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1. Introduction 
 

The engineering structures are often subjected to 

periodic loads. For examples, a rotating machine system is 

usually exerted a periodic unbalanced inertia force, a bridge 

is frequently subjected to the cyclical loads from the 

running vehicles, a marine structure is always suffered the 

periodic wave forces etc. When the frequency of excitation 

has a certain quantity relation with the natural frequency of 

the structure, the structural system may undergo a 

resonance. Generally, the normal resonance, in which the 

forcing frequency coincides with the natural frequency of 

the structure, is highly focused by the structural designers. 

Meanwhile the principle parametric (or auto-parametric) 

resonance, in which the excitation frequency is twice the 

natural frequency of the structure (or sub-structure), is a 

secondary interest, however it can have a catastrophic effect 

on structures near the critical regions of parametric (or auto-

parametric) instability. 

On the basis of the analytical methods, the parametric 
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vibration (dynamic stability) problems of a single-span 

beam with different constrains have been well investigated 

and documented by Bolotin (1964), Majorana and 

Pellegrino (1997), Majorana and Pomaro (2011, 2012), Xie 

(2006).  

With the aid of the finite element method (FEM), 

Shastry and Rao (1984, 1986) studied dynamic stability of 

bars considering shear deformation and rotator inertia, and 

dynamic stability of short cantilever columns subjected to 

distributed loads. Briseghella et al. (1998) analyzed the 

dynamic stability of beam structures. Basar et al. (1987) 

investigated the parametric resonance phenomena (dynamic 

instability) of arbitrary elastic shell structures. Pradyumna 

and Gupta (2011) studied the dynamic stability of laminated 

composite plates with piezoelectric layers. Mishra and Sahu 

(2015) investigated parametric instability of beams with 

transverse cracks. Kumar et al. (2015) analyzed the 

parametric resonance (dynamic stability) of composite skew 

plate under non-uniform in-plane loading. All the above 

dynamic stability problems of the structures can be 

described by the following homogeneous Mathieu-Hill 

equations 

0( ) ( ) ( cos ) ( ) 0s d gt t P P t t       Ma Ca K K a  (1) 

where t is the time, M, C, K0 and Kg are the (constant) 

mass, damping, stiffness and geometric stiffness matrices, 

respectively, a(t), ( )a t and ( )a t are the nodal displacement, 

velocity and acceleration vectors, respectively, 

( cos )s dP P t
 

is an external force that axially exerts on 

the structure (or component), in which Ps is the static force, 
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and Pd and ω are the amplitude and frequency of the 

dynamic force, respectively. The stability boundaries of Eq. 

(1) can be determined by the approach proposed by Bolotin 

(1964). In this method, the displacement vector a(t)
 

is 

expanded as the Fourier series with periods T and 2T, where 

T=2π/ω, and thus the equations that the stability boundary 

points satisfy are derived. This method has been 

successfully used in the above references for solving the 

stability boundaries of the different structures. 

The above problems described by Eq. (1) are focused on 

the dynamic stability of a single-span beam, or a plate, or a 

shell, or a simple frame, which is directly subjected an axial 

periodic external force. These problems are called 

parametric vibrations of structures. However there is also a 

kind of so-called auto-parametric vibration (resonance) 

problem in the mechanical and structural systems. Tondl et 

al. (2000) discussed the auto-parametric resonance of 

mechanical systems in details. When a structural (or 

mechanical) system consists of two subsystems, one is the 

primary system and the other is the secondary system. The 

secondary system is coupled with the primary system in a 

nonlinear way. The primary system is subjected to the 

external excitation, and the vibration of the primary system 

acts as a parametric excitation of the secondary system. The 

parametric vibration of the secondary system, which is 

induced by the primary system, is called auto-parametric 

resonance. Xia and Fujino (2006) investigated the auto-

parametric vibration of a cable-stayed-beam system. 

Recently, Náprstek and Fischer (2015) studied auto-

parametric resonance of a vertically excited nonlinear 

continuous system. 

A framed structure is composed of several beams. These 

beam elements may be linked by hinged joints. If a 

periodical external force acts on one beam, which is 

regarded as the primary system, the dynamic load of the 

primary system can be transmitted into the other beam (i.e., 

the secondary system) via a hinged joint, and may give rise 

to the auto-parametric resonance (instability) of the 

secondary system. It should be emphasized that the 

dynamic load that directly cause the instability is the 

transmitted internal axial force, instead of the external load. 

When the geometric stiffness effects of the internal axial 

force for each beam are considered, the motion equations of 

the framed structure can be generally expressed as the 

following non-homogeneous Mathieu-Hill equation 

 ( ) ( ) ( ) ( ) ( )Ma Ca K K a fGt t t t t     (2) 

where f(t) is the external force vector, K is the constant 

stiffness matrix, KG(t) is a time-variable geometric stiffness 

matrix which directly depends on the internal axial force, or 

indirectly depends on the f(t). The auto-parametric 

instability motion of the framed structure can be simulated 

by Eq. (2). It should be mentioned that the current 

commercial codes cannot be directly applied for analyzing 

the auto-parametric resonances of the framed structures 

described by Eq. (2). Because the influence of internal 

(periodic) axial force on the stiffness matrix of beam 

element is not considered in these codes, the phenomenon 

of auto-parametric instability of the framed structures 

cannot be simulated. The investigations about the auto-

parametric instability of framed structures related to the 

non-homogeneous Mathieu-Hill Equation (2) have not been 

found in the existing literature. 

In the unstable regions, if the exciting frequency is 

denoted as ω, then there are three kinds of parametric (auto-

parametric) resonance patterns, i.e., the (1/2) sub-harmonic 

(in which the system response frequency is ω/2), the 

harmonic (response frequency ω), and the super-harmonic 

(the response frequencies are 3ω/2, 2ω and 5ω/2 etc.). The 

sub-harmonic response is also called the principal 

parametric resonance. It has been found from the existing 

studies (Li and Wang 2016, Li et al. 2016) that the principal 

parametric resonance has an overwhelming advantage 

among the three unstable patterns. The existing 

experimental observations of parametric vibrations 

indicated that the stability consideration can make the 

occurrence of harmonic and super-harmonic vibrations very 

difficult. The principal parametric resonance is the most 

easily-occurred and dangerous resonance pattern. As far as 

the engineering application is concerned, the principal 

parametric (or auto-parametric) resonance is exclusively 

considered in this study. 

