory for vibration analysis 

of size-Dependent FG nanobeams. Ebrahimi and Barati 

(2016f) presented dynamic modeling of a thermo-piezo-

electrically actuated nanosize beam subjected to a magnetic 

field. Ebrahimi and Barati (2016g) presented vibration 

analysis of smart piezoelectrically actuated nanobeams 

subjected to magneto-electrical field in thermal 

environment. Thermal effects on vibration behavior of 

nonlocal temperature-dependent FGM nanobeams is 

investigated by Ebrahimi and Barati (2016h-j). Therefore, 

searching in literature reveals that, vibration analysis of FG 

nanobeams on elastic foundations are very limited. Various 

kinds of elastic foundation models for the sake of 

describing the interactions of the beam and foundation have 

proposed via scientists. Winkler or one-parameter elastic 

foundation is known as the simplest model which regards 

the foundation as a series of separated linear elastic springs 

without coupling effects between each other. The defect of 

Winkler’s formulation is the behavioral inconsistency 

associated to the discontinuous deflections on the interacted 

surface area of the beam. Pasternak (1954) later introduced 

an incompressible vertical element as a shear layer which is 

physically realistic representation of the elastic medium and 

can take into account the transverse shear stresses due to 

interaction of shear deformation of the surrounding elastic 

medium. Thus, a more realistic and generalized 

representation of the elastic foundation is expected through 

a two-parameter foundation model. 

It is apparent that most of the previous studies on 

mechanical analysis of FG nanobeams have been carried 
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out based on Euler-Bernoulli and Timoshenko beam 

theories. It should be noted that the EBT fails to consider 

the influences of shear deformations. This theory is only 

applicable for slender beams and should not be applied for 

thick beams, and also it suppose that the transverse 

perpendicular to the neutral surface stays normal during and 

after bending, which indicates that the transversal shear 

strain is equal to zero Hence, the buckling loads and natural 

frequencies of thick beams are overestimated in which shear 

deformation effects are prominent. Timoshenko Beam 

Theory can enumerate the influences of shear deformations 

for thick beams with presumption of a constant shear strain 

state in the direction of beam thickness. So, as a 

disadvantage of this theory, a shear correction factor is 

required to properly demonstration of the deformation strain 

energy. To prevent using the shear correction factors, many 

higher-order shear deformation theories have been 

developed such as the third-order shear deformation theory 

proposed by Reddy (2007), the generalized beam theory 

proposed by Aydogdu (2009) and sinusoidal shear 

deformation theory of Touratier (1991). Reddy’s third order 

beam theory (RBT) can be used with supposing the higher 

order longitudinal displacement variations of beam along 

the thickness. By verifying zero transverse shear stresses at 

the upper and lower surfaces of the beam, this theory 

captures both the microstructural and shear deformation 

effects. Therefore, The Reddy beam theory is more exact 

and provides better representation of the physics of the 

problem, which does not need any shear correction factors. 

This theory relaxes the limitation on the warping of the 

cross sections and allows cubic variations in the 

longitudinal direction of the beam, so it can produce 

adequate accuracy when applying for beam analysis. 

Therefore, a few studies have been performed to investigate 

the mechanical responses of FG micro/nano beams by using 

higher shear deformation beam theories. Rahmani and 

Jandaghian (2015) presented Buckling analysis of 

functionally graded nanobeams based on a nonlocal third-

order shear deformation theory. A unified higher order beam 

theory which contains various beam theories as special 

cases for buckling of a FG microbeam embedded in elastic 

Pasternak medium is proposed by Simsek and Reddy 

(2013). Zhang et al. (2014) developed a size-dependent FG 

beam model resting on Winkler-Pasternak elastic 

foundation based on an improved third-order shear 

deformation theory and provided the analytical solutions for 

the bending, buckling and free vibration problems. By 

searching the literature, it is found that a work analyzing the 

buckling of embedded FG nanobeams using the third order 

shear deformation beam theory hasn’t been yet published. 

In this work, the nonlocal beam model within the 
framework of third order shear deformation beam theory is 

developed for analysis of vibration of functionally graded 
nanobeam embedded on elastic foundations. Material 
properties of FG nanobeam are assumed to change 
continuously along the thickness according to two types of 
micromechanics models, namely, power-law model and 
Mori-Tanaka model. By using the Hamilton’s principle the 

governing equations of motion are derived and Navier type 
solution method is used to solve the equations. The obtained 
results based on third order shear deformation beam theory 

 

Fig. 1 Geometry and coordinates of FG nanobeam 

embedded on elastic foundation 

 

 

are compared with those predicted by the previously 

published works to verify the accuracy of the present 

solution. Several numerical results are provided to indicate 

the influences of the gradient index, nonlocal parameter, 

Winkler and Pasternak parameters and slenderness ratio on 

the vibration behavior of FG nanobeams. 

 

 

2. Governing equations 
 
2.1 Power-law functionally graded material (P-FGM) 

beam 
 

One of the most favorable models for FGMs is the 

power-law model, in which material properties of FGMs are 

supposed to change according to a power law about spatial 

coordinates. The coordinate system for FG nano beam is 

shown in Fig. 1. The FG nanobeam is assumed to be 

combination of ceramic and metal and effective material 

properties (Pf) of the FG beam such as Young’s modulus Ef 

and mass density ρ are supposed to change continuously in 

the direction of z-axis (thickness direction) according to an 

power function of the volume fractions of the material 

constituents. So, the effective material properties, Pf can be 

stated as 

f c c m mV VP P P 
 

(1) 

Where subscripts m and c denote metal and ceramic, 

respectively and the volume fraction of the ceramic is 

associated to that of the metal in the following relation 

1c mV V   (2a) 

The volume fraction of the ceramic constituent of the 

beam is assumed to be given by 

1
( )

2

P

c

z
V

h
   (2b) 

Here P is the power-law exponent which determines the 

material distribution through the thickness of the beam. 

Therefore, from Eqs. (1)-(2), the effective material 

properties of the FG nanobeam can be expressed as follows 

 
1

( )
2

p

c m m
E E E

z

h
Ez    

 
 
   

(3a) 

 
1

( )
2

p

c m m

z
z

h
      

 
 
   

(3b) 
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 
1

( )
2

p

c m m

z
z

h
      

 
 
   

(3c) 

Additionally, in this study, Mori-Tanaka 

homogenization technique is also employed to model the 

effective material properties of the FG nanobeam. 

