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1. Introduction 
 

In the historical aspect, as noted by Love (1944), 

investigations on the natural vibration of the sphere were 

associated originally with interest in the oscillations of the 

earth and were started with the paper by Lamb (1882), in 

which the material of the sphere is assumed to be isotropic 

and homogeneous and the mathematical procedures are 

made in the Cartesian coordinates. Note that in this paper, 

the auto-model-similarity solution of the equations of 

elastodynamics for which all sought quantities are presented 

as a function of the distance of the point considered from 

the origin of the Cartesian coordinate system, is found. 

Consequently, Lamb's solution allows the values of the 

natural frequencies to be found but this solution does not 

allow the modes of the natural vibrations to be found from 

the standpoint of modern ideas. Despite the simplicity of 

Lamb's results, they can be estimated as fundamental in the 

dynamics of the spherical elastic body and these results 

have great significance not only in the theoretical, but also 

in the practical sense. Namely, in the paper by Lamb 
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(1882), first it was established that the solid sphere has two 

types of uncoupled free vibrations, the first of which are 

torsional vibrations with rotatory motions of the sphere for 

which there is no radial displacement and no volumetric 

change. However, the second type of free vibration is 

characterized by the volumetric change of the sphere caused 

by the non-zero radial displacement and this type is called 

spheroidal vibration.   

Later, the mathematical treatment by Lamb (1882) was 

developed by Chree (1889) by employing the spherical 

coordinates. Later on, the results by Lamb were developed 

and applied by many researchers to describe the vibration of 

the Earth generated by earthquakes. For instance, the papers 

by Sato and Usami (1962a, 1962b), Sato et al. (1962) were 

related to a detailed analysis of the natural frequencies and 

vibration modes of the homogeneous isotropic solid sphere, 

in which the corresponding earlier results were performed 

and tabulated. These results were also presented and 

discussed in the monograph by Eringen and Suhubi (1975). 

The natural vibration of the solid sphere with initially 

uniform volumetric loading was a subject of the 

investigations by Guz (1985a, b) in which by utilizing the 

three-dimensional linearized theory of elastic waves in 

initially stressed bodies for incompressible and 

compressible bodies it was established that Lamb’s results 

on the types of natural vibration of the sphere occur also for 

the initially stressed cases. 

Natural vibration of the hollow sphere (or spherical 

shell) made of homogeneous and isotropic elastic material 

was investigated by Shah et al. (1969a, b) by utilizing the 
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three-dimensional exact equations of the linear theory of 

elastodynamics. In these works, numerical results for a wide 

range of thickness-to-radius ratios were given in graphical 

form. A detailed analysis of these and other related results 

which are associated with the free oscillations of the earth, 

were given and discussed in the book by Lapwood and 

Usami (1981).  

More complicated problems related to the vibration of 

the solid and hollow spheres and connected with the 

geometries and material properties of spheres were studied 

recently by Hasheminejad and Mirzaei (2011), Sharma et 

al. (2012) and others listed therein. At the same time, it 

should be noted that currently the study of the dynamics of 

the structural elements made of advanced materials such as 

FGM and piezoelectric materials are being developed 

intensively, as in the investigations carried out by Asemi et 

al. (2014), Ipek (2015), Yun et al. (2010), Asgari and 

Akhlaghi (2011), Ilhan and Koç (2015) and others listed 

therein.  

One of the main questions under investigation of the 

oscillations of the layered hollow and solid spheres is the 

accuracy of the theories which are applied under these 

investigations. In connection with this, in the paper by 

Grigorenko and Klina (1989), the accuracy of the 

approximate theories were examined and it is established 

that the accuracy of the approximate shell theories 

decreases with increasing of the ratio h/R, where h is the 

thickness and R is the radius of the middle surface of the 

sphere. In the paper by Jiang et al. (1996), the natural 

vibration of the layered hollow spheres is studied by using 

the three-dimensional exact equations of elastodynamics, 

and numerical results are presented in table form for the 

three-layered hollow sphere.  

The paper by Chen and Ding (2001) deals with the 

investigation of the vibration of the layered hollow sphere, 

of which the materials of the layers are spherically isotropic 

(a special case of transversal isotropic materials) and 

homogeneous. Numerical results are presented and 

discussed for the three-layered case and the influence of the 

type of anisotropy of the layers’ materials on the natural 

frequencies and vibration modes is established. 

It follows from the modern level of studies on the 

bowels of the earth (see, for instance Anderson 2007) that 

the mechanical properties, such as the modulus of elasticity 

and density of the mantle material increase continuously 

from the crust to the core. At the same time, in modern 

layered hollow spheres, there are the cases in which the 

layers are made of Functionally Graded Materials (FGM) 

which give some advantages to these constructions in the 

application sense. Namely, these reasons require study of 

the dynamics of the layered hollow and solid spheres, the 

layers of which are made of FGM. 

In the paper by Ye et al. (2014), some attempts were 

made for study of the three-dimensional vibration of a 

spherical shell which is obtained by cutting the complete 

hollow sphere by two parallel planes with arbitrary end 

conditions. The shell is modeled as a single-layered one 

with effective mechanical properties, the values of which 

change continuously in the thickness direction of the shell. 

These effective mechanical properties are determined 

through the mechanical properties of the ceramic and metal 

layers and their volumetric fraction in the shell, which also 

vary continuously through the thickness direction according 

to power law distribution. The three-dimensional elasticity 

relations are used in constructing the functional for 

employing the Rayleigh-Ritz method. The modified Fourier 

series with respect to all coordinates are applied for 

presenting the sought quantities and numerical results on 

the natural frequencies and the influence of the FGM 

properties on these frequencies are presented and discussed. 

The same approach was also employed in the papers by Jin 

et al. (2014a), Jin et al. (2014b) for investigation of the free 

vibration of arbitrarily thick rectangular plates made of 

FGM and for investigation of the vibration conical elastic 

shells made of orthotropic homogeneous material, 

respectively. Moreover, in the papers by Ye et al. (2016), Jin 

et al. (2015) the aforementioned method was developed and 

employed for study of the three-dimensional vibration of 

the functionally graded sandwich deep open spherical and 

cylindrical shells and functionally graded annular sector 

plates, respectively. 

Recently, in the paper by Akbarov et al. (2016) the 

natural oscillation of the three-layered solid sphere with a 

middle layer made of FGM is examined. It is assumed that 

the materials of the core and outer layer of the sphere are 

homogeneous and isotropic elastic. Moreover, it is assumed 

that the modulus of elasticity, Poisson’s ratio and density of 

the middle-layer material vary continuously through the  

 

 

 
(a) Selected coordinate systems 

 
(b) The cross section of the sphere at x3=0 

Fig. 1 Selected coordinate systems and cross section of the 

sphere 
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inward radial direction according to power law distribution. 

The three dimensional exact equations and relations of 

linear elastodynamics are employed for the investigations. 