In this paper, the geometric-stiffness matrix of element, 

which is produced by the internal axial force, is considered 

in finite element modeling. The time-history response-based 

methods are proposed to solve the instability boundaries of 

auto-parametric resonances. An auto-parametric vibration 

experiment is conducted to verify the theoretical results. 

The main purpose of this paper is to provide a practical 

method for the structural engineers to analyze the auto-

parametric resonances of framed structures, and to reveal 

some potential risks of the auto-parametric resonances. 

 

 

2. Finite element modeling for parametric and auto-
parametric vibrations 

 

2.1 Beam element equation considering geometric 
stiffness effect of internal axial force 

 

For a structural system, the extended Hamilton’s 

principle is presented as (Clough and Penzien 2003) 

2 2

1 1

*

1

0

t t n

j j

jt t

L dt Q q dt 


       (3) 

where L=T-V is the Lagrangian, T and V are the kinetic and 

potential energies of the structural system, respectively, Qj
* 

is the non-conservative force, δqj is the virtual displacement 

of generalized coordinate, and
*

n

j j

j 1

Q q


 represents the 

sum of virtual works of all the non-conservative forces. 

According to (Clough and Penzien 2003), the Hamilton’s 

principle Eq. (3) is valid for any complicated system, linear 

or nonlinear. The application of this principle leads directly 

to the equations of motion for any given system. 

Consider a uniform beam element in x-y plane shown in 

Fig. 1, in which the initial length of beam is l, the cross-

sectional area A, the line mass density m , and the flexural 

rigidity of beam EI. For nodes i and j, the coordinates are  
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Fig. 1 A uniform beam element 

 

 

respectively (xi,yi) and(xj,yj), the nodal forces {Xi,Yi,Mi}
T
 

and {Xj,Yj,Mj}
T
, and the nodal displacements {ui,vi,θi}

T

 
and{uj,vj,θj}

T
. The kinetic energy of the beam (Bernoulli-

Euler beam) can be expressed as 

2 2

0

1
( )

2

l

T m u v dx   (4) 

and the potential energy 

2 2

0 0

1 1
( ) ( )

2 2

l l

V EI v dx EA u dx     (5) 

where dots and apostrophes respectively refer to 

differentiations with respect to time t and coordinate x, and 

u and v are respectively the horizontal and vertical 

displacements of beam element. 

The axial shortness of the beam due to the bending 

deformation is 

2

0

1
( )

2

l

v dx    (6) 

The virtual work by the nodal (non-conservative) forces 

on the corresponding virtual displacements can be written 

as 

*

1

1
( ) ( ) ( )

2
e ea r

n
T

j j i j

j

Q q t t X X  


        (7) 

where 

 

 

( ) , , , , ,

( ) , , , , ,

e

e

r

a

T
T

i i i j j j

T
T

i i i j j j

t X Y M X Y M

t u v u v 

 

 


 
(8) 

in which re(t) and ae(t) are respectively the nodal force and 

displacement vectors of beam element. The first term of Eq. 

(7) represents the virtual work of nodal forces, and the 

second term is just the virtual work by the internal axial 

forces (Xi, Xj) on the virtual displacement . The second 

term of Eq. (7) is generally neglected in finite element 

modeling when the dynamic instability of the beam is not 

considered. However, this term plays a crucial role in the 

parametric (or auto-parametric) resonance. It is the second 

term that arouses the dynamic instability of structure. 

Therefore the second term must be considered in the 

analyses of dynamic stability. The displacements of beam 

element can be assumed as (Wang 2003, Bathe 1996) 

( )

( )

e

e

N a

N a

T

u

T

v

u t

v t

 




 (9) 

where N
T

u  and N
T

v  are respectively the vectors of shape 

functions, which are expressed as 

 

 

1 2

1 2 3 4

,0,0, ,0,0

0, , ,0, ,

TT

u u u

TT

v v v v v

N N

N N N N

 




N

N

 
(10) 

in which 

1

2

2 3

1

2 3

2

2 3

3

3 2

4

1 2
1

2 2

1 2
1

2 2

1 3 2

( 2 )

3 2

( )

i j

u

i j

u

v

v

v

v

x x
N x

l

x x
N x

l

N

N l

N

N l

 
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 

 

   
     

   


       
   


  


  

  

  

 

(11) 

and 

l

xx i
  (12) 

The variable ξ
 
is the dimensionless coordinate of the shape 

function. Substituting Eqs. (4), (5) and (7) into Eq. (3), 

employing Eq. (6) and Eqs. (8)-(12), and doing a variational 

operation, we can obtain the motion equation of beam 

element 

1
( ) ( )

2
( ) ( ) ( )e e eGe ee e K K rM a a ai jXt X tt t     (13) 

where 

0 0

2 2

2 2

210 0 0 105 0 0

0 234 33 0 81 19.5

0 33 6 0 19.5 4.5

105 0 0 210 0 0630

0 81 19.5 0 234 33

0 19.5 4.5 0 33 6

e N N N NM

l l

T T

u u v v

l l

l l l lml

l l

l l l

d

l

m x m dx

 
 


 
 
 
 
 
 

    

 



 

 
(14) 

3 2 3 2

2 2

3 2 3 2

2 2

0 0

0 0 0 0

12 6 12 6
0 0

6 4 6 2
0 0

0 0 0 0

12 6 12 6
0 0

6 2 6 4
0 0

eK N N N N
T T

u u v v

l l

EA EA

l l

EI EI EI EI

l l l l

EI EI EI EI

l l l l

EA E

EA

A

l l

EI EI EI EI

l l l l

EI EI EI EI

l l l l

dx EI dx   

 
 

 
 
 
 
 
 
 
 
 
 

   
 
 












 

 

(15) 

 

o

Xi i j

Yi

Mi

X j

Yj

M j

θi θj

u i

vi vj

u j

undeformed

deformed
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l

T
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l l
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l l

l l
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 
 
 
 
 

  
 
 
 
   
 
 
  
  



 
(16) 

Eq. (13) is rewritten as 

 ( ) ( ) ( ) ( )e e e Ge e eM a K K a ret f t t t     (17) 

where 

( ) ( )

(1 2,0,0, 1 2,0,0)

eα r

α

T

e

T

f t t 


 
 (18) 

in which Me and Ke 
are respectively the element mass and 

stiffness matrices, ( )
e

a t the element nodal acceleration 

vector, fe(t)·KGe 
the element geometric stiffness matrix, in 

which fe(t) is the average axially compressive force of beam 

element. By means of Eqs. (17) and (18), fe(t) can be further 

expressed as 

 
1

( ) (( ) ) )(Ge e ee e eα I K a α M a aK
T T

e tf t tt


    
 (19) 

where I is the unit matrix. When the nodal displacement 

and acceleration vectors are known, the axial force fe(t) can 

be calculated with Eq. (19). 