According to Mori-Tanaka homogenization technique the 

local effective material properties of the FG nanobeam such 

as effective local bulk modulus Ke and shear modulus μe can 

be calculated (Simsek and Reddy 2013) 

 

1 ( ) / ( 4 / 3)






  

e m

c m

c

m c m m m

K K

K K

V

V K K K

 (4a) 

1 ( ) / [( (9 8 ) / (6( 2 ))]

 

 

     






    

e m

c m

c

m c m m m m m m m

V

V K K

 

(4b)

 

Therefore from Eq. (4), the effective Young’s modulus 

(E), Poisson’s ratio (v) and mass density μ based on Mori-

Tanaka scheme can be expressed by 

( )
9

3

e e

e e

zE
K

K







 

(5a) 

( )
3 2

6 2

e e

e e

z
K

K










 

(5b) 

( ) c c m mVz V   
 

(5c) 

The shear modulus G(z) of FG nanobeam with respect to 

both classical rule of mixture and Mori-Tanaka 

homogenization is defined as 

( )
( )

2(1 ( ))
zG

E z

z


  

(6) 

The material composition of FG nanobeam at the upper 

surface (z=+h/2) is supposed to be the pure ceramic and it 

changes continuously to the opposite side surface (z=-h/2) 
which is pure metal. 

 

2.2 Kinematic relations 
 

Based on the third order shear deformation (Reddy) 

beam theory, the displacement field at any point of the 

beam can be written as 

    3, ( ) ( )xu x z u x z x
w

x
z  





 
 

(7) 

( , ) ( )zu x z w x
 (8) 

where 
2

4

3h
   and u and w are the longitudinal and the 

transverse displacements, θ is the rotation of the cross 

section at each point of the neutral axis. Nonzero strains of 

the Reddy beam model are expressed as follows 

xx xx x

(0) (1) 3 (3

x

)

xxzz    
 

(9) 

(0) 2 (2)

xz xz xzz   
 

(10) 

Where 

(0) (1)

2
(3

xx xx

xx

)

2

, ,

( )






 



 


 

 
  

 


u

x x

w

x x

 
(11) 

(0) (2), ( )xz xz

w w

x x
    

 
    
   

(12) 

And 2

4

h
  . By using the Hamilton’s principle, in 

which the motion of an elastic structure in the time interval 

t1<t<t2 is so that the integral with respect to time of the 

total potential energy is extremum 

0
( ) 0

t

U T V dt     
(13) 

Here U is strain energy, T is kinetic energy and V is 

work done by external forces. The virtual strain energy can 

be calculated as 

( )

   

     

 







ij ij
v

xx xx xz xz
v

U dV

dV
 

(14) 

Substituting Eqs. (9) and (10) into Eq.(14) yields 

(0) (1)

(3) (0) (2

xx xx

xx
)0

(

)

 






  

 


 


L

xz xz

N M
U dx

P Q R
 (15) 

In which the variables introduced in arriving at the last 

expression are defined as follows 

3

2

, ,

,

xx xx xx
A A A

xz xz
A A

N dA M z dA P z dA

Q dA R z dA

  

 

  

 

  

   

(16) 

The first variation of the work done by applied forces 

can be written in the form 

0

2
(0)

2

2

x

0)

x

(

2

(

)


  


 

 
 





 
   

 


  



 
 

 


L

w p

xz

w w
V N q w f u

x x

w
k w k N

x

w
M P Q dx

x x

 

dxQ
x

w
P

x
M xz )

)0(

2

2


















 

(17) 

where ˆˆ ,M M P Q Q R      and N is the applied 

axial compressive load and q(x)
 
and f(x) are the transverse 

and axial distributed loads and kw 
and kp are linear and shear 

coefficient of elastic foundation. The first variation of the 

virtual kinetic energy can be written in the form 
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   
 
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K I
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u u
I I
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u w
I

t x t t

u w w
I I

t x t t t t x t

w
I

t t x t

w w
I dAdx

t x t t x t  

(18) 

In which I0, I1, I2, I3, I4 and I6 are mass inertia and 

defined as 

2 3 4 6

0 1 2 3 4 6( , , , , , ) (1, , , , , )
A

I I I I I I z z z z z dA 
 

(19) 

It is noticed from Eq. (19), for homogeneous 

nanobeams, I1=I3=0. 

By Substituting Eqs. (15),(17) and (18) into Eq.(13) and 

setting the coefficients of δu, δw
 

and δθ to zero,
 

the 

following Euler-Lagrange equation can be obtained 

2 2 3

10 32 2 2
0

N u w
f I I I

x t t x t



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(20b) 
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 
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Q w P w
q N I
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I I
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w w
I k w k
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(20c) 

where 
1 2 41 3 2 4 4 6, ,I I I I I I I I I         . 

 
2.3 The nonlocal elasticity model for FG nanobeam 

 
According to Eringen nonlocal elasticity model (Eringen 

and Edelen 1972), the stress state at a point inside a body is 

regarded to be function of strains of all points in the 

neighbor regions. For homogeneous elastic solids the 

nonlocal stress-tensor components ζij at each point x in the 

solid can be defined as 

( ) ( , ) ( ) ( )ij ijx x x t x d x  


    
 

(21) 

where tij(x′) are the components available in local stress 

tensor at point x which are associated to the strain tensor 

components εkl as 

ij ijkl klt C 
 

(22) 

The concept of Eq. (19) is that the nonlocal stress at any 

point is weighting average of local stress of all points in the 

near region that point, the size that is related to the nonlocal 

kernel α(|x′−x|, η). Also |x′−x| is Euclidean distance and η is 

a constant as follows 

0e a
l

 
 

(23) 

which indicates the relation of a characteristic internal 

length, (for instance lattice parameter, C-C bond length and 

granular distance) and a characteristic external length, l (for 

instance crack length and wavelength) using a constant, e0, 

dependent on each material. The value of e0 is 

experimentally estimated by comparing the scattering 

curves of plane waves and atomistic dynamics. According 

to (Eringen and Edelen, 1972) for a class of physically 

admissible kernel α(|x′−x|, η) it is possible to represent the 

integral constitutive relations given by Eq. (22) in an 

equivalent differential form as 

0
2(1 ( ) ) kl kle a t  

 
(24) 

where 
2

 is the Laplacian operator. Thus, the scale length 

e0a conside the influences of small scles on the response of 

nano-structures. The magnitude of the small scale parameter 

relies on several parameters including mode shapes, 

boundary conditions, chirality and the essence of motion. 

The parameter 2 1/2

0 ( 4) / 2 0.39e     was given by 

Eringen (1983). Also, Zhang et al. (2005) found the value 

of 0.82 nm for nonlocal parameter when they compared the 

vibrational results of simply supported single-walled carbon 

nanotubes with molecular dynamics simulations. The 

nonlocal parameter, μ, is experimentally obtained for 

various materials; for instance, a conservative estimate of 

μ<4 (nm)
2 

for a single-walled carbon nanotube is proposed 

(Wang 2005). It is worth mentioning that this magnitude is 

dependent of size and chirality, because the properties of 

carbon nanotubes are extensively confirmed to be 

dependent of chirality. There is no serious study conducted 

to determining the value of small scale to simulate 

mechanical behavior of FG micro/nanobeams (Eltaher et al. 

