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1. Introduction 
 

Material properties of functionally graded materials 

(FGMs) can be designed to vary in spatial coordinates in 

order to achieve the desired mechanical, thermal, and/or 

electrical functions. It is well recognized that FGMs can 

help reduce the residual stresses and stress concentrations at 

the interfaces between two dissimilar materials and also can 

help improve the strength and toughness of a structure. 

Thus, as one of the most advanced composite materials, 

FGMs have recently received a considerable attention in 

various engineering fields including the mechanical, 

automobile, aerospace, electronics, biomedical, and defense 

industries. 

Various types of FGM structures have been investigated 

and reported in the literature: they include axial bars 

(Maalawi 2011), torsional bars (Horgan 2007), beams 

(Chakraborty and Gopalakrishinan 2003, Kutis and Murin 

2006, Xiang and Yang 2008, Yu and Chu 2009, Huang and 

Li 2010, Shahba et al. 2011, Menaa et al. 2012, Murin et al. 

2013, Nguyen 2013, Pradhan and Chakraverty 2013, 

Mashat et al. 2014, Murin et al. 2016), plates (Parker 2009), 

annular circular plates or disks (Efraim and Eisenberger 

2007, Horgan 1999), and electro-thermo and electro- 
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thermo-structural problems (Murin et al. 2008, Murin et al. 

2011). For most one-dimensional (1-D) FGM structures, the 

material properties have been assumed to vary in the axial 

direction (Kutis and Murin 2006, Huang and Li 2010, 

Maalawi 2011, Shahba et al. 2011), in the thickness (or 

radial) direction (Chakraborty and Gopalakrishinan 2003, 

Horgan 2007, Yu and Chu 2009, Menaa et al. 2012), or in 

both the axial and thickness directions (Xiang and Yang 

2008, Murin et al. 2011, Murin et al. 2013, Murin et al. 

2016). An excellent extensive review of the present state of 

the art in static and dynamic analyses of the FGM beams is 

referred to Murin et al. (2016). In this study, the discussion 

will be limited to the axial bars made of FGMs that deform 

in the axial or longitudinal direction with lateral 

contractions. 

For static and dynamic analysis of FGM structures, 

various analytical and numerical methods have been applied 

including analytical methods (Horgan 1999, Horgan 2007, 

Parker 2009, Menaa 2012, Nguyen 2013), Rayleigh-Ritz 

method (Pradhan and Chakraverty 2013), power series 

expansion methods (Huang and Li 2010, Maalawi 2011), 

differential quadrature methods (Xiang and Yang 2008), 

Mathematica (Murin et al. 2013), dynamic stiffness 

methods (Efraim and Eisenberger 2007), finite element 

methods (FEM) (Kutis and Murin 2006, Murin et al. 2008, 

Yu and Chu 2009, Murin et al. 2011, Shahba et al. 2011, 

Mashat et al. 2014, Murin et al. 2016,), and spectral 

element methods (SEM) (Lee 2009, Chakraborty and 

Gopalakrishinan 2003, Hong et al. 2014, Hong and Lee 

2015). Recently, Murin et al. (2016) developed a beam 

finite element for the FGM beams with a double symmetric 

cross-section and they showed that the beam finite element 

is very accurate and effective because the spatial variation  
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Fig. 1 Geometric and material properties of a three-layered 

FGM bar (Hong and Lee 2015) 

 

 

of material properties can be modelled with only one finite 

element. 

The FEM is one of most powerful computational 

methods that can be applied to complex structural 

engineering problems such as the FGM structures. To 

formulate standard finite element models, simple 

polynomials that are independent of the vibrating frequency 

are normally used as interpolation functions. Thus, as a 

drawback to the FEM, many very fine meshes are required 

to obtain sufficiently accurate FEM solutions, especially in 

the high frequency regime. This significantly increases the 

required number of degrees of freedom (DOFs) and greatly 

increases the computation time and cost. In contrast to the 

standard FEM, the frequency domain spectral element 

method (SEM) is well-recognized as an exact element 

method that provides extremely accurate solutions, even at 

very high frequencies, by using only a minimum number of 

DOFs. This approach significantly reduces the computation 

time and cost. This is true for the SEM because frequency-

dependent interpolation functions derived from exact free 

wave solutions are used to formulate an exact dynamic 

stiffness matrix (often called the spectral element matrix) 

that is used in SEM as the finite element stiffness matrix 

(Lee 2009). Despite the aforementioned advantages of 

SEM, there have been very few applications to FGM 

structures (Chakraborty and Gopalakrishinan 2003, Hong et 

al. 2014, Hong and Lee 2015). 