It can be easily found that the standard shape functions 

of beam element are introduced in the above finite element 

formulation. However an additional geometric stiffness 

matrix is considered in the present formulation. 

 

2.2 The global finite element motion equations of 
framed structures 

 

If the element geometric stiffness matrix is considered 

for all the beam elements (or partial elements) of the framed 

structures, all element matrices can be assembled to the 

global motion equations as follows 

 ( ) ( ) ( ) ( ) ( )GMa Ca K K a pt t t t t     (20) 

where M, C and K are respectively the global mass, 

damping and stiffness matrices; ( )a t , ( )a t and ( )a t are 

respectively the global nodal acceleration, velocity and 

displacement vectors; ( )p t is the global (external) load 

vector; ( )
G

K t is the global geometric stiffness matrix which 

can be expressed as 

1

1

( ) ( )
n

e e

e

t f t


G GK K  (21) 

where e denotes the element number, n1 is the total number 

of the elements, in which the effects of internal axial force 

are considered, and ( )
G

Ke ef t  is the expanded element 

geometric stiffness matrix. For every time step, each 

element geometric stiffness matrix will be updated and 

assembled to the global matrix as time progresses. The 

damping C can be constructed separately. Generally 

speaking, the mechanism of structural damping is very 

complicated, the damping term ( )Ca t  cannot be directly 

obtained from Eq. (3) using the usual operations. In the 

theory of structural dynamics (Clough and Penzien 2003; 

Chopra 2007), the damping matrix can be obtained through 

a Rayleigh damping C=βkK+βmM, where the coefficients βk 

and βm can be determined by the modal frequencies and 

damping ratios. 

It should be noted that the geometric stiffness matrix is 

generally produced by the static and dynamic parts of the 

internal axial load. The effect of the static part, which only 

changes the natural frequencies of the structural system, can 

be absorbed in the constant stiffness K. The variation of 

natural frequency only makes the stability boundary curves 

move horizontally, which is a secondary interest in this 

study. Only the dynamic part can determine the dynamic 

instability of the structure. For a clear and concise 

presentation, the geometric stiffness matrix by the dynamic 

part of the external load is exclusively considered in the 

following text. 

Eq. (20) is a non-homogeneous Mathieu-Hill equation in 

the form of matrix. It is difficult to solve the instability 

problem of Eq. (20) by using the existing methods (such as 

Bolotin’s method, multiple scales method etc.). 

 

2.3 Time-history response solution using Newmark’s 
method 

 

The Newmark’s method is employed to solve Eq. (20). 

The nodal displacement, velocity and acceleration vectors 

are respectively denoted at two successive time instants t0 

and t=t0+Δt by 
0a ,

0a ,
0a

 
and a(t) , a(t) , a(t) , where Δt is 

the time increment. Then the Newmark’s time-stepping 

scheme (Chopra 2007) is presented as follows 

0

0

0 02

( )

2
( )

4 4
( )

a a a

a a a

a a a a

t

t
t

t
t t


   



  



   
 

 (22) 

Substituting Eq. (22) into Eq. (20) yields 

PA
~~

 a  (23) 

where 

 

02

0 0 0 0 0 0

4 2
( )

4
( ) ( )

t t
t t

t t t t
t


      


        
 

G

G

A M C K K

p p Ma Ma Ca K K a

 
(24) 

It is noted that the geometric stiffness matrix KG(to+Δt) 
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in Eq. (24) is related to the element axial forces fe(to+Δt) 

(e=1,2,3,…,n1), which are unknown at time t=to+Δt. In the 

present formulation, the axial forces fe(to+Δt) are 

approximately replaced by their values at time t0, i.e.,

0 0( ) ( )
G G

K Kt t t  , therefore Eq. (24) becomes 

 

02

0 0 0 0 0 0

4 2
( )

4
( ) ( )

G

G

A M C K K

p p Ma Ma Ca K K a

t
t t

t t t
t


     


       
 

 
(25) 

Thus the displacement increment Δa can be obtained 

from the solution of Eqs. (25) and (23). Then the nodal 

displacement, velocity and acceleration vectors at time 

t=to+Δt are calculated by substituting Δa into Eq. (22). 

Consequently, the dynamic time-history responses of the 

structure are acquired. 

 

2.4 Time-history response solutions under the 
displacement excitations 

 

Sect.2.3 is about the response solution of Eq. (20) under 

the load excitations. For the practical engineering structures 

(or structural tests), it is sometimes difficult to measure the 

exciting loads, however it is much easier to measure the 

structural displacements. If only the displacement 

excitations are known, the time-history responses of 

structures can be solved by the following approach. 

A simple case is considered here. The structure is 

assumed to be subjected to a known displacement excitation 

on the n
th

 DOF (degree of freedom), i.e., the exciting 

displacement an(t), velocity ( )na t and acceleration ( )na t  

are known, but the corresponding exciting force pn(t) is 

unknown. Then Eq. (20) can be rewritten in the form of 

block matrix 

1 1 1 11 1 1 1 1

1 1 1

1

1 11

( ) ( ) ( )

( ) ( ) ( )

( )

( ) ( )

G G

G

m a c a k a

m

M C K

c k

k a 0K

k

n n n n

T T T

n nn n n nn n n nn n

n n n n n

n nn

T

n Gnn n n

t t t

m a t c a t k a t

t

k a t p t

   





 



   







           
            

           

     
      
     

 (26) 

Eq. (26) can be expanded into the following two 

equations 

11 1 1 1 1 1 1( ) ( ) ( ) ( ) ( )GM a C a K K a p
nn n n n n n nt t t t
           (27) 

1 1 1 11 1 1( ) ( ) ( ) ) ( )

( ) ( ) ( ) ( )

(
G

m a c a k k a
T T T T

n n n n n

nn n nn n n

n n

n G n n

n

n

p t t t t

m a t c a t k k a t

    



 

  
 (28) 

where
1 1 1 1 -1( ) ( ) ( ) ( ) ( )Gp m k kn n n n n n n nt a t c a t a t        is a 

known excitation vector. Eq. (27) can be solved by the 

Newmark’s formulation as described in Sect.2.3. 