The discrete analytical method developed by Akbarov 

(2006, 2015) is applied for solution of the corresponding 

eigenvalue problem and numerical results on the natural 

frequencies related to the torsional and spheroidal 

oscillation modes are presented and discussed. 

In the present work we attempt to further develop the 

foregoing investigations for the three-layered hollow 

cylinder, the middle layer of which is made of FGM. The 

investigations are made within the scope of all the 

assumptions accepted in the paper by Akbarov et al. (2016). 

 

 

2. Formulation of the problem 
 

Consider the three-layered hollow sphere and, with the 

center of the sphere, we associate the Cartesian coordinate 

system Ox1x2x3 and spherical coordinate system Orθφ
 
(Fig. 

1(a)). The cross section of sphere at x3=0 and the 

parameters characterizing the structural geometry of this 

sphere are shown in Fig. 1(b). The outer and inner radius of 

the sphere (of the middle layer) will be denoted through a 

and b (r1 and r2), respectively. The values related to the 

outer, middle and inner layers will be indicated by the upper 

indices (1), (2) and (3), respectively. 

Consider the field equations written in the spherical 

coordinate system shown in Fig. 1(a). 

Equation of motion 
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Elasticity relations 
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Strain-displacement relations 
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In (1)-(3) conventional notation is used and it is 

assumed that k=1, 2 and 3. 

As in the paper by Akbarov et al. (2016), we assume 

that the materials of the inner and outer layers are 

homogeneous isotropic, but the material of the middle layer 

is FG and isotropic, i.e., we assume that 

(1)(1) const   , 
(1) (1)const  ,

(1) (1)const    

(3)(3) const  , 
(3) (3)const  ,

(3) (3)const    
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and ρ
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(r) in (4) will be given below under consideration of 

the numerical results. 

This completes the consideration of the field equations 

and relations which are used in the present investigations 

and also given in the paper by Akbarov et al. (2016). Now 

we consider formulation of the boundary and contact 

conditions. According to the nature of the problem under 

consideration, we assume that on the inner and the outer 

free surfaces of the sphere, i.e., at r=b and r=a (Fig. 1(b)), 

the following boundary conditions are satisfied 
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Moreover, we assume that on the interface surfaces of 

the layers, i.e., at r=r2 and r=r1 (Fig. 1(b)), the following 

perfect contact conditions are satisfied 
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This completes formulation of the problem on the 

natural vibration of the three-layered hollow sphere with 

middle layer made of FGM. The difference between the 

present formulation and the corresponding formulation 

given in the paper by Akbarov et al. (2016) consists of the 

first three conditions given in (5). 

 

 
3. Method of solution 

 

To solve the system of Eqs. (1)-(3) for the inner and 

outer layers of the sphere we use the following classical 

Lame (or Helmholtz) decomposition (see, for instance, 

Eringen and Suhubi 1975) 
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Solutions of the Eqs. (8) and (9) for the case under 

consideration are found as follows 

( ) ( ) ( ) ( ) ( )( , , , ) ( ) ( )k k k k k
n nr t A j r B y r       

 
 

(cos )cosm i t
nP m e    

( ) ( ) ( ) ( ) ( )( , , , ) ( ) ( )k k k k k
n nr t C j r D y r       

 
 

(cos )sinm i t
nP m e    

( ) ( ) ( ) ( ) ( )( , , , ) ( ) ( )k k k k k
n nr t E j r F y r       

 
 

(cos )cosm i t
nP m e    

( )( )
1

kk c  , 
( )( )
2
kk c   (10) 

In (10), jn(cr) and yn(cr) are spherical Bessel functions 

of the first and second kind and 
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where Jn+1/2(cr) and Yn+1/2(cr) are the Bessel functions of the 

first and the second kind with non-integer order, 

respectively. Moreover, (cos )m
nP   in the expression (10) 

denotes the associated Legendre functions with m-th order 

and with n-th harmonic.  

Thus, using the relations (11), (10) and (7) we obtain 

expressions for the displacements and, after substituting 

these expressions into the Eqs. (3) and (2), we determine the 

components of the stress tensor. For simplification of 

writing the obtained expressions, we introduce two sets of 

complete orthogonal functions in [0, π] determined through 

the following expressions 
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Thus, using the notation (12) we can write the following 

expressions for the sought values 
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
( )

( ) ( ) ( )( ) ( ) ( ) ( )
411 412 4312

2 k
k k kk k k k

r A T B T E T
r




    

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421 422 ( )

k kk k
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where 

( ) ( ) ( ) ( )
111 ( ) ( )

k k k k
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( ) ( ) ( ) ( )
112 ( ) ( )

k k k k
n nu ny r ry r     

( ) ( )
31 ( 1) ( )
k k
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( ) ( )
32 ( 1) y ( )
k k

nu n n r   

( ) ( )
11 ( )

k k
nv j r , 

( ) ( )
12 ( )

k k
nv y r , 

( ) ( )
21 ( )
k k
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( ) ( )
22 ( )
k k
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( ) ( ) ( ) ( )
131 ( 1) ( ) ( )

k k k k
n nv n j r rj r      

( ) ( ) ( ) ( )
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k k k k
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( ) 2 ( ) 2 2 ( )
111

1
( ( ) ) ( )

2

k k k
nT n n r j r      

( ) ( )
12 ( )k k

nrj r   

( ) 2 ( ) 2 2 ( )
112

1
( ( ) ) ( )

2

k k k
nT n n r y r      
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( ) ( ) ( ) ( )
1421
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( 1) ( ) ( )
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k k k k
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( ) ( ) ( ) ( )
1422
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( 1) ( ) ( )
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k k k k
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( ) 2 ( ) 2 2 ( )
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1
( 1 ( ) ) ( )

2

k k k
nT n r j r      

( ) ( )
1( )k k

nrj r   

( ) 2 ( ) 2 2 ( )
432

1
( 1 ( ) ) ( )

2

k k k
nT n r y r      

( ) ( )
1( )k k

nry r  , 1,3k  . (14) 

Note that in (13), the expressions for the stresses which 

enter the boundary and contact conditions have been 

written. 

Using the expressions in (13) and (12) and boundary (5) 

and contact (6) conditions we obtain two uncoupled systems 

of algebraic equations, the first of which contains the 

unknown constants A
(k)

, B
(k)

, E
(k)

 and F
(k)

, but the second 

one contains the unknown constants C
(k) 

and D
(k)

. Analyzing 

the expressions obtained for the stresses ( )k
r  and ( )k

r , 

and given in (13), it can be easily established that the 

aforementioned algebraic equations obtained with respect to 

these stresses coincide with each other. The same 

conclusion follows also from the expressions (13) for the 

displacements ( )k
u  and ( )ku , i.e. the algebraic equations 

obtained with respect to these displacements also coincide 

with each other. Hence, for obtaining the two uncoupled 

sets of systems of algebraic equations it is enough to use 

only the contact and boundary conditions written with 

respect to the stresses ( )k
rr  and ( )k

r  (or ( )k
r ), and 

displacements ( )k
ru  and 

( )k
u  (or 

( )ku ).  

