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1. Introduction  
 

The situation of resistant structures supporting motors or 

engines attached to them is usual in technological 

applications. The operation of the machine alters the natural 

vibration and may introduce severe dynamic stresses on the 

beam. It is important, then, to know the natural frequencies 

of the coupled beam-mass system, in order to obtain a 

proper design of the structural element. In that case, the 

inertial effect magnifies the influence of the constituent 

materials. Beams are probably the most widespread 

component of those structures and a significant amount of 

papers has been written on the subject. Among them, the 

papers of Bapat and Bapat (1987) and Naguleswaran (2002) 

can be mentioned. Specifically, cantilever beams have 

countless applications including use of a cantilever - mass 

system as a dynamic absorber (La Malfa et al. 2000) 

In recent years, it has become increasingly important to 

use advanced materials whose properties vary gradually in 

some of its dimensions (FGM). Such materials were first 

used by Japanese researchers posed as thermal barrier 

material in mid-eighties, Niino et al. (1987). 

In present paper, beams of materials whose properties 

vary functionally along the axis (AFG) are studied.  

Initially, the research established great progress in the 

field of elasticity theory and the study of plates and shells 

built with FGM. Advance in its application to beams 

(Functionally Graded Beams -FGB-) came later. 
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A survey of the literature reveals that most of the early 

work on functionally graded beams has considered the 

gradation of the material properties in the thickness 

direction. Far fewer researchers have considered the 

variation of material properties in the axial direction (AFG). 

Probably because the problem becomes more complicated 

as variable coefficients appear in the governing differential 

equations. 

Consequently, because of the mathematical difficulties, 

few analytical solutions have been obtained and for 

arbitrary specific gradients: It is worth mentioning the work 

of Elishakoff and his colleagues-Elishakoff (2000), 

Elishakoff and Candan (2001), Caliò and Elishakoff (2004) 

and (2005), Elishakoff (2005), Elishakoff and Guede (2005) 

and Wu, Wang and Elishakoff (2005)-, who by means of 

the semi-inverse method, solved various particular cases of 

vibrating AFG beams. 

Huang and Li (2010) solved the problem by 

transforming the governing equation with variable 

coefficients in a Fredholm integral equation. Alshorbgy et 

al. (2011) investigated the dynamic characteristics of non-

uniform beams with axially or transversely in height 

gradation of the material by means of the finite element 

method. Shahba and Rajasekaran (2012) studied 

longitudinal and transverse free vibration and buckling of 

AFG Euler-Bernoulli beams using the differential transform 

element method (DTEM) and differential quadrature 

element method of lowest-order (DQEL). Hein and 

Feklistova (2011) investigated the vibration of non-uniform 

and AFG beams with various boundary conditions and 

varying cross-sections using Haar wavelets.  Ç etin and 

Şimşek (2011), Chegenizadeh et al. (2014) studied 

statically and dynamically AFG beams embedded in an 

elastic medium. Şimşek and co-workers (2011, 2012) 

studied the dynamic behavior of AFG beams under the 

action of a moving load. Agköz and Civalek (2013) studied 

the free longitudinal vibrations of AFG bars on the basis of  
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strain gradient elasticity theory by using the Rayleigh-Ritz 

method. Recently, Gan et al. (2015) presented a finite 

element procedure to study AFG Timoshenko beams 

subjected to multiple moving points. 

Apparently, according to a recent literature survey, there 

has not been any attempt to solve the problem of an axially 

functionally graded beam carrying an attached mass. In 

particular to the authors’ knowledge, there are no natural 

frequency data in the literature for axially functionally 

graded, AFG, beams carrying an attached mass. Even, 

scarce information is available about homogeneous beams 

with variable cross section and attached masses, a very 

interesting paper of Wu and Hsieh (2000) can be quoted. In 

the case of cantilever beams, the papers by Auciello and 

Maurizi (1997), Chen and Lui (2006) and, recently 

Hozhabrossadati (2015) must be mentioned. 

In the present paper, we describe the determination of 

the natural frequencies of vibration of a Bernoulli-Euler 

cantilever beam with varying rectangular cross section and 

made of axially functionally graded material, carrying 

attached masses at arbitrary positions, having into account 

their rotatory inertia (Fig. 1). 

The well-known variational Ritz method (Ilanko and 

Monterrubio 2014) is employed to perform the analysis. 

The proposed approach exhibits an excellent accuracy for 

particular cases available in the literature. 