Introducing the solutions
1( )an t

,
1( )an t

 and
1( )an t

 into 

Eq. (28), we can obtain the exciting force ( )np t . 

For the cases of multi-displacement excitations, the 

response solutions can be resolved by the similar method 

without any substantial difficulty. 

 

 

3. Methods for dynamic stability analyses 

3.1 Bolotin’s method 

 

In some special cases, when an external periodic load 

cosdP t acts on the joint of the framed structure, for 

instance, the case (Fig. 4(a)) of Sect.4.1.1, the finite element 

equation Eq. (20) of the framed structure can be reduced to 

the following homogeneous equation 

( ) ( ) ( cos ) ( ) 0d gt t P t t    Ma Ca K K a
 

(29) 

where Kg is a constant geometric stiffness matrix. The 

parametric instability of the structural system is directly 

aroused by the external load Pdcosωt. The problem of auto-

parametric vibration is reduced to that of parametric 

vibration. When the damping is neglected, according to the 

method proposed by Bolotin (1964) the principal instability 

boundaries of Eq. (29) can be approximately obtained by 

the following equations (Basar et al. 1987, Briseghella et al. 

1998) 

2

2

1
0

2 4

1
0

2 4

g

g

K K M

K K M

d

d

P

P






  



   


 
(30) 

The solutions of Eq. (30) deliver two critical values of 

the excitation frequencies for each load level Pd, and 

determine the lower and upper boundary curves of the 

principal instability region. 

 

3.2 The method by using the energy-growth 
exponent/coefficient 
 

Recently, Li et al. (2016) have proposed an energy-

growth exponent (EGE) and the corresponding energy-

growth coefficient (EGC) for analyzing the stability of 

parametrically excited systems that are governed by 

Mathieu equation. In this study, we introduce EGE/EGC to 

investigate the auto-parametric resonance of framed 

structures. The instantaneous energy function of the global 

(or the secondary) structure system can be written as 

 
1 1

( ) ( ) ( (( )
2 2

)) ( )GKM a aKa a
T TE tt t t t t        (31) 

The numerical results of present study have showed that 

when the parametric (or auto-parametric) resonance occurs, 

the energy of the global (or the secondary) system increases 

with the time in the overall time-domain. If the initial 

energy is denoted as E(t)|t=0=E0, then a typical time-history 

response of the energy function ln[E(t)/E0] of the second 

(structure) system is plotted in Fig. 2. It can be seen that the 

time-history trajectory appears as a backbone curve 

superimposed on a small periodic perturbation. The 

backbone curve of the function ln[E(t)/E0] shows an interval 

of the initial transient disturbance in the initial period of 

time (0≤t≤t1), and a linear growth after the time t1 (t1<t<t2), 

during which the response amplitude of the structural 

system is still within the linear limitation. In the linear-

growth stage, the energy ratio E(t)/E0 grows approximately 

in an exponential manner, the growth exponent λ can be 

approximately evaluated by the slope of backbone curve, i.e. 
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Fig. 2 A typical energy-growth curve of the second 

(structure) system 

 

 

2 1 2

2 1 0 0 2 1 1

( ) ( ) ( )1 1
tan ln ln = ln

( )

E t E t E t

t t E E t t E t
 

 
   

  

 (32) 

The parameter λ in Eq. (32) is defined as the energy-

growth exponent (EGE) of unstable motion of the structural 

system. The EGE, which is independent of the initial 

conditions (disturbances) of the structural system, 

represents energy growth speed of the system during the 

unstable process. The stability of the global (or the second) 

system can be determined by the following criterion (Li et 

al. 2016) 

2

2 1 1

2

2 1 1

2

2 1 1

( )1
ln 0

( )

( )1
ln 0

( )

( )1
ln 0

( )

E t
stability

t t E t

E t
stability boundary

t t E t

E t
instability

t t E t









 







 (33) 

When the global (or the second) system resonates in the 

j
th

 mode, the corresponding natural frequency is ωj, then 

EGE can also be expressed as 

j j j    (34) 

where ηj is a non-dimensional energy-growth coefficient 

(EGC), which reflects the unstable feature of the 

parametrically excited system. The EGE and EGC can be 

numerically determined by Eqs. (20), (31), (32), (33) and 

(34). 

 

3.3 The method by using the finite-time Lyapunov 
exponent 

 
3.3.1 The Lyapunov exponent 
Xia and Fujino (2006) applied Lyapunov exponent to 

investigate the auto-parametric instability of a cable-stayed-

beam system under deterministic and stochastic excitations. 

The Lyapunov exponent can be used to determine the 

stability of auto-parametric vibrations. The motion equation 

Eq. (20) of the structural system can be rewritten as the 

following differential equations with variable coefficients 

( ) ( ) ( ) ( )z ψ z qt t t t   (35) 

where 

 

1 1

1

( ) ( ), ( )

( )
( ( ))

( ) , ( )

z a a

0 I
ψ

M K K M C

q 0 M p

T

G

T

t t t

t
t

t t

 






  
  

   


   

 
(36) 

According to Kr a tzig et al. (1996), and Xia and Fujino 

(2006), the Lyapunov exponent of Eq. (35) can be defined 

as 

( )

( )1
lim ln

(0)

z

z

j

LE j
t

j

t

t



  (37) 

where zj(0) denotes the initial perturbation vector in the j
th

 

direction of the phase space. For a structural system, the 

zj(0)
 

can be determined by the j
th

 modal vector of the 

structure. If the j
th

 modal frequency and vector are 

respectively ωj 
and φj, then zj(0)

 
can be taken as 

( 1,2,3,..., )(0) (0), (0) ,z a a φ 0
T T

j j j j j Nk          (38) 

where k is a constant, which ensures the initial perturbation 

to be a small value. For a specific excitation, we can obtain 

N Lyapunov exponents, i.e., λLE(j) 
(j=1,2,3,..,N). Ordering 

them from largest to smallest, the stability of structural 

system can be determined by the largest Lyapunov exponent 

λLE(j), i.e. 

(1)

(1)

(1)

0

0

0

LE

LE

LE

stability

stability boundary

instability







 







 (39) 

 

3.3.2 The finite-time Lyapunov exponent 
When Eq. (37) is applied to extract the Lyapunov 

exponent from an auto-parametric vibration, it needs a very 

long computational time to acquire a convergence value. 