 It is evident that the foregoing (7)-(9) decomposition 

cannot be applied directly to the solution of the equations 

(1), (2) and (3) for the middle layer, which is made of FGM. 

In connection with this, as in the paper by Akbarov et al. 

(2016), we employ the discrete analytical method described 

in the references Akbarov (2006, 2015). According to this 

method, first, the middle layer with thickness hm=r1−r2 is 

divided into M number of sublayers with thickness 

h′m=(r1−r2 )/M and it is assumed that within the scope of 

each p-th (1≤p≤M) sublayer, the material is homogeneous 

and the Lame constants and density of this material are 

determined through the following expressions 

1

(2) (2)

( 1/2) '
( )

m

p

r r p h
r 

  
  

1

(2) (2)

( 1/2) '
( )

m

p

r r p h
r 

  
  

1

(2) (2)

( 1/2) '
( )

m

p

r r p h
r 

  
  (15) 

Thereby, the solution to Eqs. (1), (2) and (3) for the 

middle layer, which are equations with variable coefficients, 

are reduced to the series of the same equations with 

constant coefficients determined according to the relations 

in (15) and the foregoing solution procedure employed for 

the face layers of the hollow sphere is applied to find the 

analytical expressions for each sublayer of the middle layer. 

Supposing that between the sublayers, perfect contact 

conditions are satisfied, we can write the following 

2 2

(3) (2)1
rr rr

r r r r
 

 
 , 

2 2

(3) (2)1
r r

r r r r
  

 
  

2 2

(3) (2)1
r r

r r r r
  

 
 , 

2 2

(3) (2)1
r r

r r r r
u u

 
  

2 2

(3) (2)1

r r r r
u u 

 
 , 

2 2

(3) (2)1

r r r r
u u 

 
 , 

2 2

(2)1 (2)2

' 'm m
rr rr

r r h r r h
 

   
  

2 2

(2)1 (2)1

' 'm m
r r

r r h r r h
  

   
  

2 2

(2)1 (2)2

' 'm
r r

r r h r r h
  

   
  

2 2

(2)1 (2)2

' 'm m
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r r h r r h
u u

   
  

567



 

Surkay D. Akbarov, Hatam H. Guliyev and Nazmiye Yahnioglu 

 

2 2
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………………………………………… 
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In (17) the following notation is used. 
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(2) (2)
1( )p p

nry r   

( )( )
1

k pk p c  ,  
( )( )
2
k pk p c   

( ) ( ) ( ) ( )
1 ( 2 )

k p k p k p k pc      

(2) (2) (2)
2

p p pc    (18) 

Taking the foregoing discussions and expressions into 

consideration, we obtain from (13) and (18) two uncoupled 

systems of algebraic equations from the boundary (5) and 

contact (16) conditions. The first (second) system contains 

the unknowns A
(1)

, B
(1)

, E
(1)

, F
(1)

, A
(2)1

, B
(2)1

, E
(2)1

, F
(2)1

,…, 

A
(2)M

, B
(2)M

, E
(2)M

, F
(2)M

, A
(3)

, B
(3)

, E
(3)

 and F
(3)

 
(C

(1)
, D

(1)
, 

C
(2)1

, D
(2)1

,…, C
(2)M

, D
(2)M

, C
(3)

 and D
(3)

). Equating to zero 

the determinant of the coefficient matrix of the first and 

second group of equations separately, the following 

equations for determination of the frequency of the natural 

vibration are obtained. 

 1 2
det 0q q  , 1 2; 1,2,...,4 8q q M +  

(for the spheroidal vibration) and 
(19) 

 1 2
det 0p p  , 1 2; 1,2,...,2 4p p M   

(for the torsional vibration). 
(20) 

The explicit expressions of the components γq1q2 in (19) 

and of the components δp1p2 in (20) can be easily 

determined from the expressions (13), (14), (17) and (18). 

The number M in the Eqs. (19) and (20) is determined in the 

numerical solution procedure of these equations from the 

convergence requirement of the numerical results.  

   This completes the consideration of the solution 

method. 

 

 

4. Numerical results and discussions 
 

As in the paper by Akbarov et al. (2016), to find the 

numerical solution to the Eqs. (19) and (20) we employ the 

well-known “bi-section” method and the functions λ
(2)

(r), 

μ
(2)

(r), and ρ
(2)

(r) which characterize the functionally graded 

property of the middle-layer material of the sphere, are 

selected as follows: 

1 1(2)(2)
1 1 10( ) (1 ( ) )

n m
E r E a r b    

2 2(2)(2)
2 2 20( ) (1 ( ) )

n m
r a r b      

3 3(2)(2)
3 3 30( ) (1 ( ) )

n m
r a r b      

(2) (2)
(2)

(2) (2)

( ) ( )
( )

(1 ( ))(1 2 ( ))

E r r
r

r r




 


 
 

(2)
(2)

(2)

( )
( )

2(1 ( ))

E r
r

r






 (21) 

where ak, bk, nk, mk and ηk; (k=1,2,3) are real numbers.  

The main aim of the present numerical investigations is 

to determine how the functionally graded properties of the 

middle-layer material (as in the paper by Akbarov et al. 

2016) and the dimension of the inner radius of the three-

layered hollow sphere act on its spheroidal and torsional 

vibration. Before consideration of the main numerical 

results, we test the algorithm and PC programs used for 

calculating the numerical results, which are composed by 

the authors and realized in MATLAB. For this purpose we 

consider the numerical results obtained for the case where 

the middle-layer material of the hollow sphere is 

homogeneous like the outer and inner layers. Consider the 

case, which was also considered in the paper by Jiang et al. 

(1996), according to which, we assume that η1=η2=η3=0
 

 in 

(21) and E
(2)

/E
(1)

=ρ
(2)

/ρ
(1)

=3, E
(3)

/E
(1)

=ρ
(3)

/ρ
(1)

=5, v
(1)

=v
(2)

= 

v
(3)

=0.3, r1/a=0.8, r2/a=0.6 and b/a=0.4.  

Introduce the dimensionless frequency 

(1) (1)/a     (22) 

and consider the results given in Tables 1 and 2 which show 

the first five values of Ω obtained for the first six harmonic 

numbers (n=0,1,…,5) for the torsional and spheroidal 

vibration modes, respectively, of the sphere under the 

foregoing values of the problem parameters.  Note that in 

these tables, the corresponding results obtained in the paper 

by Jiang et al. (1996) are also presented (lower numbers). 

The tables show that the results obtained by employing the 

present algorithm coincide almost completely with the 

corresponding ones obtained in the paper by Jiang et al. 

(1996). This confirms the validity of the algorithm and 

programs used in the present investigation. 