 

 

2. Analytical approach 
 

According to the classical Euler-Bernoulli beam theory, 

the energy functional J for a vibrating beam of length L  

carrying attached N masses mk at positions 
kx  (see Fig. 1)  

is given by  
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where x x L  is the dimensionless coordinate, V(x) is 

the deflection, A(x) is the varying cross section and I(x) its 

second moment of area, the FGM density and Young’s 

modulus are respectively ρ(x) and E(x); rk is the radius of 

 

 

 

 

 

 

 

 

 

 

 

 

gyration of the mass mk with respect to the neutral axis of 

the beam 

As the material and geometric characteristics of the 

beam may be general, one can define 

   0 EE x E f x  

   0 II x I f x  

   0x f x   

   0 AA x A f x
 

   0 bb x b f x  

   0 hh x h f x  

(2) 

Obviously: fA=fb×fh, 
3

A b h I b hf f f     ,    f f f     

The subscript “0” refers to the cross section of the beam 

adopted as the reference section  

Substituting Eq. (2) into Eq. (1), the functional can be 

expressed 
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with: 
2 0 0

0 0 0 0

 ,  , k k
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To apply the Ritz method, it is necessary to approximate 

the spatial component of the solution 

   
1

P

a j j

j

V x V x C 


   (4) 

where φj are coordinate functions that satisfy the essential 

boundary conditions, Cj are arbitrary constants. 

Following Ritz’ procedure, the functional is minimized 

with respect to every arbitrary constant 
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Then a linear system of equations is formed 

  0jC A  (6) 

 
Fig. 1 AFG cantilever tapered beam with N masses attached at arbitrary points 
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which results in the following eigenvalue equation 

2A=K - M  (7) 

where 
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are the elements of matrices K and M, respectively 

Then, the eigenvalue problem can be expressed as 

1 2 0   KM  - I B- I  (10) 

where λ=Ω
2

 are the eigenvalues of matrix B 

For the cantilever beam, the following coordinate 

functions are chosen 

   1
1 1

PP
j

j j j
x 

 
  (11) 

which satisfy essential boundary conditions. 

 

 

3. Numerical results 
 

Since there were not found, in the technical literature, 

values of natural frequencies of vibration of AFG beams 

with attached masses in order to verify the accuracy of the 

proposed model, comparisons are made with particular 

cases available in the literature.  

First, Table 1 compares values for a tapered Euler-

Bernoulli beam made of axially functionally graded 

material studied by Shahba and Rajasekaran (2012).They 

obtained values for the first two natural frequency 

coefficients for a case that can be represented in the present 

model by adopting in Eqs. (2): 

1b bf c x   

1h hf c x   

 

1Ef x 
 

21f x x     

In all cases the calculations were done with P= 20 in Eq. 

(4), and the cross section at the clamped edge (x=0) is taken 

as the reference cross section. 

As it can be seen, the agreement between the two sets of 

results is excellent. 

Then, comparison is made with a homogeneous tapered 

cantilever beam carrying multiple point masses deeply 

studied by Chen and Liu (2006) by means of an analytical 

and numerical combined method proposed previously by 

Wu and Lin (1990). 

The physical properties and dimensions of the beam 

studied are: Young ś modulus E=2.05110
11 

N/m
2
, mass 

density ρ=7850 kg/m
3
, constant beam width b=0.1 m, beam 

length L=1.60 m, lineal variable beam depth: 0.08 m. at the 

free end and 0.40 m. at the clamped end. 

Each attached mass has a magnitude of one-fifth of the 

actual total mass of the beam: 60.288 kg. 

In the present model, according to the definition used 

for the relative magnitude of the mass, it must be adopted 

Mk=12/100 and ck=0 for k= 1 to 5, and 0 0

2

0 02

i

i

E I
f

Al 


  

Two particular situations in Fig. 1 are considered: 

a) One point mass attached at the free end  

b) Five equal point masses attached at coordinates: 

0.2 m, 0.5 m, 0.8 m, 1.1 m and 1.4 m respectively  

Table 2 shows the results: 

Again, the accuracy is excellent. It is worth mentioning 

that the Ritz method gives upper bounds of the wanted 

values. 

Due to the quantity and variability of the parameters 

involved in the description of the behavior of these kinds of 

structures, just a few representative cases will be considered 

to demonstrate the convenience of the procedure. 

In all cases, there are taken into account the quantity and 

positions of masses of Table 2 in order to facilitate 

comparisons to evaluate the influence of variation in the 

height of the cross section and properties of the material.  