2012). Hence all researchers who worked on size-dependent 

mechanical behavior of functionally graded nanobeams on 

the basis the nonlocal elasticity method investigated the 

influence of small scale parameter on mechanical behaviour 

of FG nanobeams by changing the value of the small scale 

parameter. So, for a material in the one-dimension case, the 

constitutive relations of nonlocal theory can be expressed as 

2
2

0 2
( ) xx

xx xxe a E
x


 


 

  

(25) 

2
2

0 2
( ) xz

xz xze a G
x


 


 

  

(26) 

where ζ and ε are the nonlocal stress and strain, 

respectively. For a nonlocal FG beam, Eqs. (25) and (26) 

can be written as 
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(28) 

where μ=(e0a)
2
. Integrating Eqs. (27) and (28) over the 

beam’s cross-section area, we obtain the force-strain and 

the moment-strain of the nonlocal Reddy FG beam theory 

can be obtained as follows 
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(33) 

In which the cross-sectional rigidities are defined as 

follows 

2 3 4 6

( , , , , , )
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(34) 

2 4( , , ) ( )(1, , )xz xz xz
A

A D F G z z z dA   
(35) 

The explicit relation of the nonlocal normal force can be 

derived by substituting for the second derivative of N from 

Eq. (20a) into Eq. (29) as follows 
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(36) 

Eliminating Q̂  from Eqs. (20.b) and (20.c), we obtain 

the following equation 
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(37) 

Also the explicit relation of the nonlocal bending 

moment can be derived by substituting for the second 

derivative of M from Eq. (20b) into Eq. (30) and using Eqs. 

(30) and (31) as follows 

)(
2

2

x

w

x
J

x
I

x

u
KM xxxxxx

























 

2

2

2

2

2 2 3

0 12 2 2

3 3 4

2 42 2 2 2

( )

( ( )

( ))

 


 

 


   
   

   

  
    

  

  
   

   

  
 

     

xx xx xx

w

p

u w
M K I J

x x x x

P w
q N k w

x x x

w w u
k I I

x t x t

w
I I

x t x t x t  

(38) 

where 
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By substituting for the second derivative of Q from Eq. 

(20c) into Eq. (32), and using Eqs. (32) and (33) the 

following expression for the nonlocal shear force is derived 
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where 
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Now we use M and Q from Eqs. (38) and (40) and the 

identity 
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(42) 

The nonlocal governing equations of third order shear 

deformation FG nanobeam in terms of the displacement can 

be derived by substituting for N, M and Q from Eqs. (36), 

(38) and (40), respectively , into Eq. (20) as follows 
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(45) 

 
 

3. Solution procedures 
 

Here, on the basis the Navier method, an analytical 

solution of the governing equations for free vibration of a 

simply supported FG nanobeam is presented. To satisfy 

governing equations of motion and the simply supported 

boundary condition, the displacement variables are adopted 

to be of the form 
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where (Un, Wn, θn) are the unknown Fourier coefficients to 

be determined for each n value. Boundary conditions for 

simply supported beam are as Eq. (49)  
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Substituting Eqs. (46)-(48) into Eqs. (43)-(45) 

respectively, leads to Eqs. (47)-(49) 
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(52) 

By setting the determinant of the coefficient matrix of 

the above equations, the analytical solutions can be 

obtained from the following equations 
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(53) 

where [K] is stiffness matrix and [M] is the mass matrix. By 

setting this polynomial to zero, we can find natural 

frequencies ωn. 

 

 

4. Numerical results and discussions 
 
Through this section, the effects of FG distribution, 

nonlocality effect and mode number on the natural 

frequencies of the FG nanobeam will be figured out. The  
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Table 1 Material properties of FGM constituents 

Properties Steel Alumina (Al2O3) 

E 210 (GPa) 390 (GPa) 

ρ 7800 (kg/m3) 3960 (kg/m3) 

ν 0.3 0.3 

 

 

FG nanobeam is a combination of Steel and Alumina 

(Al2O3) where their properties are given in Table 1. The 

following dimensions for the beam geometry is considered: 

L (length)=10000 nm, b (width)=1000 nm (Eltaher et al. 

2012, Rahmani and Pedram 2014). Also, for better 

presentation of the results the following dimensionless 

quantities are adopted 

(54) 

4 2
2 ρ A

ˆ ωL , ,
EI

c
w w p p

c c c

L L
K k K k

E I E I
   

 

where I=bh
3
/12 is the moment inertia of the beam’s cross 

section. To evaluate the correctness of the non-dimensional 

frequencies predicted by the present method, the natural 

frequencies of simply supported FG nanobeam with various 

nonlocal parameters and gradient indexes are compared 

with the results presented by Eltaher et al. (2012) For Euler-

Bernoulli FG nanobeams and Rahmani and Pedram (2014) 

which has been obtained by analytical method for FG 

Timoshenko nanobeam. The reliability of the presented 

method and procedure for FG nanobeam may be concluded 

from Table 2; where the results are in an excellent 

agreement as values of non-dimensional fundamental 

frequency are consistent with presented analytical solution. 

The variation of the first three non-dimensional 

frequencies of FG nanobeam based on power-law and Mori-

Tanaka models for various gradient indexes (p=0.0.2,1,5), 

nonlocal parameters, foundation parameters (Kp=0,5,10, 

Kw=0,25,50,100) and slenderness ratios is tabulated in 

Tables 3-5, respectively. The obtained results for Mori-

Tanaka model and power-law model are referred to as MT-

FGM and PL-FGM, respectively. It can be seen from the 

results of the tables that the non-dimensional frequencies 

predicted by power-law model are greater than that of Mori-

Tanaka homogenization scheme, due to the fact that FG 

nanobeam becomes more flexible according to Mori-

Tanaka homogenization scheme than with respect to power-

law model at a constant gradient index. Also, when p=0 the 

results of Mori-Tanaka and power-law models are exactly 

same because the nanobeam is full ceramic. Therefore, the 

difference in results of these two models becomes 

prominent when the gradient index value is higher than 

p=0. Also it should be noted from Tables 3-5 that, when the 

gradient index increases the non-dimensional frequencies 

reduces at a constant nonlocal parameter. Moreover, by 

fixing gradient index and increasing nonlocal parameter the 

non-dimensional frequencies decreases. Furthermore, it 

must be cited that when the Winkler or Pasternak 

parameters increase the non-dimensional frequencies 

increases which indicates the stiffening influence of 

foundation parameters on the FG nanobeam. 

Table 6 presents the variation of dimensionless 

Table 2 Comparison of the nondimensional fundamental 

frequency for an S-S FG nanobeam with various gradient 

indexes when L/h=20 

 
 P=0 

 
 P=0.5 

 

μ 

EBT 

(Eltaher  

et al. 