Now we attempt to discuss the effect of an increase (or a 

decrease) in the values of the modulus of elasticity under 

fixed values of the materials’ densities, as well as the effect 

of an increase (or a decrease) in the values of the materials’ 

densities under fixed values of the modulus of elasticity in 

the inward radial direction on the values of the natural 

frequencies. Consider the case where h
(1)

/a=0.1, h
(2)

/a=0.5, 

h
(3)

/a=0.2 and v
(1)

=v
(2)

=v
(3)

=0.3 where v
(k)

 is Poisson’s ratio 

of the k-th material. We analyze the results given in Tables 3 

and 4 which illustrate the influence of the change of the 

modulus of elasticity and the change of the densities in the 

aforementioned cases, respectively, on the values of Ω 

 

 

Table 1 Natural frequencies (1) (1)/a     of the 

torsional vibration mode obtained in the present paper 

(upper number) and in the paper by Jiang et al. (1996) 

(lower number) 

n 

(1) (1)a     
 

 

1 2 3 4 5 

0 
5.4835 

5.4832 

9.7525 

9.7525 

16.077 

16.078 

21.485 

21.486 

25.557 

25.558 

1 
5.9255 

5.9254 

10.005 

10.006 

16.285 

16.286 

21.588 

21.589 

25.645 

25.645 

2 
2.7775 

2.7776 

6.7325 

6.7323 

10.508 

10.508 

16.695 

16.695 

21.793 

21.793 

3 
4.2635 

4.2637 

7.7845 

7.7840 

11.252 

11.253 

17.293 

17.294 

22.097 

22.097 

4 
5.5515 

5.5511 

8.9565 

8.9568 

12.226 

12.227 

18.063 

18.063 

22.499 

22.499 

5 
6.7375 

6.7379 

10.159 

10.160 

13.403 

13.403 

18.981 

18.981 

22.997 

22.997 
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Table 2 Natural frequencies (1) (1)/a     of the 

spheroidal vibration mode obtained in the present paper 

(upper number) and in the paper by Jiang et al. (1996) 

(lower number) 

n 

(1) (1)a    
 
 

 

1 2 3 4 5 

0 
4.6895

4.6892
 

5.4835

5.4832
 

9.7525

9.7525
 

11.599

11.599
 

16.077

16.078
 

1 
4.0895

4.0896
 

7.5365

7.5362
 

9.8365

9.8366
 

12.237

12.238
 

16.160

16.160
 

2 
2.4735

2.4736
 

5.1495

5.1491
 

8.7905

8.7907
 

10.842

10.842
 

13.147

13.147
 

3 
4.0875

4.0871
 

6.6345

6.6342
 

9.4525

9.4524
 

12.672

12.672
 

14.065

14.066
 

4 
5.7115

5.7119
 

8.0685

8.0681
 

10.285

10.286
 

14.319

14.320
 

15.036

15.037
 

5 
7.2215

7.2218
 

9.4335

9.4333
 

11.413

11.414
 

15.246

15.246
 

16.515

16.515
 

 
 

(22) for the torsional and spheroidal vibration modes. These 

results are obtained for the first six harmonics and the first 

three roots are presented for each harmonic. 

Thus, it follows from these results that an increase (a 

decrease) in the values of the modulus of elasticity in the 

inward radial direction causes an increase (a decrease) in 

the values of the natural frequency Ω. Also, these results 

show that an increase (a decrease) in the values of the 

densities in the inward radial direction causes a decrease (an 

increase) in the values of Ω. These conclusions agree in the 

qualitative sense with the corresponding ones obtained in 

the paper by Akbarov et al. (2016). Moreover, these 

conclusions give some orientation for estimation and 

explanation of the numerical results which are obtained for 

the case where the material of the middle layer of the sphere 

is FG. It should be noted that the results obtained in the 

cases where the modulus of elasticity and densities are 

changed simultaneously can also be explained and 

estimated according to the foregoing conclusions. 

Now we consider the results which illustrate the 

influence of the change of the inner radius of the hollow 

cylinder on the values of the natural frequencies. For this 

purpose we consider the numerical results obtained for 

various values of h
(3)

/a in the cases indicated in Table 3.  

These results are shown by graphs given in Figs. 2, 3, 4 and 

5 which are constructed in the cases where {E
(2)

/E
(1)

=0.5,
 E

(3)
/E

(1)
=0.3}, {E

(2)
/E

(1)
=0.7,

 
E

(3)
/E

(1)
=0.5}, {E

(2)
/E

(1)
=3,

 E
(3)

/E
(1)

=5} and {E
(2)

/E
(1)

=7,
 

E
(3)

/E
(1)

=9} respectively for 

h
(3)

/a=0.1, 0.3 and 0.38. Note that in these figures the 

graphs grouped by letters a, b and c (by letters d, e and f) 

relate to the torsional (spheroidal) vibration of the hollow 

sphere and show the natural vibration frequencies for the 

first, second and third roots respectively. 

As we assume that h
(1)

/a=0.1 and h
(2)

/a=0.5, therefore, 

according to well-known mechanical considerations, the 

values of Ω must approach the corresponding values of Ω 

obtained for the corresponding solid sphere (i.e., in the case 

  
(a) (d) 

  
(b) (e) 

  
(c) (f) 

Fig. 2 Dependence of the natural vibration frequency on the 

harmonics of vibration under E
(2)

/E
(1)

=0.5 and E
(3)

/E
(1)

=0.3 

 

 

under consideration to the values of Ω given in Table 3 of 

the paper by Akbarov et al. (2016)) as h
(3)

/a→0.4. Thus, 

comparison of the results given in Figs. 2-5 with each other 

and with the corresponding ones given in Table 3 of the 

paper by Akbarov et al. (2016) proves the foregoing 

prediction and the results obtained in the case where 

h
(3)

/a=0.38 almost coincide completely with the 

corresponding ones given in Table 3 of the paper by 

Akbarov et al. (2016). Comparison of the results also shows 

that this approach may be close “from below” as well as 

close “from above”. In other words, for certain harmonics 

and for certain order of roots, the values of Ω obtained for 

the hollow sphere can be greater (or less) than the 

corresponding ones obtained for the solid sphere. Moreover, 

these results suggest that it is impossible to make any 

conclusion on the values of the natural vibration of the 

hollow sphere using the corresponding results obtained for 

the corresponding solid sphere. Namely, this conclusion 

illustrates the significance and necessity of the investigation 

of the natural vibration of the hollow sphere to which the 

present work is devoted. The results given in Figs. 2, 3, 4 

and 5 show clearly that almost in all cases under 

consideration the natural vibration frequency Ω has its 

minimum under n=2. 
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(a) (d) 

  

(b) (e) 

  

(c) (f) 

Fig. 3 Dependence of the natural vibration frequency on the 

harmonics of vibration under E
(2)

/E
(1)

=0.7 and E
(3)

/E
(1)

=0.5 

 

  

(a) (d) 

  

(b) (e) 

  

(c) (f) 