FGM axial bars are 1-D structures that deform mainly in 

the axial or longitudinal direction with lateral contractions 

and they have great potential for applications in many 

engineering fields. However, to the authors’ best knowledge 

there have been very few studies on the FGM axial bars. 

Maalawi (2011) presented analytical solutions for an FGM 

axial bar whose material properties vary in the axial 

direction. Hong et al. (2014) and Hong and Lee (2015) 

applied the SEM to three-layered FGM axial bars (hereafter 

called an FGM bar) that consist of three layers: the core, the 

inner FGM layer, and the outer layer. The core and outer 

layer are made of metals and the inner FGM layer is made 

of FGM. The material properties of the inner FGM layer 

were assumed to vary in the radial direction satisfying the 

power law (Markworth et al. 1995). 

In Hong et al. (2014), the axial displacement was 

assumed to be uniform over the whole cross-section of an 

FGM bar, while the radial displacement over the whole 

cross-section was assumed to vary linearly in the radial 

 

Fig. 2 Sub-layers in the inner FGM layer of a three-layered 

FGM bar 

 

 

direction. Later, Hong and Lee (2015) modified their 

previous model by relaxing the assumption made regarding 

the radial displacements: they assumed that the radial 

displacements in the core, inner layer, and outer layer can 

vary linearly, but independently, in the radial direction. 

However, the modified model considered in Hong and Lee 

(2015) does not seem fully realistic because the axial and 

radial displacements in the inner FGM layer might not 

necessarily vary linearly in the radial direction due to the 

radial variation of the material properties of the inner FGM 

layer.  

Thus, the contributions of this study are (1) to develop a 

mathematical model for an FGM axial bar by taking into 

account more realistic axial and radial displacements in the 

inner FGM layer; (2) to develop an enhanced spectral 

element model for the FGM axial bar model; and (3) to 

evaluate the performance of the present model compared 

with previous models. 

 

 

2. Governing equations of motion 
 

The geometry of an axisymmetric FGM bar is shown in 

Fig. 1. The axial and radial coordinates are represented by x 

and r, respectively. The FGM bar consists of three layers of 

different materials. The core (0 ≤ r ≤ rC) and the outer layer 

(rI ≤ r ≤ rO) are made of isotropic metals, and the inner 

FGM layer (rC ≤ r ≤ rI) is made of an FGM whose material 

properties vary in the radial direction. In this paper, the 

subscripts C, I, and O are used to denote quantities for the 

core layer, the inner FGM layer, and the outer layer, 

respectively. For example, rC, rI, and rO represent the radii 

of the core, the inner FGM layer, and the outer layer, 

respectively. 

It is assumed that the axial displacements in the core and 

the outer layer are uniform over the cross-section, while the 

radial displacements due to lateral contraction vary linearly 

in the radial direction. However, in contrast to previous 

models described in Hong et al. (2014) and Hong and Lee 

(2015), the axial and radial displacements in the inner FGM 

layer are assumed not to necessarily vary linearly in the 

radial direction due to the variation of the FGM properties 

in the radial direction.  

Accordingly the inner FGM layer is divided into N sub-

layers as shown in Fig. 2. In Fig. 2, UC(x,t) and UO(x,t) are 
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the axial displacements in the core and the outer layer, 

respectively. Similarly ψC(x,t) and ψO(x,t) are the functions 

for the lateral contractions in the core and the outer layer, 

respectively. The axial displacements at the interfaces of 

each layer are denoted by Un(x,t) (n = 1, 2, , N+1) and the 

lateral contractions are denoted by the functions ψn(x,t) (n = 

1, 2, , N). 

The displacement fields in the three layers of the FGM 

bar can be expressed in the following forms
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In Eq. (3), the following definitions are used 
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and where h(r) is the Heaviside step function (Kreyszig 

1972). Note that the displacement fields in Eq. (1) fully 

satisfy the displacement connectivity at all interfaces 

between the three layers and the sub-layers in the inner 

layer. 