 

 

 

Table 1 Frequency coefficients 2 0 0

0 0

 i i

A
l

E I


   for a tapered cantilever beam of AFG material 

Ch Cb 
0 0.2 0.4 0.6 0.8 

1 2 1 2 1 2 1 2 1 2 

0 
Present 2.42556 18.6041 2.60542 19.0041 2.85075 19.5303 3.21368 20.2958 3.83105 21.6759 

Shahba et al. 2.4256 18.6041 2.6054 19.0041 2.8507 19.5303 3.2137 20.2958 3.8310 21.6759 

0.2 
Present 2.50506 17.3802 2.68633 17.7501 2.93357 18.2379 3.29935 18.9501 3.92194 20.2432 

Shahba et al. 2.5051 17.3801 2.6863 17.7501 2.9336 18.2379 3.2993 18.9501 3.9219 20.2432 

0.4 
Present 2.61547 16.0705 2.79874 16.4092 3.04857 16.8571 3.41810 17.5139 4.04714 18.7164 

Shahba et al. 2.6155 16.0705 2.7987 16.4092 3.0486 16.8571 3.4181 17.5139 4.0471 18.7164 

0.6 
Present 2.78355 14.6508 2.96994 14.9567 3.22368 15.3627 3.59847 15.9616 4.23553 17.0694 

Shahba et al. 2.7836 14.6508 2.9699 14.9567 3.2236 15.3627 3.5985 15.9616 4.2355 17.0694 

0.8 
Present 3.08711 13.1142 3.27943 13.3849 3.54015 13.7466 3.92322 14.2848 4.56946 15.2954 

Shahba et al. 3.0871 13.1142 3.2794 13.3849 3.5401 13.7466 3.9232 14.2848 4.5695 15.2955 
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Table 2 Frequency values for a tapered homogeneous 

cantilever beam with attached masses 

Number of point 

masses 

1 5 

Chen and 

Liu 
Present 

Chen and 

Liu 
Present 

Natural 

frequencies 

fi (Hz) 

f1 569.6279 569.3747 613.2201 613.1940 

f2 2508.895 2503.714 2525.538 2524.883 

f3 6743.232 6710.268 6366.500 6356.546 

f4 13408.53 13289.00 12184.03 12116.38 

f5 22570.17 22240.74 16089.95 15928.03 

 

Table 4 Frequency coefficients for a linear tapered 

homogeneous beam 

Number 

of point 

masses 

c 
Natural frequency coefficients Ωi 

Ω1 Ω2 Ω3 Ω4 Ω5 

0 0 4.29249 15.7427 36.8846 68.1164 109.594 

1 

0 2.46957 10.8594 29.1047 57.6388 96.4655 

0.1 2.41889 7.94847 15.5177 34.6076 65.1943 

0.2 2.24807 4.89120 13.8757 34.0758 64.9337 

5 

0 2.65963 10.9513 27.5704 52.5597 69.0851 

0.1 2.59868 9.30890 19.4349 34.7070 58.2398 

0.2 2,43031 6.70613 13.2538 24.0551 42.4725 

 

 

The weight of the beam is considered in relation to the 

uniform beam of steel, which is taken as reference material 

0

0 0

L

b

st

g b h dx

W
gb h L







 

(12) 

The rotatory inertia of the attached masses will also be 

considered by means of the coefficient c. 

As a reference, the case of a homogeneous cantilever 

beam of uniform cross sections (Wb=1) is evaluated in 

Table 3.  

 
3.1 Variations in the cross section: 

 

In order to evaluate the influence of the variation of the 

cross section, two situations are considered. In all cases, ho 

the height of the cross section at the clamped edge (x=0) is 

the same value as the height of the uniform beam, while 

hL=0.2h0 (at x=1) and ho=0.25L. The width of the section bo 

remains constant. 

 

3.1.1 Linear variation 
First, the case of a homogeneous cantilever beam whose 

height varies linearly: 
0

1 1L
h

h
f ( x ) x

h
    
 

, (Wb=0.6), is 

presented in Table 4: 

As it is shown in Table 4, all values decrease, except the 

fundamental frequency of the bare beam, which increases 

22%. However, it should be noted that the weight of the 

beam has diminished by 40%. 