Fig. 4 Dependence of the natural vibration frequency on the 

harmonics of vibration under E
(2)

/E
(1)

=3 and E
(3)

/E
(1)

=5 

 
 

   

(a) (b) (c) 

   

(d) (e) (f) 

Fig. 5 Dependence of the natural vibration frequency on the harmonics of vibration under E
(2)

/E
(1)

=7 and E
(3)

/E
(1)

=9 
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Table 3 The influence of the change of the modulus of 

elasticity in the inward radial direction on the values of the 

natural frequencies (1) (1)/a     obtained for the 

three-layered piecewise homogeneous hollow sphere in the 

case where h
(3)

/a=0.2 

(2)

(1)
E

E
 

(3)

(1)
E

E
 n 

Torsional vibration Spheroidal vibration 

1 2 3 1 2 3 

0.5 0.3 

1 4.2115 6.7745 9.4075 2.7415 5.2655 5.6275 

2 2.0125 5.1905 7.6255 1.7685 3.7945 5.6455 

3 3.1435 6.1835 8.6305 2.7715 5.0745 6.6475 

4 4.1805 7.1485 9.6375 3.6405 6.3165 7.9325 

5 5.1795 8.0945 10.616 4.4465 7.4755 9.2555 

0.7 0.5 

1 4.7865 7.4745 10.414 3.1075 6.2685 6.6855 

2 2.2335 5.9145 8.4025 2.0905 4.2755 6.6355 

3 3.4795 7.0925 9.5745 3.2605 5.7705 7.7575 

4 4.6145 8.2345 10.821 4.2535 7.2405 9.1815 

5 5.7035 9.3375 12.061 5.1705 8.6195 10.621 

0.9 0.7 

1 5.4205 8.5215 11.832 3.4245 7.1025 7.5875 

2 2.4165 6.6795 9.5895 2.3675 4.6665 7.4815 

3 3.7465 7.9755 10.910 3.6795 6.2865 8.7275 

4 4.9505 9.2255 12.284 4.7805 7.8885 10.267 

5 6.0995 10.434 13.629 5.7915 9.4175 11.767 

1 1 

1 5.7995 9.3105 12.901 3.5825 7.6065 8.0775 

2 2.5005 7.1175 10.479 2.5575 4.8895 8.0385 

3 3.8645 8.4385 11.843 3.9175 6.5655 9.4575 

4 5.0945 9.7115 13.197 5.0435 8.2045 11.079 

5 6.2655 10.950 14.507 6.0835 9.7745 12.542 

3 5 

1 9.6835 15.846 22.046 5.7205 12.877 13.754 

2 3.4755 11.780 17.770 4.5955 7.4515 13.845 

3 5.2075 13.772 19.757 6.7885 9.4055 16.435 

4 6.6775 15.697 21.660 8.4895 11.255 18.527 

5 8.0085 17.592 23.529 10.023 13.028 20.228 

5 7 

1 11.930 19.116 26.395 7.1265 15.524 17.010 

2 4.0065 14.483 21.465 5.7695 8.9315 16.651 

3 5.9055 16.921 23.915 8.6005 10.921 19.568 

4 7.4555 19.257 26.264 10.733 12.720 22.142 

5 8.8155 21.519 28.553 12.559 14.416 24.315 

7 9 

1 13.621 21.490 29.541 8.2175 17.017 19.492 

2 4.3875 16.489 24.158 6.7225 10.012 18.566 

3 6.3885 19.216 26.945 10.053 11.905 21.861 

4 7.9755 21.796 29.622 12.4995 13.5855 24.8245 

5 9.3395 24.2415 32.2325 14.3955 15.3055 27.2365 

 

 

Thus, we consider the numerical results related to the 

case where the material of the middle layer of the sphere is 

FG. Assume that h
(1)

/a=0.1, h
(2)

/a=0.5, h
(3)

/a=0.2 and 

v
(1)

=v
(2)

=v
(3)

=0.3. First, we illustrate some fragments of the 

results which show convergence with respect to the number 

M  of the sublayers into which the middle layer is divided. 

These fragments are given in Table 5 for the torsional and 

spherical vibration modes in the case where a1=−14/a, 

b1=14.6, η1=1, η2=0, η3=0, E
(3)

/E
(1)

=12 and n1=m1=1. 

Consequently, we assume that the density and Poisson’s 

ratio of the material of the middle layer are constants, but 

the modulus of elasticity changes linearly through the 

thickness, so that the ratio E
(2)

(r)/E0
(2)

 increases from 
(2)(2)
0

0.9
( ( ) / ) 3

r a
E r E


  until (2)(2)

0
0.4

( ( ) / ) 10
r a

E r E


  in 

the inward radial direction. Analyses of the results given 

Table 4 The influence of the change of the material 

densities in the inward radial direction on the values of the 

natural frequencies (1) (1)/a     obtained for the 

three-layered piecewise homogeneous hollow sphere in the 

case where h
(3)

/a=0.2 
(2)

(1)





 
(3)

(1)





 n 
Torsional vibration Spheroidal vibration 

1 2 3 1 2 3 

0.5 0.3 

1 7.9665 13.909 19.623 4.4975 10.504 11.091 

2 2.7705 9.5745 15.298 3.2475 5.8225 11.495 

3 4.2295 11.291 16.837 4.8875 7.5595 13.234 

4 5.5165 13.026 18.456 6.1805 9.2935 14.976 

5 6.7225 14.752 20.137 7.3295 11.006 16.612 

0.7 0.5 

1 6.9165 11.659 16.120 4.0805 9.2305 9.4765 

2 2.6765 8.3175 12.930 2.9195 5.4165 9.8355 

3 4.1105 9.7835 14.313 4.4285 7.1455 11.393 

4 5.3875 11.249 15.728 5.6495 8.8595 12.994 

5 6.5915 12.701 17.172 6.7575 10.537 14.462 

0.9 0.7 

1 6.2405 10.311 14.116 3.7665 8.3235 8.4955 

2 2.5585 7.5155 11.474 2.6715 5.0775 8.7885 

3 3.9495 8.8345 12.740 4.0725 6.7655 10.219 

4 5.1985 10.140 14.014 5.2265 8.4265 11.738 

5 6.3845 11.430 15.299 6.2875 10.036 13.129 

1 1 

1 5.7995 9.3105 12.901 3.5825 7.6065 8.0775 

2 2.5005 7.1175 10.479 2.5575 4.8895 8.0385 

3 3.8645 8.4385 11.843 3.9175 6.5655 9.4575 

4 5.0945 9.7115 13.197 5.0435 8.2045 11.079 

5 6.2655 10.950 14.507 6.0835 9.7745 12.542 

3 5 

1 3.1085 5.2405 7.5445 2.2155 4.2995 4.7955 

2 1.6755 4.0335 5.7645 1.5775 3.1085 4.5695 

3 2.6085 5.0265 6.4755 2.4735 4.2135 5.3775 

4 3.4585 5.9775 7.3255 3.2485 5.3135 6.4485 

5 4.2725 6.8615 8.2735 3.9845 6.3145 7.6055 

5 7 

1 2.5965 4.2655 6.1255 1.8065 3.5415 3.8315 

2 1.3135 3.3055 4.7185 1.2525 2.5255 3.7725 

3 2.0425 4.0475 5.3305 1.9605 3.4005 4.4345 

4 2.7065 4.7525 6.0395 2.5785 4.2455 5.2995 

5 3.3405 5.4155 6.7905 3.1705 5.0005 6.2025 

7 9 

1 2.2665 3.6915 5.2765 1.5635 3.0825 3.2815 

2 1.1095 2.8565 4.0955 1.0705 2.1805 3.2835 

3 1.7255 3.4685 4.6335 1.6735 2.9245 3.8555 

4 2.2845 4.0505 5.2415 2.2025 3.6325 4.5975 

5 2.8185 4.6025 5.8675 2.7105 4.2635 5.3545 

 