2012) 

TBT 

(Rahmani 

and  

Pedram 

2014) 

Present 

RBT 

EBT 

(Eltaher 

et al. 

2012) 

TBT 

(Rahmani 

and Pedram 

2014) 

Present 

RBT 

0 9.8797 9.8296 9.82957 7.8061 7.7149 7.71546 

1 9.4238 9.3777 9.377686 7.4458 7.3602 7.36078 

2 9.0257 8.9829 8.982894 7.1312 7.0504 7.0509 

3 8.6741 8.6341 8.634103 6.8533 6.7766 6.77714 

4 8.3607 8.323 8.323021 6.6057 6.5325 6.53296 

5 8.0789 8.0433 8.043309 6.383 6.3129 6.31342 

  P=1   P=5  

0 7.0904 6.9676 6.967613 6.0025 5.9172 5.916152 

1 6.7631 6.6473 6.6473 5.7256 5.6452 5.644175 

2 6.4774 6.3674 6.367454 5.4837 5.4075 5.406561 

3 6.2251 6.1202 6.120217 5.2702 5.1975 5.196632 

4 6.0001 5.8997 5.899708 5.0797 5.0103 5.0094 

5 5.7979 5.7014 5.701436 4.9086 4.8419 4.841049 

 

 

frequency of thick embedded FG nanobeam for both the 

third-order and Euler-Bernoulli beam model at Kw=25. 

Kp=5. This table shows that the difference in frequency 

results of classical and higher order beam theory becomes 

more prominent as the thickness increases. EBT present 

larer frequencies than third order beam model by neglecting 

the shear deformation effects, especially at L/h=5. 

The effect of existence of elastic foundation on the first 

non-dimensional frequencies of FG nanobeam versus 

gradient index at L/h=20 is presented in Fig. 2, respectively 

so that the variation of the non-dimensional frequency with 

and without elastic foundation according to both power-law 

and Mori-Tanaka methods are compared with each other. It 

is observable from the figure that the non-dimensional 

frequency of FG nanobeam embedded in elastic medium are 

greater than that of FG nanobeam without elastic 

foundation. Since when the foundation parameters increase 

the nanobeam becomes more rigid. Also, the Mori-Tanaka 

scheme determines lower values for the non-dimensional 

frequencies with comparing to the power-law model. The 

reason is that, Mori-Tanaka model produces lower values 

for Young’s modulus than the power-law model, and that 

gives rise to a more flexible structure. Furthermore, usually 

the differences of the frequencies between PL and MT 

models are insignificant, specifically for lower gradient 

indexes. Also, it is found that, the first non-dimensional 

frequency reduces with rigorous rate where the gradient 

index changes from 0 to 2 than that where gradient index 

changes from 2 to 10. Also it is observable that increasing 

nonlocal parameter shows a decreasing effect on the first 

non-dimensional frequency. Therefore, as a consequence, 

the existence of nonlocality and Winkler foundation softens 

and stiffens the structure, respectively. Fig. 3, shows the 

variation of the first non-dimensional frequency of S-S FG 

nanobeam versus slenderness ratio (L/h) when Kp=5, Kw=25  
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for different gradient indexes based on Mori-Tanaka model. 

It is observed from the figure that, the first non-dimensional 

frequency increases with increase in slenderness ratio. But 

this observation is more accurate when slenderness ratio is 

less than L/h=20. So, it must be concluded that the 

influence of slenderness ratio on the non-dimensional 

frequency for the values larger than L/h=20 is not sensible. 

The variation of the first non-dimensional frequency of S-S 

MT-FGM nanobeam with Winkler parameter for various 

nonlocal parameters and gradient indexes is presented in 

Fig. 4. It is seen that with an increase in the Winkler 

parameter the first non-dimensional frequency increases for 

all gradient indexes. Also, it is seen that increasing the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

gradient index results in reduction in the first non-

dimensional frequency at any Winkler and nonlocal 

parameters. In addition, it is worth noting that, the nonlocal 

parameter possess a softening effect and when increases the 

first non-dimensional frequency reduces for all gradient 

indexes. The variation of the first non-dimensional 

frequency of S-S FG nanobeam versus Pasternak parameter 

Kp and various gradient indexes and nonlocal parameters at 

Kw=25 is plotted in Fig. 5. It can be seen that with 

increasing the Pasternak parameter the non-dimensional 

frequency increases for all gradient indexes and nonlocal 

parameters. Also, it is observed that increasing the gradient 

index yields in increment of the first non-dimensional 

Table 3 Variation of the first non-dimensional fundamental frequency for an embedded S-S FG nanobeam 

with various gradient indexes and nonlocal parameters when L/h=20  

(Kw, Kp) µ 

Gradient index   

0  0.2  1  5  

PL-FGM MT-FGM PL-FGM MT-FGM PL-FGM MT-FGM PL-FGM MT-FGM 

(0,0) 

0 9.82957 9.82957 8.66012 8.55348 6.96748 6.89192 5.91610 5.86622 

1 9.37769 9.37769 8.26200 8.16026 6.64717 6.57509 5.64413 5.59654 

2 8.98289 8.98289 7.91418 7.81672 6.36733 6.29828 5.40651 5.36093 

3 8.6341 8.63410 7.60688 7.51321 6.1201 6.05373 5.19659 5.15277 

4 8.32302 8.32302 7.33281 7.24252 5.89959 5.83562 5.00936 4.96712 

(25,0) 

0 11.0259 11.0259 9.82210 9.72819 8.08363 8.01859 6.98564 6.94347 

1 10.625 10.6250 9.47294 9.38433 7.80924 7.74797 6.75686 6.71718 

2 10.2782 10.2782 9.17115 9.08718 7.57247 7.51449 6.55968 6.52218 

3 9.97482 9.97482 8.90733 8.82746 7.36579 7.31074 6.38776 6.35219 

4 9.7068 9.70680 8.67444 8.59824 7.18363 7.13118 6.23640 6.20254 

(25,5) 

0 13.0697 13.0697 11.7841 11.7059 9.92500 9.87209 8.71994 8.68621 

1 12.7334 12.7334 11.4947 11.4218 9.70282 9.65357 8.53776 8.50641 

2 12.4455 12.4455 11.2473 11.1789 9.51329 9.46721 8.38257 8.35328 

3 12.1961 12.1961 11.0332 10.9688 9.34962 9.30630 8.24873 8.22124 

4 11.9779 11.9779 10.8461 10.7852 9.20679 9.16592 8.13208 8.10618 

(25,10) 