The constitutive relations for each elastic layer are given 

by (Hong and Lee 2015) 
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where ζxx, ζrr, and ζθθ are normal stresses in the axial, 

radial, and circumferential directions, respectively, and ηxr is 

the shear stress. Similarly εxx, εrr, and εθθ are normal stresses 

in the axial, radial, and circumferential directions, 

respectively, and γxr is the shear strain. The subscript θ 

denotes the circumferential direction. λi and μi (i=C, I, O) 

are the Lamé constants, which are assumed to be constant in 

the core and the outer layer, but to vary in the inner FGM 

layer as follows 
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The inner FGM layer is made by mixing two materials 

of the core and outer layer. Thus, we assumed that the 

Young’s modulus EI(r) and the mass density ρI(r) of the 

inner FGM layer are determined by blending the material 

properties of the core and outer layer smoothly according to 

the power law (Markworth et al. 1995) 
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where m is the power law exponent. As discussed by Li 

(2008), the continuous variation of material properties, 

given by Eq. (8) for instance, can be achieved by gradually 

changing the volume fraction of the constituent materials by 

using some special manufacturing methods such as high-

speed centrifugal casting, power metallurgy methods, etc. 

The Poisson’s ratios in the core, the inner FGM layer, and 

the outer layer are denoted by νC, νI, and νO, respectively. In 

this study, we assumed that the Poisson’s ratio in the inner 

FGM layer does not vary in the radial direction: this 

assumption can simplify the theoretical formulation 

described in the following. Extension to the case of the 

FGM layer with varying Poisson’s ratio will be made in the 

future work. 

The strains in each layer can be readily obtained from 
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The equations of motion of the axial bar can be derived 

from Hamilton’s principle given by (Meirovitch 1967) 
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where δT and δU denote the variations of the kinetic energy 

T and the potential energy U, respectively, and δW is the 
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virtual work done by external forces. 

By using the displacement fields given by Eq. (1), the 

kinetic energy T stored in an axial bar element of length l 

can be derived as follows 
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where i (i=C, I, O) are the mass densities of each layer and 

the dots (  ) denote derivatives with respect to time t. The 

effective mass matrices Muu and M are defined in 

Appendix A. Similarly the strain energy U can be derived 

as follows 
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where the symbols (  ),x denote the derivatives with respect 

to the axial coordinate x, and the effective stiffness matrices 

Ku’u’, Kuu, Ku’, K’u, K’ ’, and K are defined in 

Appendix A. Finally, the virtual work done by all external 

forces can be derived as follows 

),()(),0()(),()(),0()(),( T
2

T
1

T
2

T
1

0
tlttttltttdxUtxqW

l

O ψTψTuNuN     

),()(),0()(),()(),0()(),( T
2

T
1

T
2

T
1

0
tlttttltttdxUtxqW

l

O ψTψTuNuN   
 

(13) 

where q(x,t) is the distributed axial force acting on the outer 

surface of the axial bar, N1(t) and N2(t) are the externally 

applied axial forces associated with u(x,t) at x=0 and x=l, 

respectively, and T1(t) and T2(t) are the externally applied 

forces associated with ψ(x,t) at x=0 and x=l respectively.  

By substituting Eqs. (11)-(13) into Hamilton’s principle 

given by Eq. (10) and performing some mathematical 

manipulations including integration-by-parts, we can derive 

the equations of motion for a uniform axial bar as follows 
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where qu(x,t)={0 0 0  0 0 q(x,t)}
T 

is an (N+1)-by-one 

vector. 

The natural and geometric boundary conditions 

associated with the preceding equations of motion are given 

by 
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where N(x,t) and T(x,t) are the resultant forces defined by  
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3. Spectral element modeling and analysis 
 
3.1 Formulation of spectral element model 

 
The spectral element of a uniform axial bar can be 

formulated by following the general procedure introduced 

in Lee (2009). In the first step of the spectral element 

formulation, we transform the time domain equations of 

motion into the frequency domain by representing all 

displacement fields and forcing terms in spectral forms by 

using discrete Fourier transform theory (Newland 1993) as 

follows 
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where 1i  is the imaginary unit, ωn are the discrete 

frequencies, and NDFT/2 is the number of spectral 

components up to the Nyquist frequency (Newland 1993). 

The subscripts n denote spectral components of the 

corresponding time-domain quantity and they will be 

omitted hereafter for the sake of brevity. By substituting Eq. 

(19) into Eq. (14), we obtain the frequency-domain 

governing equations 
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Free wave solutions can be obtained from homogeneous 

governing equations which can be readily reduced from Eq. 