The Lyapunov exponent is originally used for describing the 

nonlinear behavior of the system motion (Wolf 1985), so 

the response amplitude might be very large. However the 

finite element motion equations of framed structures are 

established on the basis of the small-

deformation assumption, i.e., the motion equations are 

linear. When the time is big enough, the structural response 

might exceed the linear range. Under this circumstance, the 

structural responses cannot be controlled by the linear 

equations any more, thus the response results are not correct 

any longer. Therefore it is inappropriate to calculate the 

Lyapunov exponent by using Eq. (37) for the stability 

analysis of linear motion. 

It can be seen from a typical time-history response of 

function ln[||zj(t)||/||zj(0)||] (see Fig. 3) that the response is 

also a backbone curve superimposed on a periodic 

perturbation. The backbone curve shows an interval of the 

initial transient disturbance in the initial period of time  

502



 

Auto-parametric resonance of framed structures under periodic excitations 

 

0 2 4 6 8 10 12 14 16 18

5

10

15

20

25

30

35

Linear interval of backbone curve

Initial transient disturbance

ln((t
 2
))

ln((t
 1
))

t
2t

1



ln
(

(t
))

Time (s)
 

Fig. 3 A typical curve of function (ln[ϕ(t)]=[||zj(t)||/||zj(0)||]) 

 

 

(0≤t≤t1), and a linear growth after the time t1(t1<t<t2), 

during which the response amplitude of the structural 

system is still within the linear limitation. So the average 

slope of backbone curve in the linear interval can be taken 

as a finite-time Lyapunov exponent λFLE(j) to replace the 

Lyapunov exponent by Eq. (37), i.e. 

2 1 2

( )

2 1 2 1 1

( ) ( ) ( )1 1
ln ln ln

(0) (0) ( )

z z z

z z z

j j j

FLE j

j j j

t t t

t t t t t


 
   

   

 (40) 

The finite-time Lyapunov exponents similar to Eq. (40) 

have been widely applied for dynamic stability analyses of 

different systems in other disciplines such as physics 

(Rosenstein et al. 1992), biomechanical engineering 

(Dingwell et al. 2001), electrical engineering (Elfrgani 

2015), etc. The advantages of the finite-time Lyapunov 

exponent are that the calculated results are reliable, the 

influences of initial disturbances are removed, and the 

obtained instability boundaries are smooth. 

The present numerical results show that the two 

methods by using EGE and the finite-time Lyapunov 

exponent can provide the same instability boundaries. 

However, the energy function ln[E(t)/E0] has a clearer 

backbone line with a smaller perturbation than the function 

ln[||zj(t)||/||zj(0)||] (see Figs. 2 and 3). The EGE/EGC method 

is clearer as far as the physical interpretation is concerned. 

 

 

4. Numerical examples 
 

4.1 Parametric and auto-parametric resonances of a 

Γ-shaped frame 
 

Fig. 4 shows a Γ-shaped frame which is subjected to a 

periodic load P(t)=Pdcosωt. In this illustration, the lengths 

of beam-1 and beam-2 are both 6.0(m), the height and width 

of the beams’ section are 0.08 (m) and 0.1 (m), respectively. 

The two beams are connected with a hinge joint, and the 

other ends of the two beams are clamped. The structure is 

made of steel, of which the mass density is ρ=7850 (kg/m
3
), 

Young’s modulus E=2.0× 10
11

(N/m
2
). The structural 

damping is not considered. The beam-1 and -2 are 

respectively discretized into two equal-length beam 

elements. Through a modal analysis, the fundamental  

 
(a)                       (b) 

Fig. 4 A Γ-shaped frame subjected to a periodic load 

 

 

(bending mode) frequencies of beam-1 and beam-2 can be 

respectively obtained, i.e., ω1=ω2=50.375(rad/s). When a 

horizontal static load acts on the joint, as shown in Fig.4(a), 

the corresponding static elastic buckling load of beam-1 can 

be calculated, i.e., Pcr=4.909×10
5
(N). In this example, the 

parametric resonance and auto-parametric resonance of the 

beam-1 in the first mode shape are respectively 

investigated. 

 

4.1.1 Principal parametric resonance and stability 
boundaries 

Consider the case, as shown in Fig. 4(a), where an 

external periodic load acts on the joint of beam-1 and -2. 

The periodic load can lead to a principal parametric 

resonance of beam-1. This problem can be solved in two 

different ways. 

The first way is to establish and solve the global finite 

element equation (Eq. (20)), and to calculate the EGC of 

beam-1. Because this problem only involves the local 

instability of beam-1, the energy of beam-1 and its EGC are 

only considered here. The numerical EGC results of beam-1 

are calculated and plotted in Fig. 5 (see the open circles). 

The principal stability boundary of beam-1 is obtained by 

the zero points of numerical EGC, as shown in Fig. 6 (see 

the solid line). Since the beam-1 can be equivalently 

regarded as a single-span beam that is clamped in one end 

and simply-supported in other end, the parametric 

resonance of the beam-1 in mode 1 is governed by the 

following Mathieu equation (Bolotin 1964, Xie 2006) 

 2

1 1 1( ) 1 cos ( ) 0q t t q t      (41) 

where
1( )q t and 

1( )q t are the 1
th

 generalized coordinate and 

its acceleration, respectively, ω1 is the first modal frequency 

of the system, /d crP P  the exciting coefficient, ω the 

excitation frequency. According to Li et al. (2016), the EGC 

of the parametrically excited systems that are governed by 

Mathieu equation (41) can be expressed as an analytical 

formula, i.e., EGC of beam-1 in mode 1 can be expressed as 

2
2

1
1

2 / 32
1 ( 0.4)

2 / 2

r 
 



  
   

 
 (42) 

where r1=ω/ω1  is the frequency ratio. The EGC curves of 

beam-1 can also be computed with Eq. (42). It can be seen 

from Fig. 5 that the numerical EGC results agree well with 

those by Eq. (42). The present EGC curves (semi-circles) 

are identical to the EGC curves (Li et al. 2016) of the other  
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Fig. 7 The EGC results of beam-1 

 

 

parametrically excited systems (such as contained fluid, 

simple pendulum etc.), which are governed by Mathieu 

equation. The principal instability boundary of beam-1 can 

also be determined by the zero points of Eq. (42) (η1=0), as 

shown in Fig. 6 (see the solid line). 