0 14.8346 14.8346 13.4632 13.3948 11.4746 11.4288 10.1625 10.1336 

1 14.5391 14.5391 13.2106 13.1472 11.2830 11.2406 10.0066 9.97986 

2 14.2877 14.2877 12.9959 12.9367 11.1204 11.0810 9.87449 9.84967 

3 14.0710 14.0710 12.8111 12.7556 10.9807 10.9438 9.76113 9.73794 

4 13.8823 13.8823 12.6503 12.5981 10.8594 10.8247 9.66276 9.64099 

(50,0) 

0 12.1045 12.1045 10.8605 10.7756 9.06335 9.00539 7.91190 7.87470 

1 11.7405 11.7405 10.5457 10.4662 8.81950 8.76529 7.71065 7.67592 

2 11.4276 11.4276 10.2755 10.2006 8.61055 8.55961 7.53846 7.50586 

3 11.1556 11.1556 10.0407 9.96994 8.42937 8.38130 7.38935 7.35863 

4 10.9166 10.9166 9.83473 9.76757 8.27066 8.22514 7.25890 7.22985 

(50,5) 

0 13.9917 13.9917 12.6626 12.5899 10.7380 10.6891 9.47820 9.44720 

1 13.6780 13.6780 12.3937 12.3261 10.5330 10.4876 9.31087 9.28215 

2 13.4104 13.4104 12.1646 12.1014 10.3587 10.3164 9.16878 9.14202 

3 13.1793 13.1793 11.9670 11.9076 10.2086 10.1689 9.04658 9.02153 

4 12.9776 12.9776 11.7946 11.7387 10.0779 10.0406 8.94034 8.91680 

(50,10) 

0 15.6530 15.6530 14.2384 14.1738 12.1846 12.1416 10.8201 10.7930 

1 15.3732 15.3732 13.9999 13.9400 12.0044 11.9646 10.6738 10.6488 

2 15.1356 15.1356 13.7974 13.7417 11.8517 11.8147 10.5501 10.5269 

3 14.9313 14.9313 13.6235 13.5714 11.7207 11.6862 10.4441 10.4224 

4 14.7536 14.7536 13.4724 13.4234 11.6071 11.5747 10.3522 10.3319 
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frequency at any Pasternak parameter. With Comparison of 

this figure with Fig. 4, it is specified that the influence of  

the Winkler parameter (Kw) on the non-dimensional 

frequency is less prominent than that of the Pasternak 

parameter (Kp). Figs. 6 and 7 depict the influences of mode 

number as well as foundation parameters, Kw and Kp on the 

variation of the non-dimensional frequency of S-S FG 

nanobeam with changing of nonlocal parameter at L/h=20, 

p=0.2. It is seen from the figures that, for the higher modes 

the influence of nonlocal parameter is more sensible. Also it 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
is observable that increasing foundation parameters has 

affected all modes of FG nanobeam and increases the 

values of non-dimensional frequencies.  

 

 

5. Conclusions 
 
Free vibration characteristics of the third order shear 

deformable FG nanobeams embedded on elastic medium 

are investigated on the basis of nonlocal elasticity theory in  

Table 4 Variation of the second non-dimensional fundamental frequency for an embedded S-S FG 

nanobeam with various gradient indexes and nonlocal parameters when L/h=20 

(Kw, Kp) µ 

Gradient index 

0  0.2  1  5  

PL-FGM MT-FGM PL-FGM MT-FGM PL-FGM MT-FGM PL-FGM MT-FGM 

(0,0) 

0 38.8521 38.8521 34.2318 33.8103 27.5337 27.2299 23.3508 23.1549 

1 32.8974 32.8974 28.9852 28.6283 23.3137 23.0564 19.7719 19.6060 

2 29.0429 29.0429 25.5891 25.2741 20.5821 20.3550 17.4553 17.3089 

3 26.2878 26.2878 23.1616 22.8764 18.6296 18.4240 15.7994 15.6669 

4 24.1923 24.1923 21.3153 21.0529 17.1446 16.9554 14.5400 14.4180 

(25,0) 

0 39.1701 39.1701 34.5422 34.1245 27.8352 27.5347 23.6428 23.4494 

1 33.2723 33.2723 29.3511 28.9987 23.6690 23.4156 20.1159 19.9529 

2 29.4669 29.4669 26.0029 25.6929 20.9837 20.7610 17.8440 17.7008 

3 26.7554 26.7554 23.6179 23.3383 19.0723 18.8716 16.2278 16.0988 

4 24.6997 24.6997 21.8103 21.5539 17.6247 17.4407 15.0044 14.8863 

(25,5) 

0 41.5951 41.5951 36.9012 36.5104 30.1098 29.8322 25.8324 25.6557 

1 36.0957 36.0957 32.0940 31.7719 26.3063 26.0786 22.6491 22.5046 

2 32.6214 32.6214 29.0635 28.7863 23.9190 23.7238 20.6577 20.5344 

3 30.1945 30.1945 26.9507 26.7059 22.2611 22.0893 19.2789 19.1706 

4 28.3889 28.3889 25.3816 25.1615 21.0341 20.8801 18.2610 18.1643 

(25,10) 

0 43.8863 43.8863 39.1182 38.7498 32.2242 31.9650 27.8504 27.6867 

1 38.7138 38.7138 34.6203 34.3218 28.7024 28.4938 24.9262 24.7952 

2 35.4966 35.4966 31.8312 31.5782 26.5315 26.3557 23.1317 23.0217 

3 33.2801 33.2801 29.9145 29.6940 25.0471 24.8945 21.9091 21.8141 

4 31.6510 31.6510 28.5090 28.3131 23.9632 23.8281 21.0190 20.9352 

(50,0) 

0 39.4854 39.4854 34.8498 34.4358 28.1334 27.8362 23.9312 23.7401 

1 33.6430 33.6430 29.7125 29.3644 24.0190 23.7694 20.4541 20.2938 

2 29.8848 29.8848 26.4101 26.1049 21.3778 21.1592 18.2244 18.0843 

3 27.2150 27.2150 24.0655 23.7912 19.5051 19.3088 16.6452 16.5195 

4 25.1968 25.1968 22.2943 22.0435 18.0921 17.9129 15.4549 15.3402 

(50,5) 

0 41.8922 41.8922 37.1893 36.8016 30.3857 30.1107 26.0966 25.9217 

1 36.4377 36.4377 32.4248 32.1061 26.6217 26.3967 22.9500 22.8075 

2 32.9994 32.9994 29.4284 29.1547 24.2655 24.0731 20.9872 20.8658 

3 30.6025 30.6025 27.3439 27.1026 22.6329 22.4640 19.6315 19.5252 

4 28.8225 28.8225 25.7987 25.5821 21.4272 21.2761 18.6329 18.5382 

(50,10) 