 

in Table 8 show the high effectiveness of the approach used 

in the convergence sense with respect to the sublayers’ 

number M. Taking these and many other results, which are 

not given here, into consideration allows us to conclude that 

it is enough to take M=21 to obtain numerical results with 

very high accuracy. Taking this conclusion into account, we 

assume that M=21 under obtaining all numerical results 

which will be discussed below 

Now we consider the numerical results related namely 

to the case where the middle layer material is FG and 

assume that v
(1)

=v
(2)

=v
(3)

=0.3, i.e., assume that η2=0. 

Moreover, as above, assume that h
(1)

/a=0.1, h
(2)

/a=0.5, 

h
(3)

/a=0.2, E
(3)

/E
(1)

=9 and suppose that n1=m3=1. We 

determine the constants a1 and b1 (a3 and b3) from the way 

that the ratio E
(2)

(r)/E
(1)

 (the ratio ρ
(2)

(r)/ρ
(1)

) increases from 
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Table 5 Convergence of the numerical results with respect 

to the number M of the sublayers obtained for the natural 

frequencies (1) (1)/a     obtained for the three-

layered hollow sphere with middle layer made of FGM 

n M 
Torsional vibration Spheroidal vibration 

1 2 3 1 2 3 

4 

1 7.8615 21.260 29.047 12.169 13.407 24.602 

3 7.3165 19.867 28.758 11.792 12.458 23.200 

5 7.2465 19.788 28.653 11.769 12.311 23.099 

7 7.2255 19.766 28.623 11.760 12.269 23.068 

9 7.2175 19.757 28.611 11.756 12.252 23.054 

11 7.2125 19.752 28.605 11.753 12.243 23.047 

13 7.2105 19.750 28.601 11.752 12.238 23.043 

15 7.2085 19.748 28.599 11.751 12.235 23.040 

17 7.2075 19.747 28.597 11.750 12.233 23.038 

19 7.2065 19.746 28.596 11.750 12.231 23.037 

21 7.2065 19.746 28.596 11.750 12.230 23.036 

5 

1 9.2245 23.653 31.491 14.032 15.088 26.784 

3 8.6275 21.815 30.948 13.414 14.016 25.327 

5 8.5425 21.709 30.831 13.418 13.820 25.152 

7 8.5175 21.680 30.797 13.419 13.758 25.106 

9 8.5065 21.669 30.783 13.419 13.732 25.087 

11 8.5005 21.663 30.776 13.419 13.718 25.077 

13 8.4975 21.659 30.772 13.419 13.710 25.071 

15 8.4955 21.657 30.769 13.419 13.705 25.068 

17 8.4945 21.656 30.768 13.419 13.702 25.065 

19 8.4935 21.655 30.767 13.419 13.700 25.063 

21 8.4925 21.654 30.766 13.419 13.698 25.062 

 

 

 
(1)(2)

0.9
( ( ) / ) 3

r a
E r E


  (from (1)(2)

0.9
( ( ) / ) 3

r a
r 


 ) until 

(1)(2)

0.4
( ( ) / ) 7

r a
E r E


 (until (1)(2)

0.4
( ( ) / ) 7

r a
r 


 ). 

Thus, for determination of the constants ak and bk (k=1,3) 

we obtain the following expressions 

1(2)(2)
1 10( ) (1 ( ) )

n
E r E a r b    

3(2)(2)
3 30( ) (1 ( ) )

n
r a r b     

1/ 1/
2 (2) (6)k kn n

ka a  
 

 

  

1/ 1/
1.8 (6) 0.8 (2)k kn n

kb a    
 

 (23) 

Thus, according to the selected relation (21), the 

changing (i.e., the increasing) character of the modulus of 

elasticity (or of the material density) is determined through 

the constant n1 (n3). For illustration of this dependence the 

graphs of the function E
(2)

(r)/E
(1)

 (ρ
(2)

(r)/ρ
(1)

) constructed for 

various values of n1 (n3) are given in Fig. 6, according to 

which, the values of the integrals 

0.9
(1)(2)

0.4

( ) /ES E r E dr  and 

0.9
(1)(2)

0.4

( ) /S r dr     (24) 