(20) by removing external forcing terms (i.e., Q=0) as 

follows 

0 WMKWKKWK )()( 2
0

T
112     (21) 

We can assume a free wave solution in the following 

form 

ikxaex  rW );(                (22) 

By substituting Eq. (22) into Eq. (21), we obtain an 

eigenvalue problem as 

0)]()([ 2
0

T
112

2  rMKKKK ikk    (23) 
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From Eq. (23), we can compute wavenumbers 

(eigenvalues) and wave mode vectors (eigenvectors) 

simultaneously by using the MATLAB
®

 function polyeig 

(MATLAB 1993) as follows 

],)(,)([polyeig)](),([ 2
T
11

2
0 KKKMKkR  i  

(24) 

where 

}{)(
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







N

N

kkkk 







k

rrrrR
       (25) 

where ri is the ith eigenvector corresponding to the ith 

wavenumber ki, and N is the number of sub-layers in the 

inner FGM layer. 

By using the wavenumbers ki and wave mode vectors ri 

(i = 1, 2, 3,, 4N+6), we can write the free wave solution 

of Eq. (21) as 

aREW );();(  xx              (26) 

where a is a (4N+6)-by-one constant vector defined by  

T
)64(321 }{  Naaaa a        (27) 

and E(x;) is a (4N+6)-by-(4N+6) diagonal matrix defined 

by 

)64,,3,2,1(][);(   Njediagonalx ikx E (28) 

We define the spectral components of the nodal degrees 

of freedom (DOFs) (or simply the spectral nodal DOFs) 

vector as  








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

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


)(
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);(
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

W
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W
d

l
          (29) 

By substituting Eq. (26) into Eq. (29), we can write the 

spectral nodal DOFs vector as 

aHd )(                 (30) 

where 











);(

);0(
)(






lRE

RE
H              (31) 

By using Eq. (30), the constant vector a from Eq. (26) is 

removed to obtain the following expression 

dHREW
1)();();(   xx          (32) 

or  

dNW );();(  xx               (33) 

where N(x;ω) is the frequency-dependent dynamic shape 

function matrix defined by 

1)();();(   HREN xx          (34) 

To formulate the spectral element model by using the 

variational approach (Lee 2009), we derive the weak form 

of the original governing equations as follows 
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(35) 

where 

T
2211

T

)}()()()({

)},(),(),0(),0({
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

TNTN

TNTNf



 llc
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By substituting Eq. (33) into Eq. (35), the spectral 

element equation is obtained as 

dc ffdS )(                 (37) 

where S(ω) is the (4N+6)-by-(4N+6) frequency dependent 

symmetric stiffness matrix often called spectral element 

matrix, defined by 

dx
l
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and fd(ω) is the spectral nodal force vector defined by 


l

d dxxx
0

T )();( QNf             (39) 

By substituting Eq. (34) into Eq. (38), the spectral 

element matrix can be rewritten in the following form 
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where the symbol (.*) denotes the “element-wise matrix 

multiplication” defined in MATLAB
®
 (1993). The other 

symbols in Eq. (41) are defined by 
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(42) 

where Q(x;ω) is the spectral component of the distributed 

axial force q(x,t) acting on the outer surface of the axial bar 

and 
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 (43) 

 

3.2 Spectral element analysis 
 

Once the spectral element model represented by Eq. (37) 

has been derived, the spectral element analysis can be  
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Table 1 Comparison of the natural frequencies (Hz) of a 

fixed-free FGM bar (when m=1) obtained by the present 

SEM and by ANSYS 

Mode 

number 

SEM 
ANSYS 

N = 1 N = 20 N = 50 N = 100 N = 150 N = 200 

1 3162.02 3161.66 3161.65 3161.65 3161.65 3161.65 3161.34 

2 9484.80 9483.58 9483.56 9483.56 9483.56 9483.56 9482.51 

3 15803.8 15801.3 15801.3 15801.3 15801.3 15801.3 15799.2 

4 22116.5 22112.0 22112.0 22112.0 22112.0 22112.0 22108.2 

5 28420.4 28413.0 28412.8 28412.8 28412.8 28412.8 28406.7 

10 59712.9 59670.2 59669.2 59669.2 59669.2 59669.2 59629.6 

20 119934 119687 119679 119679 119679 119679 119274 

30 173844 172483 172449 172448 172448 172448 170197 

40 218067 208529 208396 208392 208391 208391 201402 

Note: N=The number of sub-layers in the inner (FGM) 

layer. 