0 44.1680 44.1680 39.3901 39.0242 32.4822 32.2251 28.0957 27.9334 

1 39.0328 39.0328 34.9272 34.6314 28.9917 28.7852 25.1999 25.0703 

2 35.8443 35.8443 32.1647 31.9144 26.8443 26.6705 23.4264 23.3178 

3 33.6507 33.6507 30.2692 30.0513 25.3782 25.2276 22.2200 22.1263 

4 32.0405 32.0405 28.8810 28.6875 24.3090 24.1759 21.3429 21.2604 
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conjunction with Navier analytical method. Eringen’s 

theory of nonlocal elasticity together with third order shear 

deformation (Reddy) beam theory are used to model the FG 

nanobeam. Mechanical properties of the FG nanobeams 

considered to change over the thickness based to the power 

law and Mori-Tanaka models. The governing nonlocal 

differential equations are derived by implementing 

Hamilton’s principle. Correctness of the results is examined 

using available date in the literature. Finally, through some 

numerical examples, the influence of different parameters 

including nonlocal parameter, foundation parameters, 

material graduation, mode number and slenderness ratio on 

fundamental frequencies of FG nanobeams are investigated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
It is found that, with an increase of Winkler or Pasternak 

parameter, the FG nanobeam becomes more rigid and the 

non-dimensional frequencies increase. Also, it is revealed 

that existence of nonlocality has a notable decreasing 

influence on the non-dimensional frequencies of FG 

nanobeams, which indicates the prominence of the nonlocal 

effect. So, it must be mentioned that properly selection of 

the values of the nonlocal parameter is also vital to ensure 

the accuracy of the nonlocal beam models. It should also be 

cited that the power-law and Mori-Tanaka indexes have a 

remarkable influence on the vibrational responses of FG 

nanobeams. In addition, often the differences of the 

frequencies between PL and MT models is very small,  

Table 5 Variation of the third non-dimensional fundamental frequency for an embedded S-S FG na

nobeam with various gradient indexes and nonlocal parameters when L/h=20 

(Kw, Kp) µ 

Gradient index 

0  0.2  1  5  

PL-FGM MT-FGM PL-FGM MT-FGM PL-FGM MT-FGM PL-FGM MT-FGM 

(0,0) 

0 85.7679 85.7679 75.5751 74.6448 60.7624 60.0743 51.4360 51.0080 

1 62.4156 62.4156 54.9981 54.3211 44.2184 43.7177 37.4314 37.1199 

2 51.4723 51.4723 45.3553 44.7970 36.4656 36.0527 30.8686 30.6117 

3 44.8023 44.8023 39.4779 38.9920 31.7402 31.3808 26.8685 26.6449 

4 40.1951 40.1951 35.4183 34.9823 28.4763 28.1538 24.1055 23.9049 

(25,0) 

0 85.9111 85.9111 75.7149 74.7863 60.8983 60.2117 51.5681 51.1412 

1 62.6123 62.6123 55.1900 54.5154 44.4050 43.9064 37.6127 37.3028 

2 51.7106 51.7106 45.5878 45.0324 36.6916 36.2812 31.0882 30.8332 

3 45.0759 45.0759 39.7449 39.2622 31.9996 31.6431 27.1205 26.8990 

4 40.4998 40.4998 35.7156 35.2833 28.7651 28.4459 24.3861 24.1878 

(25,5) 

0 88.4171 88.4171 78.1568 77.2574 63.2639 62.6033 53.8606 53.4524 

1 66.0088 66.0088 58.4951 57.8587 47.5975 47.1327 40.6990 40.4132 

2 55.7749 55.7749 49.5377 49.0267 40.4968 40.1254 34.7587 34.5313 

3 49.6859 49.6859 44.2198 43.7861 36.3000 35.9862 31.2604 31.0690 

4 45.5751 45.5751 40.6367 40.2568 33.4836 33.2097 28.9201 28.7538 

(25,10) 

0 90.8539 90.8539 80.5247 79.6518 65.5442 64.9068 56.0595 55.6676 

1 69.2388 69.2388 61.6231 61.0191 50.5889 50.1518 43.5672 43.3007 

2 59.5625 59.5625 53.1951 52.7192 43.9739 43.6320 38.0770 37.8700 

3 53.9031 53.9031 48.2817 47.8844 40.1423 39.8586 34.9128 34.7420 

4 50.1392 50.1392 45.0230 44.6800 37.6145 37.3709 32.8338 32.6879 

(50,0) 

0 86.0541 86.0541 75.8545 74.9276 61.0339 60.3489 51.6999 51.2741 

1 62.8084 62.8084 55.3813 54.7090 44.5908 44.0942 37.7931 37.4847 

2 51.9479 51.9479 45.8192 45.2666 36.9162 36.5084 31.3062 31.0530 

3 45.3478 45.3478 40.0101 39.5306 32.2569 31.9033 27.3701 27.1508 

4 40.8023 40.8023 36.0105 35.5817 29.0511 28.7351 24.6634 24.4675 

(50,5) 

0 88.5560 88.5560 78.2920 77.3941 63.3944 62.7352 53.9868 53.5795 

1 66.1948 66.1948 58.6756 58.0412 47.7709 47.3077 40.8658 40.5812 

2 55.9950 55.9950 49.7508 49.2419 40.7005 40.3309 34.9539 34.7278 

3 49.9327 49.9327 44.4583 44.0269 36.5271 36.2151 31.4773 31.2872 

4 45.8441 45.8441 40.8961 40.5186 33.7295 33.4577 29.1544 28.9894 

(50,10) 

0 90.9891 90.9891 80.6559 79.7844 65.6702 65.0340 56.1807 55.7897 

1 69.4161 69.4161 61.7945 61.1921 50.7521 50.3163 43.7231 43.4576 

2 59.7686 59.7686 53.3936 52.9194 44.1615 43.8211 38.2553 38.0492 

3 54.1307 54.1307 48.5002 48.1047 40.3477 40.0655 35.1071 34.9373 

4 50.3838 50.3838 45.2573 44.9160 37.8337 37.5915 33.0403 32.8954 
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Table 6 Variation of the non-dimensional fundamental 

frequency for an embedded thick FG nanobeam with 

various gradient indices and nonlocal parameters when 

Kw=25, Kp=5 

 µ 
L/h=5 L/h=10 

p=0 p=0.2 p=1 p=5 p=0 p=0.2 p=1 p=5 

EBT 
0 

12.8952 11.5387 9.72586 8.57126 13.0520 11.687 9.85632 8.67455 

present 12.5986 11.2967 9.53389 8.39316 12.9658 11.6157 9.79716 8.62067 

EBT 
1 

12.5624 11.2577 9.50969 8.39308 12.7152 11.4024 9.63732 8.49425 

present 12.2869 11.0335 9.33239 8.22889 12.6348 11.336 9.58235 8.44427 

EBT 
2 

12.2776 11.0176 9.32531 8.24131 12.4269 11.1593 9.45054 8.34069 

present 12.0203 10.8087 9.1607 8.08915 12.3515 11.0971 9.39919 8.29408 

EBT 
3 

12.0309 10.8099 9.16611 8.11043 12.1772 10.9489 9.28926 8.20827 

present 11.7896 10.6144 9.01258 7.96875 12.1062 10.8904 9.24108 8.16460 

 

specifically for lower gradient indexes. Hence, considering 

PL and MT models, it is concluded that with the increment 

of gradient index the natural frequencies reduce. 
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(a) μ=0 (b) μ=1 