 

3.1.2 Quadratic variation 
Consider now the case of a homogeneous cantilever 

Table 3 Frequency coefficients for a uniform homogeneous 

beam with attached masses 

Number 

of point 

masses 

c 
Natural frequency coefficients Ωi 

Ω1 Ω2 Ω3 Ω4 Ω5 

0 0 3.51602 22.0345 61.6972 120.902 199.860 

1 

0 2.88547 19,0573 54.9751 109.981 184.480 

0.1 2.87595 18.2857 48.9752 88.7585 142.480 

0.2 2.84756 16.1534 38.0611 74.3913 132.695 

5 

0 2.82078 17.7766 50.0195 98.5845 165.116 

0.1 2.79557 16.7531 43.7182 77.7529 112.439 

0.2 2.72349 14.4833 33.3422 52.1344 66.2409 

 

Table 5 Frequency coefficients for a quadratic tapered 

homogeneous beam 

Number 

of point 

masses 

c 
Natural frequency coefficients Ωi 

Ω1 Ω2 Ω3 Ω4 Ω5 

0 0 4.76281 19.9475 46.8110 86.0549 137.967 

1 

0 3.13723 13.2651 35.5197 71.0597 119.501 

0.1 3.09420 9.73446 18.1845 41.2880 79.1301 

0.2 2.93478 5.81291 16.3535 40.7512 78.8805 

5 

0 3.19588 14.5899 36.7244 69.8795 94.7423 

0.1 3.14343 12.7900 27.0165 47.6306 80.3455 

0.2 2.99608 9.54393 18.5847 33.3465 53.9520 

 

 

beam when the height of the cross section diminishes 

according to a quadratic law: 2

0

1 1L
h

h
f ( x ) x

h
    
 

, 

(Wb=0.733) 

Results are shown in Table 5. In this case, in all 

situations the fundamental frequency increases; 

meaningfully (35%) for the bare beam, and between 3 and 

13 percent when the masses are attached. Higher 

frequencies are less than the values of the uniform beam but 

clearly higher than those of the beam with linear variation. 

 

3.2 Variations in the material 
 
In order to evaluate the influence of the material 

composition, an AFG beam of uniform cross section is 

analyzed.  

The inhomogeneous material, with gradient 

compositional variation of the constituents, varies in the 

longitudinal direction of the beam. Properties of AFG 

materials, like mass density , Young’s modulus E, shear 

modulus G, continuously vary in the axial direction. 

For example, a generic material property P(x) is 

assumed to vary along the beam axis x with a power law 

relation 

 
( )

( ) 1
nb a

a

a

P P
P x P x

P

 
  

 
 (13) 

where Pa and Pb are properties of material “a” and material 

“b”,  respectively.  They  are  the  constituents  of  the  
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Table 6 Frequency coefficients for a uniform beam with 

AFG material (St-Al) varying linearly 

Number 

of point 

masses 

c 
Natural frequency coefficients Ωi 

Ω1 Ω2 Ω3 Ω4 Ω5 

0 0 4.84745 30.1784 84.4097 165.343 273.269 

1 

0 3.63945 24.9071 73.1570 147.788 249.226 

0.1 3.62457 23.8377 64.8324 118.066 190.461 

0.2 3. 58043 20.9484 50.2585 99.1100 177.935 

5 

0 3.49942 22.7537 64.6523 127.796 202.344 

0.1 3.45989 21.2017 55.0943 96.6527 139.852 

0.2 3.34833 17.9389 40.7078 63.3601 79.9092 

 

Table 8 Frequency coefficients for a uniform beam with 

AFG material (Al-St) varying quadratically 

Number 

of point 

masses 

c 
Natural frequency coefficients Ωi 

Ω1 Ω2 Ω3 Ω4 Ω5 

0 0 5.14333 33.6805 94.2912 184.503 304.710 

1 

0 4.51349 30.3102 86.1815 170.757 284.768 

0.1 4.50246 29.1460 76.6237 136.698 218.872 

0.2 4.46941 25.8205 58.8790 114.593 204.518 

5 

0 4.45544 28.5057 79.5376 156.038 253.136 

0.1 4.42640 27.1601 71.1662 128.152 192.345 

0.2 4.34227 24.0168 56.0502 89.4112 118.633 

 

 

inhomogeneous material of the beam; n is the material non-

homogeneity parameter and ( )P x  is a typical material 

property such as , E or G. Note that for x=0 the entire 

section is of material “a”, and for x=1 the whole section is 

of material “b”. The percentage content of material “a” 

along the beam increases as n increases. When n=1 the 

composition changes linearly through the length L, while 

n=1/2 or n=2 corresponds to a quadratic distribution,  

In the calculations, the AFG material made of steel and 

aluminum oxide Al2O3 (alumina) proposed by Su et al. 