 

 

conducted in a straightforward manner as introduced in Lee 

(2009). 

The structure under consideration can be discretized into 

multiple finite elements. Thus, the spectral element 

equations for each element should be assembled first by 

using the same methodology as used in the standard FEM. 

After imposing relevant boundary conditions, we obtain the 

global dynamic stiffness matrix equation in the following 

form: 

ggg fdS )(               (44)                          

where the subscripts g denote the matrix and vectors for 

assembled global system.  

First, the natural frequencies ωN can be obtained from 

the condition that the determinant of Sg(ω) must vanish at ω 

= ωN. Second, the dynamic responses in the frequency 

domain or the frequency response functions can be readily 

computed from dg = Sg(ω)
-1

fg. Last, the dynamic responses 

in the time domain (or the time histories of displacements 

and slopes) can be efficiently computed from Eq. (19) via 

Eq. (32) by using an inverse fast Fourier transform (FFT) 

algorithm. 

 

 

4. Numerical results and discussion 
 

In our numerical studies, we considered a three-layer 

FGM bar that is uniform in the axial direction and has the 

following geometry: the length l=0.5 m, the radius of the 

outer layer rO=0.01 m, the radius of the inner FGM layer 

rI=0.009 m, and the radius of the core rC=0.001 m. The core 

of the FGM bar is made of alumina (Al2O3) and its material 

properties are EI=390 GPa and ρC=3950 kg/m. The outer 

layer is made of mild steel and its material properties are 

EO=210 GPa and ρO=7800 kg/m
3
 (Chakraborty and 

Gopalakrishinan 2003, Hong et al. 2014, Hong and Lee 

2015). Young’s modulus and the mass density in the inner 

FGM layer are determined by the power law given by Eq. 

(7). We assumed that the left end of the FGM bar (x=0) is 

fixed and the right end of the FGM bar (x=L) is free. 

To validate the high accuracy of the present spectral 

element model (denoted by “SEM”), the natural frequencies 

(in Hertz) and the frequency response functions (FRF) 

obtained by the present SEM were compared with those 

obtained by using the commercial finite element analysis 

package ANSYS (2006). We assumed that the power law 

exponent m is equal to 1, and the core, inner layer, and 

outer layer have the same Poisson’s ratio (νC = νI = νO = 0.3). 

To obtain the FRFs, an axisymmetric circular unit impulse 

was applied at the middle of the inner FGM layer (at r = 

(rC+rI)/2). The dynamic responses of axial displacement 

were computed at the middle of the inner FGM layer. For 

the ANSYS analysis, an axisymmetric 2-D four-node 

structural solid element (called the PLANE182 element) 

was used (see Fig. 3). The total number of finite elements 

used in the ANSYS analysis was increased to more than 

210
7
 until sufficiently converged results were obtained. 

For the SEM results, the number of sub-layers in the inner 

FGM layer (denoted by N) was increased step-by-step to N 

= 120. Table 1 shows that the SEM results approach the 

ANSYS results as the number of sub-layers in the inner 

FGM layer is increased. Figure 4 also shows that the FRFs 

obtained by the present SEM approach the ANSYS results 

as the number of sub-layers in the inner FGM layer is 

increased. For this axial bar subjected to fixed-free 

boundary conditions, the present SEM has nodes only on 

the cross-section of the free end, but no nodes inside the  

 
Fig. 3 The finite element mesh used for the example FGM bar: PLANE182 elements in ANSYS 
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Fig. 4 Effects of the number of sub-layers in the inner FGM 

layer (N) on the frequency response functions (FRFs) of a 

fixed-free FGM bar (when m=1) obtained by the present 

SEM 

 

 

FGM bar. Thus, we suggest that, compared to the ANSYS 

finite element analysis results, the present SEM provides 

very accurate results by using only an extremely small 

number of DOFs. 
In the previous study by Hong and Lee (2015), the radial 

displacements in each layer of an FGM bar were assumed to 

vary linearly in the radial direction. However, this might not 

be true as the radial displacements in the inner FGM layer 

will not vary linearly due to the radial variation of material 

properties. Thus, in the present study, the inner FGM layer 

was divided into N sub-layers to improve the accuracy of 

the three-layer axial bar model. Accordingly, the present 

spectral element model (hereafter called “present SEM”) 

with N=1 corresponds to the spectral element model 

considered in Hong and Lee (2015) (hereafter called 

“previous SEM”) 