  
(c) μ=2 (d) μ=3 

 
(e) μ=4 

Fig. 2 The effect of presence of elastic foundation and the estimation method of material properties on the first non-

dimensional frequency with gradient index for different nonlocal parameters when L/h=20 
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Fig. 3 The comparison of the first non-dimensional frequency of S-S FG nanobeam in the case of Mori-Tanaka model versus 

slenderness ratio for different gradient indexes and nonlocal parameters at Kp=5, Kw=25 
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Fig. 4 The variation of the first non-dimensional frequency of S-S FG nanobeam with Winkler parameter and gradient index 

for different nonlocal parameters at L/h=20 and Kp=5 
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Fig. 5 The variation of the first non-dimensional frequency of S-S FG nanobeam with Pasternak parameter and gradient index 

for different nonlocal parameters at L/h=20 and Kw=25 
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(c) Kw=50 (d) Kw=100 

Fig. 6 The variation of the non-dimensional frequency of S-S FG nanobeam with mode number and nonlocal parameter for 

different Winkler parameters at L/h=20, p=0.2 and Kp=5 

734



 

Vibration analysis of embedded size dependent FG nanobeams based on third-order shear deformation beam theory 

 

 

 

 

Ansari, R., Gholami, R. and Sahmani, S. (2011), “Free vibration 

analysis of size-dependent functionally graded microbeams 

based on the strain gradient Timoshenko beam 

theory”, Compos. Struct., 94(1), 221-228. 

Asghari, M., Rahaeifard, M., Kahrobaiyan, M. and Ahmadian, 

M.T. (2011), “The modified couple stress functionally graded 

Timoshenko beam formulation”, Mater. Des., 32(3), 1435-1443. 

Aydogdu, M. (2009), “A general nonlocal beam theory: its 

application to nanobeam bending, buckling and vibration”, 

Physica E: Low-dimens. Syst. Nanostruct., 41(9), 1651-1655.  

Civalek, Ö ., Demir, C. and Akgöz, B. (2010), “Free vibration and 

bending analyses of cantilever microtubules based on nonlocal 

continuum model”, Math. Comput. Appl., 15(2), 289-298.  

Ebrahimi, F. and Barati, M.R. (2015), “A nonlocal higher-order 

shear deformation beam theory for vibration analysis of size-

dependent functionally graded nanobeams”, Arab. J. Sci. Eng., 

40, 1-12. 

Ebrahimi, F. and Barati, M.R. (2016a), “Buckling analysis of 

nonlocal third-order shear deformable functionally graded 

piezoelectric nanobeams embedded in elastic medium”, J. 

Brazil. Soc. Mech. Sci. Eng., 39(3), 937-952. 

Ebrahimi, F. and Barati, M.R. (2016b), “An exact solution for 

buckling analysis of embedded piezoelectro-magnetically 

actuated nanoscale beams”, Adv. Nano Res., 4(2), 65-84. 

Ebrahimi, F. and Barati, M.R. (2016c), “Buckling analysis of 

piezoelectrically actuated smart nanoscale plates subjected to 

magnetic field”, J. Intel. Mater. Syst. Struct., 

1045389X16672569 

Ebrahimi, F. and Barati, M.R. (2016d), “On nonlocal 

characteristics of curved inhomogeneous Euler-Bernoulli 

nanobeams under different temperature distributions”, Appl. 

Phys. A, 122(10), 880. 

Ebrahimi, F. and Barati, M.R. (2016e), “A unified formulation for 

dynamic analysis of nonlocal heterogeneous nanobeams in 

hygro-thermal environment”, Appl. Phys. A, 122(9), 792. 

Ebrahimi, F. and Barati, M.R. (2016f), “Dynamic modeling of a 

thermo-piezo-electrically actuated nanosize beam subjected to a 

magnetic field”, Appl. Phys. A, 122(4), 1-18. 

Ebrahimi, F. and Barati, M.R. (2016g), “Vibration analysis of 

smart piezoelectrically actuated nanobeams subjected to 

magneto-electrical field in thermal environment”, J. Vib. 

Control, 1077546316646239. 

Ebrahimi, F. and Barati, M.R. (2016h), “Vibration analysis of 

nonlocal beams made of functionally graded material in thermal 

environment”, Euro. Phys. J. Plus, 131(8), 279. 

Ebrahimi, F. and Barati, M.R. (2016i), “Small scale effects on 

hygro-thermo-mechanical vibration of temperature dependent 

nonhomogeneous nanoscale beams”, Mech. Adv. Mater. Struct., 

1-13. 

 

 

Ebrahimi, F. and Barati, M.R. (2016j), “Temperature distribution 

effects on buckling behavior of smart heterogeneous nanosize 

plates based on nonlocal four-variable refined plate theory”, Int. 

J. Smart Nano Mater., 7(3), 119-143. 

Ebrahimi, F. and Barati, M.R. (2017), “A nonlocal strain gradient 

refined beam model for buckling analysis of size-dependent 

shear-deformable curved FG nanobeams”, Compos. Struct., 

159, 174-182.  

Ebrahimi, F. and Hosseini, S.H.S. (2016a), “Thermal effects on 

nonlinear vibration behavior of viscoelastic nanosize plates”, J. 

Therm. Stress., 39(5), 606-625. 

Ebrahimi, F. and Hosseini, S.H.S. (2016b), “Double nanoplate-

based NEMS under hydrostatic and electrostatic actuations”, 

Euro. Phys. J. Plus, 131(5), 1-19. 

Ebrahimi, F. and Nasirzadeh, P. (2015), “A nonlocal Timoshenko 

beam theory for vibration analysis of thick nanobeams using 

differential transform method”, J. Theor. Appl. Mech., 53(4), 

1041-1052. 

Ebrahimi, F. and Salari E (2015c), “Size-dependent thermo-

electrical buckling analysis of functionally graded piezoelectric 

nanobeams”, Smart Mater. Struct., 24(12), 125007. 

Ebrahimi, F. and Salari E (2015f), “Nonlocal thermo-mechanical 

vibration analysis of functionally graded nanobeams in thermal 

environment”, Acta Astronautica, 113, 29-50. 