The second way is to establish the finite element 

equation Eq. (29), and to use Bolotin’s method (Eq. (30)) 

for solving the principal instability boundary. The result is 

shown in Fig. 6 (see the dash line). It can be seen from Fig. 

6 that the two boundary curves by EGC and Eq. (30) match 

well with each other. 

 

4.1.2 Auto-parametric resonance and stability 
boundaries 

When the external load acts on the center of beam-2, as 

shown in Fig. 4(b), the framed structure becomes an auto-

parametric system. The beam-2 is the primary system, 

which can be regarded as a linear forced vibration system. 

The beam-1 is  the secondary system, which is 

parametrically excited by the motion of beam-2. The 

geometric stiffness matrix of the beam-1 is periodically 

changed by the load from beam-2. In the finite element 

motion equation of beam-1, the coupling exists in the form 

of nonlinear product term KG1(t)a1(t) (where KG1(t) and 

a1(t) 
are respectively the geometric stiffness matrix and 

nodal displacement vector of beam-1), in which KG1(t) 

implicitly depends on the motion of beam-2 (or the load  
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from beam-2). Therefore the secondary system (beam-2) is 

nonlinearly coupled by the primary system (beam-1). 

A periodic axial load is transmitted from the primary 

system (beam-2) into the second system (beam-1) through 

the hinge joint. This transmitted axial load may result in an 

auto-parametric instability of beam-1. The global motion 

equation of the structure appears in a non-homogeneous 

Mathieu-Hill equation (Eq. (20)). The numerical EGC and 

the finite-time Lyapunov exponent of beam-1 are 

respectively calculated to determine the stability boundary 

of beam-1. Figs. 7 and 8 respectively show the distribution 
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curves of EGC and the maximum finite-time Lyapunov 

exponent for beam-1, which vibrates in the first mode. It is 

easily found from Fig. 7 that the EGC curves are not the 

semi circles (see Fig. 5) any more. That is because the auto-

parametric instability of beam-1 is affected by beam-2. On 

the basis of the zero points of EGC and the Lyapunov 

exponent, the auto-parametric instability boundaries of 

beam-1 are easily obtained as shown in Fig. 9. It can be 

seen that the two instability boundaries by EGC and the 

maximum finite-time Lyapunov exponent (λFLE(1)) agree 

accurately. 

 

4.1.3 The effect of relative stiffness between the 
primary and secondary systems on auto-parametric 
instability boundaries 

Take the frame in Fig. 4(b) as this example, when the 

relative stiffness of primary system (beam-2) and secondary 

system (beam-1) changes, the auto-parametric instability 

boundary of beam-1 will vary accordingly. For simplicity, 

the variation of Young’s modulus of beam-2 is only 

considered. The Young’s modulus of beam-2 is chosen as 

E2=(200~3200)(GPa), and the rest of the computing data 

remain unchanged. The changes of relative stiffness can be 

represented by the first natural frequency ratios of beam-2 

and beam-1, which are listed in Table 1. 

For the various frequency ratios, the auto-parametric 

instability boundaries of beam-1 are calculated as shown in 

Fig. 10. It can be seen that the instability boundaries vary 

greatly with the variation of the frequency ratio. 

 

4.1.4 Auto-parametric resonance induced by a 
normal resonance ( -shaped frame) 

Consider the example of Sect. 4.1.3. When the 

frequency ratio ω2/ω1 equals 2 (i.e., the relative stiffness 

ratio E2/E1 is 4), and the forcing frequency and amplitude 

are respectively ω=ω2=2ω1 and Pd=4.91×10
3 

(N), then the 

external periodic force Pd×cosωt
 

can arouse the normal 

 

 

Table 1 The first natural frequency ratios of beam-2 and -1 

E2 (GPa) 200 312.5 1512.5 1800 3200 

ω2/ω1 1.0 1.25 2.75 3.0 4.0 
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Fig. 10 Variations of auto-parametric instability boundaries 

of beam-1 with the relative frequency ratios (without 

damping) 

resonance of beam-2. Meanwhile, the auto-parametric 

resonance of beam-1 will be induced by this normal 

resonance. Figs. 11 and 12 respectively show the normal 

resonance response of beam-2 and auto-parametric 

resonance response of beam-1. It can be seen that the 

center-point displacement amplitude of beam-2 increases 

with time linearly, but the center-point displacement 

amplitude of beam-1 increases exponentially. The EGE and 

finite-time Lyapunov exponent (FLE) of beam-1 are no 

longer the constants, but increase with time. Because the 

response of secondary system increases sharply, the 

consequence of the auto-parametric resonance might be 

disastrous. From this typical example, it can be found that 

the effect of internal axial force of beam-1 is amplified 

during the load transmission. The risk of auto-parametric 

resonance of the framed structure is greatly enlarged. This 

auto-parametric resonance of secondary system induced by 

a normal resonance of primary system can be called as 

“auto-parametric internal resonance”. 

In the view of bridge engineering, this example implies 

that a small periodic load acting on the bridge pier, for 

instance the vortex-induced force by river, might cause a 

strong auto-parametric resonance of the bridge girder. 

If the structural damping is considered, the damping 

matrix of the Γ-shaped frame in Fig. 4 can be assumed as a 

stiffness-proportional damping one (Chopra 2007) 

C Kk   (43) 
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Fig. 11 Normal resonance response of beam-2 
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Fig. 12 Auto-parametric resonance response of beam-1 
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Fig. 15 Bounded forced response of point A (beam-1) 

 

 

where βk 
is a constant. Because the auto-parametric 

resonance response of beam-1 is focused on in this 

example, the coefficient βk can be given by 

1

1

2
k





  (44) 

where ω1 and ζ1 are respectively the first frequency and 

damping ratio of beam-1. When the frequency ratio ω2/ω1 is 

near 2, and the exciting frequency ω is close to ω2, the 

“auto-parametric internal resonance” will occur. The 

structural damping will make the unstable domain smaller. 

Fig. 13 shows the instability boundary of auto-parametric 

resonance of beam-1 near ω2/ω1=2.0, in which the forcing 

amplitude Pd=14.73×10
3 

(N). It can be seen that the larger 

the damping ratio is, the smaller the unstable domain is. 

When the damping ratio is approximately 3.085%, the 

unstable domain tends to a point, i.e., the unstable domain 

disappears. It is indicated that the critical damping ratio of 

this example is ζ1cr≈3.085%. The similar results can be 

obtained for the other different exciting amplitudes. 