increase with a decrease of the constants n1(≥0) and n3(≥0),  

Table 6 The influence of an increase of the modulus of 

elasticity in the inward radial direction under constant 

material densities on the values of the natural frequencies 

(1) (1)/a     obtained for the three-layered hollow 

sphere with middle layer made of FGM 

n n1 
Torsional vibration Spheroidal vibration 

1 2 3 1 2 3 

1 

0 9.8395 16.394 23.116 5.7685 13.074 13.988 

0.2 13.139 20.889 28.781 7.7565 16.560 18.713 

0.5 12.544 20.167 27.847 7.2605 15.977 17.737 

1 11.855 19.362 26.784 6.7635 15.333 16.598 

1.5 11.413 18.852 26.111 6.4845 14.953 15.872 

2 11.113 18.497 25.653 6.3125 14.704 15.392 

3 10.740 18.032 25.074 6.1195 14.378 14.838 

2 

0 3.4875 11.966 18.337 4.8905 7.6995 14.819 

0.2 4.1935 15.864 23.488 6.5185 9.4485 18.028 

0.5 3.9875 15.104 22.671 6.2695 8.8815 17.367 

1 3.7935 14.247 21.738 5.9655 8.3935 16.623 

1.5 3.6935 13.712 21.132 5.7595 8.1675 16.166 

2 3.6355 13.356 20.707 5.6145 8.0475 15.867 

3 3.5765 12.925 20.145 5.4295 7.9325 15.512 

3 

0 5.2115 13.889 20.189 6.9545 9.4945 17.512 

0.2 6.1125 18.419 26.163 9.6955 11.303 21.073 

0.5 5.8225 17.469 25.200 9.2385 10.692 20.204 

1 5.5575 16.423 24.085 8.6765 10.188 19.324 

1.5 5.4285 15.786 23.355 8.3045 9.9635 18.837 

2 5.3575 15.371 22.842 8.0505 9.8475 18.547 

3 5.2905 14.878 22.172 7.7345 9.7335 18.238 

4 

0 6.6795 15.757 21.946 8.5615 11.279 19.133 

0.2 7.6515 20.816 28.712 12.002 12.979 23.755 

0.5 7.3135 19.671 27.586 11.384 12.335 22.636 

1 7.0135 18.444 26.273 10.625 11.814 21.576 

1.5 6.8745 17.716 25.415 10.126 11.602 21.020 

2 6.8035 17.250 24.816 9.7895 11.502 20.696 

3 6.7385 16.712 24.043 9.3825 11.415 20.346 

5 

0 8.0095 17.619 23.703 10.051 13.035 20.554 

0.2 8.9905 23.079 31.182 13.816 14.668 26.008 

0.5 8.6275 21.749 29.878 13.089 13.984 24.714 

1 8.3155 20.360 28.359 12.186 13.457 23.506 

1.5 8.1775 19.557 27.374 11.600 13.262 22.876 

2 8.1095 19.056 26.695 11.217 13.179 22.501 

3 8.0515 18.493 25.833 10.773 13.115 22.072 

 

 

respectively. Note that the cases n1 (n3)=0.2, 0.5, 1.0, 1.5, 

2.0 and 3.0, correspond to SE(Sρ)=3.1672, 2.8333, 2.4999, 

2.1666 and 1.9999, respectively. Thus, it follows from the 

foregoing discussions that the influence of the change 

character of the FGM in the inward radial direction can also 

be estimated through the values of SE and Sρ. 

Thus, after the foregoing preparation procedures we 

consider the results given in Tables 6 and 7 which show the 

influence of the change of the modulus of elasticity and of 

the material densities, respectively, under various n1 (=n3) 

on the values of the dimensionless natural frequency Ω (22) 

obtained for the torsional and spheroidal vibration modes.  

These results are presented for the first, second, third, 

fourth and fifth harmonics and for the first three roots and, 

under obtaining the results given in Table 6 (in Table 7), it 

is assumed that η3=0 (η1=0). These results show that an  
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Table 7 The influence of an increase of the material 

densities in the inward radial direction under constant 

modulus of elasticity on the values of the natural 

frequencies (1) (1)/a     obtained for the three-

layered hollow sphere with middle layer made of FGM 

n n3 
Torsional vibration Spheroidal vibration 

1 2 3 1 2 3 

1 

0 2.3505 4.8685 6.3655 1.9935 3.8275 4.2485 

0.2 2.3155 3.8145 5.4335 1.6445 3.2095 3.3985 

0.5 2.3625 3.9455 5.5945 1.7315 3.3405 3.5375 

1 2.3935 4.0735 5.7545 1.8165 3.4635 3.6975 

1.5 2.3975 4.1565 5.8615 1.8625 3.5335 3.7965 

2 2.3915 4.2265 5.9455 1.8885 3.5825 3.8605 

3 2.3755 4.3495 6.0675 1.9175 3.6505 3.9355 

2 

0 1.6705 3.1715 5.3125 1.5115 2.7835 4.1015 

0.2 1.2175 2.9255 4.2225 1.1325 2.2965 3.4265 

0.5 1.3355 2.9925 4.3615 1.2025 2.4175 3.5865 

1 1.4595 3.0455 4.5035 1.2795 2.5365 3.7475 

1.5 1.5305 3.0645 4.5975 1.3295 2.6035 3.8355 

2 1.5735 3.0705 4.6765 1.3635 2.6435 3.8885 

3 1.6185 3.0755 4.8125 1.4055 2.6855 3.9495 

3 

0 2.6055 4.0995 5.8865 2.4285 3.6725 4.8555 

0.2 1.8975 3.5725 4.7645 1.7845 3.0665 4.0195 

0.5 2.0875 3.6755 4.9115 1.9115 3.2055 4.2095 

1 2.2865 3.7655 5.0665 2.0535 3.3375 4.4085 

1.5 2.4015 3.8065 5.1715 2.1435 3.4105 4.5195 

2 2.4695 3.8315 5.2595 2.2035 3.4565 4.5875 

3 2.5385 3.8655 5.4105 2.2765 3.5075 4.6655 

4 

0 3.4565 5.0625 6.5325 3.2295 4.6685 5.7415 

0.2 2.5185 4.1975 5.3805 2.3635 3.8145 4.7715 

0.5 2.7755 4.3495 5.5355 2.5495 3.9925 4.9665 

1 3.0455 4.4895 5.7035 2.7565 4.1605 5.1745 

1.5 3.2015 4.5625 5.8185 2.8865 4.2535 5.2985 

2 3.2935 4.6115 5.9155 2.9715 4.3115 5.3785 

3 3.3835 4.6825 6.0805 3.0705 4.3825 5.4765 

5 

0 4.2725 6.0335 7.2195 3.9775 5.7285 6.6315 

0.2 3.1125 4.7975 6.0235 2.9225 4.4875 5.5545 

0.5 2.7755 4.3495 5.5355 3.1675 4.7165 5.7655 

1 3.7745 5.2035 6.3765 3.4385 4.9415 5.9825 

1.5 3.9715 5.3155 6.5015 3.6045 5.0725 6.1135 

2 4.0855 5.3915 6.6065 3.7105 5.1585 6.2025 

3 4.1945 5.5065 6.7825 3.8275 5.2675 6.3185 

 

 

increase in the values of the modulus of elasticity in the 

inward radial direction causes an increase in the values of 

the natural frequency Ω. According to Table 7, except in 

some particular cases, a similar conclusion also occurs for 

the influence of the increase of the material density in the 

inward direction on the natural frequencies, i.e. the increase 

of the material density causes a decrease in the values of the 

natural frequency. However, this conclusion is violated in 

first harmonics for the first roots in the torsional mode. 