Ebrahimi, F. and Salari, E. (2015a), “Size-dependent free flexural 

vibrational behavior of functionally graded nanobeams using 

semi-analytical differential transform method”, Compos. Part 

B: Eng., 79, 156-169. 

Ebrahimi, F. and Salari, E. (2015b), “A semi-analytical method for 

vibrational and buckling analysis of functionally graded 

nanobeams considering the physical neutral axis 

position”, CMES: Comput. Model. Eng. Sci., 105(2), 151-181. 

Ebrahimi, F. and Salari, E. (2015d), Thermo-mechanical vibration 

analysis of nonlocal temperature-dependent FG nanobeams with 

various boundary conditions”, Compos. Part B: Eng., 78, 272-

290. 

Ebrahimi, F. and Salari, E. (2015e), “Size-dependent free flexural 

vibrational behavior of functionally graded nanobeams using 

semi-analytical differential transform method”, Compos. Part 

B: Eng., 79, 156-169. 

Ebrahimi, F. and Salari, E. (2015g), “Effect of various thermal 

loadings on buckling and vibrational characteristics of nonlocal 

temperature-dependent FG nanobeams”, Mech. Adv. Mater. 

Struct, 23(12), 1379-1397.  

Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016b), “A nonlocal 

strain gradient theory for wave propagation analysis in 

temperature-dependent nhomogeneous nanoplates”, Int. J. Eng. 

Sci., 107, 169-182. 

Ebrahimi, F., Ghadiri, M., Salari, E., Hoseini, S.A.H. and 

   
(a) Kp=0 (b) Kp=10 (c) Kp=20 

Fig. 7 The variation of the non-dimensional frequency of S-S FG nanobeam with mode number and nonlocal parameter for 

different Pasternak parameters at L/h=20, p=0.2 and Kw=25 

735



 

Farzad Ebrahimi and Mohammad Reza Barati 

 

Shaghaghi, G.R. (2015), “Application of the differential 

transformation method for nonlocal vibration analysis of 

functionally graded nanobeams”, J. Mech. Sci. Technol., 29(3), 

1207-1215. 

Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013a), 

“Determination of neutral axis position and its effect on natural 

frequencies of functionally graded macro/nanobeams”, Compos. 

Struct., 99, 193-201.  

Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2012), “Free 

vibration analysis of functionally graded size-dependent 

nanobeams”, Appl. Math. Comput., 218(14), 7406-7420.  

Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2013b), Static 

and stability analysis of nonlocal functionally graded 

nanobeams”, Compos. Struct., 96, 82-88.  

Eringen, A.C. (1972), “Nonlocal polar elastic continua”, Int. J. 

Eng. Sci., 10(1), 1-16.  

Eringen, A.C. (1983), “On differential equations of nonlocal 

elasticity and solutions of screw dislocation and surface 

waves”, J. Appl. Phys., 54(9), 4703-4710.  

Eringen, A.C. and Edelen, D.G.B. (1972), “On nonlocal 

elasticity”, Int. J. Eng. Sci., 10(3), 233-248. 

Hosseini-Hashemi, S., Nahas, I., Fakher, M. and Nazemnezhad, R. 

(2014), “Surface effects on free vibration of piezoelectric 

functionally graded nanobeams using nonlocal elasticity”, Acta 

Mechanica, 225(6), 1555-1564.  

Iijima, S. (1991), “Helical microtubules of graphitic carbon”, 

Nature, 354(6348), 56-58. 

Ke, L L. and Wang, Y.S. (2011), “Size effect on dynamic stability 

of functionally graded microbeams based on a modified couple 

stress theory”, Compos. Struct., 93(2), 342-350.  

Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2012), 

“Nonlinear free vibration of size-dependent functionally graded 

microbeams”, Int. J. Eng. Sci., 50(1), 256-267. 

Niknam, H. and Aghdam, M.M. (2015), “A semi analytical 

approach for large amplitude free vibration and buckling of 

nonlocal FG beams resting on elastic foundation”, Compos. 

Struct., 119, 452-462. 

Pasternak, P.L. (1954), “On a new method of analysis of an elastic 

foundation by means of two foundation constants”, 

Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstvu i 

Arkhitekture, Moscow. 

Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), 

“Application of nonlocal continuum models to 

nanotechnology”, Int. J. Eng. Sci., 41(3), 305-312. 

Rahmani, O. and Jandaghian, A.A. (2015), “Buckling analysis of 

functionally graded nanobeams based on a nonlocal third-order 

shear deformation theory”, Appl. Phys. A, 119(3), 1019-1032.  

Rahmani, O. and Pedram, O. (2014), “Analysis and modeling the 

size effect on vibration of functionally graded nanobeams based 

on nonlocal Timoshenko beam theory”, Int. J. Eng. Sci., 77, 55-

70.  

Reddy, J.N. (2007), “Nonlocal theories for bending, buckling and 

vibration of beams”, Int. J. Eng. Sci., 45(2), 288-307. 

Şimşek, M. (2014), “Large amplitude free vibration of nanobeams 

with various boundary conditions based on the nonlocal 

elasticity theory”, Compos. Part B: Eng., 56, 621-628.  

Şimşek, M. and Reddy, J.N. (2013), “A unified higher order beam 

theory for buckling of a functionally graded microbeam 

embedded in elastic medium using modified couple stress 

theory”, Compos. Struct., 101, 47-58. 

Şimşek, M. and Yurtcu, H.H. (2013), “Analytical solutions for 

bending and buckling of functionally graded nanobeams based 

on the nonlocal Timoshenko beam theory”, Compos. Struct., 97, 

378-386.  

Thai, H.T. (2012), “A nonlocal beam theory for bending, buckling, 

and vibration of nanobeams”, Int. J. Eng. Sci., 52, 56-64.  

Touratier, M. (1991), “An efficient standard plate theory”, Int. J. 

Eng. Sci., 29(8), 901-916. 

Uymaz, B. (2013), “Forced vibration analysis of functionally 

graded beams using nonlocal elasticity”, Compos. Struct., 105, 

227-239. 

Wang, L. and Hu, H. (2005), “Flexural wave propagation in 

single-walled carbon nanotubes”, Phys. Rev. B, 71(19), 195412. 

Wang, Q. and Liew, K.M. (2007), “Application of nonlocal 

continuum mechanics to static analysis of micro-and nano-

structures”, Phys. Lett. A, 363(3), 236-242. 

Zhang, B., He, Y., Liu, D., Gan, Z. and Shen, L. (2014), “Size-

dependent functionally graded beam model based on an 

improved third-order shear deformation theory”, Euro. J. Mech. 

A/Solid., 47, 211-230. 

Zhang, Y.Q., Liu, G.R. and Xie, X.Y. (2005), “Free transverse 

vibrations of double-walled carbon nanotubes using a theory of 

nonlocal elasticity”, Phys. Rev. B, 71(19), 195404.  

 

 

CC 

736