 

4.2 Auto-parametric resonances analyses for a T-
shaped frame 

 

4.2.1 Auto-parametric resonance by an external 
periodic load 

Fig. 14 shows a T-shaped frame, in which the two ends  

 

Fig. 14 A T-shaped frame subjected to a periodic load 
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Fig. 16 Auto-parametric resonance response of point B 

(beam-2) 

 

 

of beam-1 are clamped, the mid-point of beam-1 is 

connected with one end of beam-2 with a hinge, and the 

other end of beam-2 is clamped. The lengths of the beam-1 

and beam-2 are respectively 12.0 (m) and 6.0 (m). The 

height and width of the beams’ section are respectively 0.08 

(m) and 0.1 (m). The mass density and Young’s modulus of 

the frame material are 7850 (kg/m
3
) and 2.0×10

11 
(N/m

2
), 

respectively. The structural damping is not considered. The 

beam-1 and -2 are respectively discretized into eight and 

four equal-length beam elements. Through a modal 

analysis, the fundamental frequencies of beam-1 and -2 are 

respectively calculated, i.e., ω1=ω2 = 49.940 (rad/s). When a 

static vertical force exerts on the joint C, the corresponding 

elastic buckling load of beam-2 is calculated as 

Pcr=4.77×10
5 

(N). The beam-1 is exerted to an external 

periodic load P(t)=Pd cosωt at point D. The amplitude and 

frequency of the periodic load are assumed as Pd =0.05Pcr 

and ω =2ω1=99.861 (rad/s). In this framed structure, beam-

1 is the primary system and beam-2 is the second system. 

As is the case in Fig. 4(b), the secondary system is 

nonlinearly coupled by the primary system. The external 

periodic load P(t) acting on the primary system can give 

rise to the auto-parametric resonance of the second system. 

Figs. 15 and 16 respectively show the time-history 

responses of point A (in beam-1) and point B (in beam-2). It 

can be seen that the beam-1 experiences a bounded forced 

oscillation, while the beam-2 undergoes an auto-parametric 

resonance. 
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Fig. 17 Forced (normal) resonance response of point A 

(beam-1) 
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Fig. 18 Auto-parametric resonance response of point B 

(beam-2) 

 

 

4.2.2 Auto-parametric resonance induced by a 
normal resonance 

The T-shaped frame is same as in Fig. 14, in which the 

height of the beam-1 section is changed as 0.16 (m), and the 

rest of the parameters remain unchanged. Therefore the 

fundamental frequencies of beam-1 and -2 are respectively 

calculated as ω1=99.861 (rad/s) and ω2=49.940 (rad/s). 

When the amplitude and frequency of the periodic load P(t) 

are assumed as Pd=0.05Pcr and ω=ω1=2ω2=99.861 (rad/s), 

the beam-1 experiences a forced (normal) resonance as 

shown in Fig. 17, while the beam-2 undergoes an auto-

parametric resonance as shown in Fig. 18. Comparing the 

response curves in Figs. 16 and 18, it can be found that the 

growth rate of displacement in Fig. 18 is much greater than 

that in Fig. 16. It is indicated that the “auto-parametric 

internal resonance” (the auto-parametric resonance induced 

by a normal resonance) is much more dangerous. 

In the view of bridge engineering, this example implies 

that the small periodic load acting on the bridge girder, such 

as a cyclical load by the running vehicle, might give rise to 

a strong auto-parametric resonance of the bridge pier. 

The instability boundaries near the “auto-parametric 

internal resonance” are similar to those of the above  -

shaped frame (Sect. 4.1.4.). 

5. Experimental verification for the auto-parametric 
instability boundaries 

 

An auto-parametric resonance test of a framed structure 

is conducted to observe the actual dynamic instability 

phenomenon of the structure, and to verify the theoretical 

predictions. 

 

5.1 Test devices and model 
 

The test devices used for present experimental study are 

respectively shown in Figs. 19 and 20. The test model is a 

Γ-shaped frame, which is composed of a horizontal beam 

(beam-1) and a vertical beam (beam-2). The beam-1 and 

beam-2 is connected with a hinge joint, and the other ends 

of the two beams are clamped on the supports. The test 

beams are made of stainless steel. The geometric 

dimensions of the test model are illustrated in Fig. 21. 

As illustrated in Fig. 19, a perfect sinusoidal signal is 

generated by the signal generator (SPF05A), then amplified 

by the power amplifier (HEA-50), and finally transmitted to 

the vibrationexciter (HEV-50). This vibrationexciter can 

exert a horizontal sinusoidal displacement excitation on the 

beam-2. The position of forcing point is shown in Fig. 21. 

One laser displacement sensor (SUNX-ANR 1215) is used 

to measure the displacement of the forcing point, which can 

be regarded as a displacement excitation from the vibration 

exciter. The other laser sensor is employed to measure the 

(unstable) displacement response of middle point of beam-

1. The two laser signals are simultaneously collected by the 

data acquisition instrument (INV306U-A), and analyzed by 

the signal analyzer (INV306U), then recorded and displayed 

by the computer. 

A typical measured displacement excitation acting on 

the beam-2 is displayed in Fig. 22, from which the 

amplitude and frequency of the excitation can be 

determined. A typical instability displacement response of 

beam-1 is measured as shown in Fig. 23, from which the 

response frequency can be easily obtained by using FFT. 

By means of a free vibration test, we can obtain the free-

decay curve of displacement of beam-1, as shown in Fig. 

24. The damping ratio ζ of beam-1 can be computed by the 

following expression 

 

 

Table 2 Measured and calculated data of the test model-1 

(case 1) 

 
Dimensions 

b× h (mm2) 

Measured 

fundamental 

frequency (rad/s) 

Calculated 

fundamental 

frequency (rad/s) 

Measured 

damping 

ratio 

Beam-1 37.6×0.58 40.84 41.49 0.55% 

Beam-2 37×0.9 284.70 285.70  

 

Table 3 Measured and calculated data of the test model-2 

(case 2) 

 
Dimensions 

b× h (mm2) 

Measured 

fundamental 

frequency (rad/s) 

Calculated 

fundamental 

frequency (rad/s) 

Measured 

damping 

 ratio 

Beam-1 37.6×0.58 39.40 41.49 0.55% 

Beam-2 37×0.7 218.91 222.24  
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Fig. 20 Photo of experimental facilities 
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Fig. 22 A typical measured displacement excitation acting 

on the beam-2 

 

 

1

1

1
ln( )

2
N

N

h

h





  (45) 

where h1 and hN+1 are respectively the displacement 

amplitudes in 1 and N+1 cycles of oscillation. 