(2013) is used. Their Young modulus and density are: 

210
St

E GPa ; 
37800 /

St
kg m  ; 390

Al
E GPa ; 

33960 /
Al

kg m  ; 0.30
St Al

    

The relationships between material properties are: 

1.857Al

St

E
E

  for Young's modulus and 0.508Al

St




  

for the density. Note that the alumina, more rigid, is lighter 

than steel. 

In all evaluated cases, in order to facilitate comparisons 

will be considered E0=ESt and 0=St 

 

3.2.1 Linear variation 
A linear distribution of the materials is considered, n=1 

in Eq. (13), and two possibilities are explored:  

a) Material a in Eq. (13) is steel and material b is 

alumina. (Wb=0.754) 

Then, at x=0, the section is of steel and at x=1the section 

is entirely of alumina 

b) Material a in Eq.(13) is alumina and material b is 

steel. (Wb=0.754) 

Table 7 Frequency coefficients for a uniform beam with 

AFG material (Al-St) varying linearly 

Number 

of point 

masses 

c 
Natural frequency coefficients Ωi 

Ω1 Ω2 Ω3 Ω 4 Ω 5 

0 0 4.78561 30.0225 84.2107 165.133 273.073 

1 

0 4.23038 27.0913 77.1388 153.109 255.575 

0.1 4.22038 26.1676 69.6304 125.482 199.362 

0.2 4.19044 23.5080 54.4067 104.060 184.390 

5 

0 4.18394 25.9031 72.4193 142.327 233.000 

0.1 4.15772 24.7621 65.2887 118.287 177.961 

0.2 4.08165 22.0508 52.0354 83.6246 111.390 

 

Table 9 Frequency coefficients for a tapered AFG beam 

(Al-St), height and material varying quadratically 

Number 

of point 

masses 

c 
Natural frequency coefficients Ωi 

Ω1 Ω2 Ω3 Ω4 Ω5 

0 0 7.06861 29.0973 67.8828 124.822 200.283 

1 

0 5.16753 20.4007 52.9015 104.570 175.033 

0.1 5.09747 14.4902 27.5847 61.9386 117.211 

0.2 4.81317 8.58708 25.1197 61.1326 116.819 

5 

0 5.31489 23.2589 57.0182 98.7379 147.534 

0.1 5.24014 20.5669 43.7810 80.2447 129.946 

0.2 5.02701 15.5660 31.1930 58.8238 99.6792 

 

 

Then, at x=0, the section is of alumina and at x=1 the 

section is entirely of steel 

All frequency values (Tables 6 and 7) are higher than 

those corresponding to the uniform homogeneous beam. It 

should also be noted that this is achieved with a reduction in 

weight of almost 25%  

Comparison of values in Tables 6 and 7 shows that for 

the case of the beam without attached masses, the frequency 

coefficients of the composition a) (St-Al) are slightly higher 

than b) (Al-St). But when acting concentrated masses 

attached, frequencies for b) composition (Al-St) are clearly 

higher in all situations. The reason is that due to the greater 

rigidity of the beam near the clamped end, decreases the 

amplitude of the displacements of the points of application 

of the attached masses and consequently decreases the 

kinetic energy that masses add to energy balance. 

 

3.2.2 Quadratic variation 
It is considered then a quadratic variation of the 

material, n=2 in Eq. (13), and due to the results of the above 

case is taken into account only the situation where the 

material a is alumina and b is steel (Wb=0.672). Values are 

shown in Table 8 

As can be seen, the frequency coefficients are higher in 

all cases than those obtained for a linear variation in the 

material composition and with an even smaller weight 
 

3.3 Variation in section and material 
 

Finally, the effect caused by varying both the section 

and the material composition is analyzed. To this end, the 

two situations that had provided the highest frequency 
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values are combined: quadratic variation in the height of the 

cross section (3.1.2) and quadratic variation in the material 

composition Al-St: 3.2.2 (Wb=0.458) 

Again, variation in the cross section increases the 

fundamental frequency in all cases and decrease higher 

frequencies.  The reduction in weight is considerable: 54% 

compared to uniform steel beam and 32% with respect to 

the AFG beam -case 3.2.2-. 

 

 

4. Conclusions 
 

The results obtained indicate that variations in the 

composition of the AFG material have a uniform impact on 

the modification of the natural frequencies of the beam. 

Instead, by varying its cross section, the fundamental 

frequency increases and higher decrease. 

This leads to the conclusion that the use of such 

materials is a reliable means when it is necessary to increase 

the values of natural frequencies. 

The classical, variational method of Ritz has been 

successfully used to obtain an approximate, yet accurate, 

solution to a difficult elastodynamics problem from which 

the authors has not found data in the literature. 
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