To compare the present SEM with the previous SEM, 

the FRFs and natural frequencies obtained by the present 

SEM and the previous SEM (Hong and Lee 2015) are 

compared in Fig. 5 and Table 2, respectively. As expected, 

Fig. 5 and Table 2 show that the FRFs and natural 

frequencies obtained by the present SEM when N=1 are 

identical to those obtained by the previous SEM (Hong and 

Lee 2015). However, as we increase the number of sub-

layers in the inner FGM layer up to about N=200, the 

accuracy of the present SEM is improved so that the SEM 

results approach the ANSYS results, as shown in Fig. 5 and 

Table 2. Thus, for the SEM results used to investigate the 

effects of Poisson’s ratios and the power law exponent m on 

the dynamic characteristics of the example FGM bars, the 

number of sub-layers in the inner FGM layer was chosen as 

N=200. 

Fig. 6 shows the effects of the Poisson’s ratio of the 

inner FGM layer, νI, on the natural frequencies of the  

 

 
Fig. 5 Comparison of the frequency response functions 

(FRFs) of a fixed-free FGM bar (when m=1) obtained by 

the previous SEM (Hong and Lee 2015), the present SEM, 

and ANSYS 

 

Table 2 Comparison of the natural frequencies (Hz) of a 

fixed-free FGM bar (when m = 1) obtained by the previous 

SEM (Hong and Lee 2015) and the present SEM 

Mode 

number 

Previous 

SEM 

Present SEM 

N = 1 N = 20 N = 100 N = 200 

1 3162.02 3162.02 3161.66 3161.65 3161.65 

2 9484.80 9484.80 9483.58 9483.56 9483.56 

3 15803.8 15803.8 15801.3 15801.3 15801.3 

4 22116.5 22116.5 22112.0 22112.0 22112.0 

5 28420.4 28420.4 28412.9 28412.8 28412.8 

10 59712.9 59712.9 59669.5 59669.2 59669.2 

20 119934 119934 119681 119679 119679 

30 173844 173844 172457 172448 172448 

40 218067 218067 208426 208392 208391 

Note: N=The number of sublayers in the inner (FGM) layer. 

 

 

example fixed-free FGM bar for three values of the power 

law exponent (m=0.5, 1, and 2). The Poisson’s ratios of the 

core and the outer layer (νC and νO) were assumed to be 

νC=νO=0.3. Fig. 7 shows the effects of the power law 

exponent n on the natural frequencies of the fixed-free 

FGM bar for three values of νI (νI=0.2, 0.3, and 0.4). From 

Figs. 6 and 7, we note the following: (1) For a fixed value 

of the power law exponent m, the natural frequencies above 

the fiftieth mode become larger as Poisson’s ratio νI 

increases, while the natural frequencies below the fortieth 

mode become smaller; (2) For a fixed value of Poisson’s 

ratio νI, all natural frequencies seem to increase as the 

power law exponent m increases; (3) In general, the natural 

frequency of the example fixed-free FGM bar steadily 

increases as the mode number increases to about 40, but it 

changes very slowly as the mode number increases beyond  
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Fig. 6 Effects of Poisson’s ratio of the inner FGM layer (νI) 

on the natural frequencies of a fixed-free FGM bar for three 

different values of the power law exponent (m) 

 

 

about 40, regardless of the changes of the power law 

exponent m and Poisson’s ratio νI. 

Fig. 8 shows a comparison of the dynamic responses 

obtained by the present SEM, the previous SEM (Hong and 

Lee 2015), and ANSYS (2006) when an excitation axial 

force in the form of a five-peak Morlet-wavelet input signal 

(with a center frequency of 100 kHz) was applied at the 

interface between the core and the inner FGM layer at x=L 

(free end) of the example fixed-free FGM bar. Fig. 8(a) 

shows the dynamic responses U1(L, t), UN/2+1(L, t), and 

UN+1(L, t) obtained at the interface between the core and the 

inner FGM layer, at the middle sub-layer in the inner FGM 

layer, and at the interface between the inner FGM layer and 

the outer layer, respectively, at x=L of the FGM bar. 

Similarly, Fig. 8(b) shows the dynamic responses obtained 

at the same three locations in the radial direction at the 

middle of the FGM bar (x=L/2) shown in Fig. 8(a). 