Comparison of the results obtained for the various 

values of n1 and n3 shows that the foregoing effects of the 

FGM of the middle layer on the natural frequencies become 

more considerable with the parameters SE and Sρ in (24) (or 

with decreasing of the constants n1(≥0) and n3(≥0)). Thus, 

the parameters SE and Sρ can be used as global 

characteristics of the FGM determined through the relations 

Table 8 The influence of a simultaneous increase of the 

material densities and modulus of elasticity in the inward 

radial direction on the values of the natural frequencies 

(1) (1)/a     obtained for the three-layered hollow 

sphere with middle layer made of FGM 

n n1 (=n3) 
Torsional vibration Spheroidal vibration 

1 2 3 1 2 3 

1 

0 5.6135 10.197 15.165 3.9415 8.0285 10.299 

0.2 6.8745 10.943 14.636 4.4365 9.2905 10.267 

0.5 6.7225 10.732 14.627 4.4215 9.2395 10.279 

1 6.4715 10.568 14.709 4.3615 9.0905 10.236 

1.5 6.2735 10.551 14.794 4.2925 8.9895 10.144 

2 6.1315 10.587 14.850 4.2335 8.9265 10.055 

3 5.9575 10.677 14.907 4.1475 8.8345 9.9515 

2 

0 3.0815 8.2625 11.234 3.6355 5.8875 8.4225 

0.2 3.1775 8.6735 12.115 3.4535 6.0775 9.5945 

0.5 3.2095 8.4945 11.922 3.5795 6.0555 9.5105 

1 3.2215 8.2505 11.798 3.7025 5.9915 9.3565 

1.5 3.2125 8.1065 11.792 3.7635 5.9335 9.2355 

2 3.1985 8.0305 11.816 3.7915 5.8925 9.1415 

3 3.1725 7.9815 11.854 3.8065 5.8495 9.0025 

3 

0 4.6705 10.433 12.993 5.2995 8.0635 10.436 

0.2 4.8615 10.360 13.602 5.2935 8.1915 11.241 

0.5 4.8855 10.153 13.457 5.4955 8.1575 11.112 

1 4.8735 9.9355 13.390 5.6735 8.0835 10.931 

1.5 4.8425 9.8575 13.396 5.7365 8.0345 10.803 

2 4.8135 9.8505 13.406 5.7455 8.0125 10.712 

3 4.7695 9.9145 13.395 5.7035 8.0105 10.594 

4 

0 6.0865 12.005 15.214 6.6115 9.9435 13.356 

0.2 6.3545 11.835 15.071 6.7725 10.202 13.372 

0.5 6.3585 11.615 15.018 7.0125 10.138 13.210 

1 6.3165 11.443 15.031 7.1945 10.033 13.039 

1.5 6.2655 11.427 15.062 7.2275 9.9785 12.957 

2 6.2245 11.474 15.074 7.1975 9.9595 12.923 

3 6.1725 11.608 15.057 7.0925 9.9615 12.926 

5 

0 7.4145 13.370 17.154 7.8665 11.726 15.613 

0.2 7.7515 13.166 16.413 8.1315 12.094 15.137 

0.5 7.7305 12.956 16.471 8.3895 11.990 14.970 

1 7.6545 12.844 16.566 8.5515 11.850 14.842 

1.5 7.5875 12.884 16.626 8.5425 11.787 14.827 

2 7.5395 12.967 16.652 8.4755 11.768 14.869 

3 7.4845 13.129 16.662 8.3245 11.770 15.012 

 

 

in (21).  

Consider also the numerical results which are obtained 

in the case where the modulus of elasticity and the density 

of the FGM of the middle layer increase simultaneously in 

the inward radial direction. Assume that the ratio E
(2)

(r)/E
(1)

 

increases    from    (1)(2)

0.9
( ( ) / ) 3

r a
E r E


     until 

(1)(2)

0.4
( ( ) / ) 7

r a
E r E


 , and the ratio ρ

(2)
(r)/ρ

(1)
 increases 

from 2/)(
9.0

)1()2( 
 ar

r    until (1)(2)

0.4
( ( ) / ) 5

r a
r 


  

and ρ
(3)

(r)/ρ
(1)

=7. The values of the other parameters remain 

as above. Analyze the values of the natural frequencies 

obtained for this case which are given in Table 8. As in the 

foregoing tables, these results are obtained for the first, 

second, third, fourth and fifth harmonics and for each  
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Fig. 6 Distribution of modulus of elasticity in the radial 

direction for various n1 

 

 

harmonic the first three roots are found in the torsional and 

spheroidal vibration modes. It follows from the data given 

in Table 8 that for the case under consideration, the natural 

frequencies increase with simultaneous increases in the 

parameters SE and Sρ in (24) (i.e., with simultaneous 

decreases in the constants n1(≥0) and n3(≥0)). However, the 

magnitude of this increase is significantly less than the 

corresponding ones observed in Table 6. It is evident that 

this situation can be explained with the foregoing results, 

according to which, an increase of the material density in 

the inward radial direction causes a decrease, but the 

corresponding increase of the modulus of elasticity causes 

an increase in the values of the natural frequencies. 

Consequently, the simultaneous existence of the noted 

“decrease” and “increase” determines the character of the 

results given in Table 8. 

This completes the consideration and analysis of the 

numerical results. 

 

 

5. Conclusions 
 

Thus, in the present paper, the natural vibration of the 

three-layered hollow sphere with middle layer made of 

FGM is investigated by employing the exact three-

dimensional equations and relations of elastodynamics in 

spherical coordinates. The perfect contact conditions 

between the layers are satisfied. The corresponding 

eigenvalue problem is solved by employing the discrete 

analytical method described in the previous papers by the 

authors. 

The case where the properties of the FGM change in the 

radial direction according to the power law, is considered, 

and numerical results on the dimensionless natural 

frequency Ω (22) obtained for certain concrete cases of this 

law are presented for the first, second, third, fourth and fifth 

harmonics and for the first three roots of each harmonic for 

the torsional and spheroidal vibration modes. Analysis of 

these results allows us to make the following main concrete 

conclusions: 

- The results obtained for the three-layered hollow 

sphere approach the corresponding ones obtained for the 

corresponding solid sphere; 

- The aforementioned approach may be “from below” as 

well as “from above”, in other words, for certain 

harmonics and for roots of certain order, the values of 

the natural frequency obtained for the hollow sphere can 

be greater (or less) than those obtained for the solid 

sphere; 

- It follows from the foregoing two conclusions that it is 

impossible to make any conclusion on the values of the 

natural vibration of the hollow sphere using the 

corresponding results obtained for the solid sphere and 

this situation illustrates the main significance and 

necessity of the investigation of the natural vibration of 

the hollow sphere to which the present work has been 

devoted. 

- At the same time, in the qualitative sense all the 

conclusions made for the solid sphere in the paper by 

Akbarov et al. (2016) are also confirmed with the results 

of the present investigation and these conclusions are:  

• An increase (a decrease) of the modulus of elasticity of 

the FGM in the inward radial direction causes an 

increase (a decrease) in the values of the natural 

frequency Ω;  

• A decrease (an increase) of the density of the FGM in 

the inward radial direction, in general, causes an 

increase (a decrease) in the values of the natural 

frequency Ω;  

• The influence of the character of the aforementioned 

change (increase or decrease) law on the values of Ω can 

be determined through the parameters SE and Sρ (24); 

• An increase in the values of SE, i.e., a decrease in the 

values of the constant n1 which enter the relation (23), 

also causes an increase in the values of Ω; 

• A decrease in the values of Sρ, i.e., an increase in the 

values of the constant n3 which enter the relation (23), 

also, in general, causes an increase in the values of Ω; 

•The character of the results obtained in the cases where 

the modulus of elasticity and the density of the FGM are 

changed simultaneously, can be explained with the use 

of the foregoing conclusions.   
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