There are two test cases in this experiment. The 

measured and calculated data of the test models for the two 

cases are respectively obtained in Tables 2 and 3. The 

theoretical (calculated) frequencies are extracted by the 

modal analysis method. 

 

5.2 Theoretical instability boundaries 

 

The framed structure is discretized into four elements 

with nodes 1~5 as shown in Fig. 21. A known horizontal  

 

 

Fig. 21 Calculating diagram of test model 
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Fig. 23 A typical measured unstable response of beam-1 

 

 

displacement excitation *( ) cosma t a t (the corresponding 

velocity and acceleration are respectively 
*( ) sinma t a t 

 
and * 2( ) cosma t a t   ) is applied to node 4. The mass 

and stiffness matrices (including geometric stiffness matrix) 

of the test model are all (9×9) matrices, the nodal 

acceleration, velocity and displacement vectors are all (9×1) 

vectors, and external load vector is 

( ) (0,0,0,0,0,0, ( ),0,0)p
T t p t , in which p(t)

 
is the unknown 

horizontal force acting at node 4. The damping matrix of 

the test model is established by Eqs. (43) and (44). The ω1 

and ζ1 in Eq. (44), which are respectively the first computed 

frequency and measured damping ratio of beam-1, can be 

obtained from Tables 2 and 3. 

In order to apply the computational formulation of 

Section 2.4, we need to turn the format of present global 

finite element equation into that of Eq. (26). We first 

exchange columns 7 and 9 of the mass, damping and 

stiffness matrices, and exchanges rows 7 and 9 of these 

a (t)=a  cos  tωm

2
4
8
 m

m
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1
5
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Fig. 19 Experimental schematic diagram 
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Fig. 24 The free-decay curve of displacement of beam-1 
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Fig. 26 Auto-parametric instability boundaries of beam-1 

(Case 2) 

 

 

matrices, then exchanges rows 7 and 9 of load vector p(t), 

therefore the load vector becomes ( ) (0,0,0,0,0,0,0,0, ( ))p
T t p t .  

After the above operation, the displacements 

corresponding to the DOF (degree of freedom) 9 and DOF 7 

respectively represent the horizontal and rotation 

displacements of node 4, i.e., the known forcing 

displacement, velocity and acceleration are respectively 

9 ( ) cosma t a t ,
9 ( ) sinma t a t  

 
and 2

9 ( ) cosma t a t   , 

while the corresponding force p9=p(t) is unknown. 

Therefore the format of modified finite element equation is 

same as Eq. (27), which can be solved by the calculating 

scheme of Sect. 2.3. Then the time-history responses of 

beam-1 can be obtained. Based on the above EGE (or FLE) 

method in Section 3, the theoretical instability boundaries 

of beam-1 are calculated as shown in Figs.25 and 26 (see 

the solid and dash lines). 

 
5.3 Experimental instability boundaries 

 

The experimental values of instability boundaries of 

beam-1 are carefully found by fixing the excitation 

amplitude and varying the excitation frequency in the 

vicinity of the theoretically predicted boundaries until the 

unstable motion began to appear or disappear on the 

computer screen. Figs. 25 and 26 respectively show the 

auto-parametric instability boundaries of beam-1 for cases 1 

and 2. It can be seen that the experimental values (see the 
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Fig. 25 Auto-parametric instability boundaries of beam-1 

(Case 1) 

 

 

open circles) have a good agreement with the numerical 

solutions. From Figs. 25 and 26, it can also be found that 

the unstable domains decrease a little due to the small 

structural damping. The damping effect on the instability 

boundaries can be well modeled by the linear damping 

ratio. 

 

5.4 Verification of the semi-trivial solution 

 

The above theoretical and experimental results have 

shown that there are two kinds of solutions in the system. 

For a displacement excitation * ( ) cosma t a t , when the 

exciting parameters ( , )ma  fall inside the unstable domain, 

the solution is unstable, which we call auto-parametric 

resonance. The typical displacement solutions of the 

primary and secondary systems are respectively shown in 

Figs. 22 and 23. When the exciting parameters ( , )ma  fall 

outside the unstable domain, the solution is stable. The 

displacement solution of beam-2 (the primary system) is 

similar to the solution in Fig. 22, while the displacement 

response of beam-1 (the second system) is zero 

(motionless). This kind of solution is called the semi-trivial 

solution (Tondl et al. (2000)). 

 

 

6. Conclusions 
 

In this paper, the finite element equations of motion 

were established for the framed structures subjected to the 

periodic loads. The numerical methods were developed for 

solving the auto-parametric resonance responses and 

instability boundaries. Some numerical examples were 

presented. An auto-parametric resonance experiment of a 

framed structure was conducted for verifying the theoretical 

predictions. The conclusions of this research are as follows. 

(1) A framed structure may be composed of two sub-

structures, which are linked by a hinged joint. One sub-

structure is the primary system and the other is the 

secondary system. The primary system, which is subjected 

to the periodic external excitation, can give rise to an auto-

parametric resonance of the second system. The auto-
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parametric resonance originates from the geometric-

stiffness matrix effect that is produced by the internal axial 

force. When the element geometric-stiffness matrix is 

considered, the motion equations of framed structures can 

be generally expressed as the non-homogeneous Mathieu-

Hill equations. The time-history responses of the non-

homogeneous Mathieu-Hill equations can be solved by the 

Newmark’s method. 

(2) Both EGE/EGC and FLE can be employed for 

determining the auto-parametric instability boundaries. The 

two methods can give the same instability-boundary results. 

(3) The numerical results show that the changes of 

relative stiffness between the primary and secondary 

systems have an important effect on the auto-parametric 

instability boundaries of the second system. The auto-

parametric resonance of the second system can be induced 

by a normal resonance of the primary system, which is 

called the “auto-parametric internal resonance”. The 

internal axial force of a beam element of the secondary 

system may be amplified during the process of the load-

transmission, consequently, the risk of auto-parametric 

resonance is greatly enlarged. 

(4) The experimental results of auto-parametric 

instability boundaries are accord with the numerical 

solutions. It indicates that the present calculation method is 

valid and effective. 
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