From Fig. 8, we note the following: (1) The dynamic 

responses obtained by the present SEM are almost identical 

to those obtained by using ANSYS (2006); (2) The dynamic  

 

Fig. 7 Effects of the power law exponent (m) on the natural 

frequencies of a fixed-free FGM bar for three values of 

Poisson’s ratio of the inner FGM layer (νI) 

 

 

responses obtained by the present SEM are quite different 

from those obtained by the previous SEM (Hong and Lee 

2015), especially in the early stage of the dynamic 

responses (from t=0 to 0.05 ms). The discrepancy is 

significant near the excitation point, but becomes less 

significant as the distance from the excitation point 

increases in the radial direction or in the axial direction. 

This phenomenon is described by Saint-Venant’s principle 

(Timoshenko and Goodier 1934). 

Fig. 9 shows a comparison of the wave propagations in 

the example fixed-free FGM bar obtained by the present 

SEM and the previous SEM (Hong and Lee 2015). To 

generate wave propagations in the FGM bar, the same 

excitation axial force as considered for Fig. 9 was applied at 

the interface between the core and the inner FGM layer at 

the free end of the example FGM bar. The wave 

propagations were obtained at three locations in the radial 

directions: U1(x, t) at the interface between the core and the 

inner FGM layer, UN/2+1(x, t) at the middle sub-layer in the 

inner FGM layer, and UN+1(x, t) at the interface between the  

(b) when m=1 

(a) when m=0.5 

(c) when m=2 (c) when νI=0.4 

(b) when νI=0.3 

(a) when νI=0.2 
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(a) at x=L 

 
(b) at x=L/2 

Fig. 8 Comparison of the dynamic responses at (a) the free 

end (x=L) and (b) the middle (x=L/2) of the fixed-free FGM 

bar obtained by the present SEM, the previous SEM (Hong 

and Lee 2015), and ANSYS when an excitation axial force 

in the form of a five-peak Morlet-wavelet input signal is 

applied at the free end 

 

 

inner FGM layer and the outer layer. Fig. 9 also shows that 

the discrepancy between the wave propagations obtained by 

the present SEM and the previous SEM (Hong and Lee 

2015) is most significant near the excitation point, but 

becomes less significant as the distance from the excitation 

point increases in the radial direction or in the axial 

direction due to Saint-Venant’s principle (Timoshenko and 

Goodier 1934). 

 

 

5. Conclusions 
 

We propose an enhanced spectral element model for 

three-layered FGM bars. The FGM bar model proposed in 

the previous work by Hong and Lee (2015) was improved 

by treating axial and radial displacements in the radial 

direction more realistically by representing the inner FGM 

layer with multiple sub-layers. The Young’s modulus and 

mass density of the inner FGM layer were assumed to vary 

in the radial direction according to the power law. The 

spectral element model was then formulated by using the 

variational approach. The accuracy and performance of the 

proposed enhanced spectral element model were evaluated 

by comparison with solutions obtained by the commercial 

finite element package ANSYS. Based on the numerical 

results obtained in this study, the following conclusions are 

made: 

(1) To accurately predict the natural frequencies and 

frequency response functions up to a high frequency, we 

recommend the present SEM, instead of using the 

previous SEM by Hong and Lee (2015). 

(2) To accurately predict the dynamic responses or wave 

 
(a) U1 (x,t) 

 
(b) UN/2+1 (x,t) 

 
(c) U

N+1 
(x,t) 

Fig. 9 Comparison of the wave propagations at three 

locations in the radial direction obtained by the present 

SEM and the previous SEM (Hong and Lee 2015) when an 

excitation axial force that has the form of a five-peak 

Morlet-wavelet input signal is applied at the free end (x=L) 

of the fixed-free FGM bar 

 

 

propagations at or near the excitation point, the inner 

FGM layer must be represented by multiple sub-layers 

as in the present SEM, rather than representing it as a 

single layer as in the previous SEM by Hong and Lee 

(2015). 

(3) The dynamic responses or wave propagations at a 

distance sufficiently far from the excitation point can be 

well predicted by using the previous SEM by Hong and 

Lee (2015), which is justified by Saint-Venant’s 

principle (Timoshenko and Goodier 1934). 
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An approximate spectral element model for the dynamic analysis of an FGM bar in axial vibration 

Appendix: Effective mass and stiffness matrices 
 

(1) Effective mass matrices: 
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and where the following definitions are used 
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(2) Effective stiffness matrices: 
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