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1. Introduction 
 

The study of wave propagation over a continuous media 

is of practical importance in the field of engineering, 

medicine and in bio-engineering. Application of the 

poroelastic materials in medical fields such as orthopaedics, 

dental and cardiovascular is well known. In orthopaedics, 

wave propagation over bone is used in monitoring the rate 

of fracture healing. There are two types of osseous tissue 

such as cancellous or trabecular and compact or cortical 

bone, which are of different materials, with respect to their 

mechanical behavior. In macroscopic terms the percentage 

of porosity in the cortical bone is 3-5%, whereas in the 

trabecular or cancellous the percentage of porosity is up to 

90% (Natal and Meroi 1986). The extensive literature on 

the topic is now available and we can only mention a few 

recent interesting investigations in (Ahmed and Abd-Alla 

2002, El-Naggar et al. 2001, Abd-Alla et al. 2011, Abd-Alla 

and Abo-Dahab 2013, Abo-Dahab et al. 2014, Abd-Alla and 

Yahia 2013). Cardoso and Cowin (2012) investigated the 

role of structural anisotropy of biological tissues in 

poroelastic wave propagation. Wen (2010) studied the 

solution of coupled poroelastic/acoustic/elastic wave 

propagation problems using automatic hp-adaptivity. Morin 

and  Hellmich  (2014)  presented  a  multiscale 

poromicromechanical approach to wave propagation and 

attenuation in bone. Potsika et al. (2014) in his analysis has 

studied application of an effective medium theory for 

modelling ultrasound wave propagation in healing long 

bones. Papathanasopoulou et al. (2002) investigated a 
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poroelastic bone model for internal remodeling. Nguyen et 

al. (2010) considered poroelastic behaviour of cortical bone 

under harmonic axial loading: A finite element study at the 

osteonal scale. Misra and Samanta (1984) investigated the 

wave propagation in tubular bones. Qin et al. (2005) studied 

the thermoelectroelastic solutions for surface bone 

remodeling under axial and transverse loads. Mathieu et al. 

(2014) presented the biomechanical determinants of the 

stability of dental implants: Influence of the bone-implant 

interface properties. Brynk et al. (2011) in his analysis has 

studied the experimental poromechanics of trabecular bone 

strength: Role of Terzaghi’s effective stress and of tissue 

level stress fluctuations. Analytical methods to determine 

the effective mesoscopic and macroscopic elastic properties 

of cortical bone was studied by Parnell et al. (2012). Shah 

(2011) investigated the flexural wave propagation in coated 

poroelastic cylinders with reference to fretting fatigue. 

Gilbert et al. (2012) studied the quantitative ultrasound 

model of the bone with blood as the interstitial fluid. Cui et 

al. (1997) discussed the poroelastic solutions of an inclined 

borehole. Cowin (1999) studied the bone poroelasticity. 

Mathieu et al. (2012) studied the influence of Healing Time 

on. The ultrasonic response of the bone-Implant Interface. 

Misra (1994) investigated the thermo-viscoelastic waves in 

an infinite aeolo-tropic body with a cylindrical cavity a 

study under the review of generalized theory of 

thermoelasticity. Shah (2008) preseted the axially 

symmetric vibrations of fluid-filled poroelastic circular 

cylindrical shells. The extensive literature on the topic is 

now available and we can only mention a few recent 

interesting investigations in refs. (Tounsi 2013, Bouderba et 

al. 2013, Belabed et al. 2014, Zidi et al. 2014, Meziane et 

al. 2014, Fi et al. 2014, Hebali et al. 2013, 2014, Fekrar et 

al. 2014, Akbarov et al. 2015, Marin et al. 2015, Abo-

Dahab et al. 2016, Abd-Alla et al. 2015, Kumar et al. 2016, 
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Said and Othman 2016, Bakora and Tounsi 2015). 

In the present analysis, the frequency equation for the 

system considered is obtained when the lateral surface is 

stress free. The frequencies are calculated for poroelastic 

bone is obtained for various values of magnetic field are 

given in graphs. The propagation of flexural waves in an 

infinite cylindrical bone element which is porous in nature 

is being considered and numerical results are carried out. 

Our results are presented for various parameters of elastic 

bone. The results indicate that the effect of magnetic field is 

very pronounced. 

 

 

2. Formulation of the problem 
 

Modeling on the concept of the Biot (1995, 1996) the 

constitutive equations for a transversely isotropic case with 
z  as axis of the symmetry are taken in polar coordinates as 

𝜏𝑟𝑟 = 𝑐11
𝜕𝑢𝑟

𝜕𝑟
+ 𝑐12𝑟

−1 (𝑢𝑟 +
𝜕𝑢𝜃

𝜕𝜃
) + 𝑐13

𝜕𝑢𝑧

𝜕𝑧
, 

+𝑀 [
𝜕𝑣𝑟

𝜕𝑟
+ 𝑟−1 (𝑣𝑟 +

𝜕𝑣𝜃

𝜕𝜃
) +

𝜕𝑣𝑧

𝜕𝑧
] 

𝜏𝜃𝜃 = 𝑐12
𝜕𝑢𝑟

𝜕𝑟
+ 𝑐11𝑟

−1 (𝑢𝑟 +
𝜕𝑢𝜃

𝜕𝜃
) + 𝑐13

𝜕𝑢𝑧

𝜕𝑧
, 

+𝑀 [
𝜕𝑣𝑟

𝜕𝑟
+ 𝑟−1 (𝑣𝑟 +

𝜕𝑣𝜃

𝜕𝜃
) +

𝜕𝑣𝑧

𝜕𝑧
] 

𝜏𝑧𝑧 = 𝑐13 [
𝜕𝑢𝑟

𝜕𝑟
+ 𝑟−1 (𝑢𝑟 +

𝜕𝑢𝜃

𝜕𝜃
)] + 𝑐33

𝜕𝑢𝑧

𝜕𝑧
 

+𝑄 *
𝜕𝑣𝑟

𝜕𝑟
+ 𝑟−1 (𝑣𝑟 +

𝜕𝑣𝜃

𝜕𝜃
) +

𝜕𝑣𝑧

𝜕𝑧
+, 

𝜏𝑟𝑧 = 𝑐44 [
𝜕𝑢𝑧

𝜕𝑟
+

𝜕𝑢𝑟

𝜕𝑧
], 

 𝜏𝑟𝜃 = 𝑐66 [
𝜕𝑢𝜃

𝜕𝑟
+ 𝑟−1 (

𝜕𝑢𝑟

𝜕𝜃
− 𝑢𝜃)]  

𝜏𝜃𝑧 = 𝑐44 *
𝜕𝑢𝜃

𝜕𝑧
+ 𝑟−1 𝜕𝑢𝑧

𝜕𝜃
+            (1) 

𝜏 = 𝑀 [
𝜕𝑢𝑟

𝜕𝑟
+ 𝑟−1 (𝑢𝑟 +

𝜕𝑢𝜃

𝜕𝜃
)] + 𝑄

𝜕𝑣𝑧

𝜕𝑧
 

+𝑅 *
𝜕𝑣𝑟

𝜕𝑟
+ 𝑟−1 (𝑣𝑟 +

𝜕𝑣𝜃

𝜕𝜃
) +

𝜕𝑣𝑧

𝜕𝑧
+,         (2) 


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(2b) 

where τij
 
and τ are the average stresses of solid and fluid 

respectively and σrr, σzz are the magnetic stresses, with 

elastic constant cij, M, Q, R, c66=(c11−c12)/2
 
and H is the 

magnetic field 

The equation of the flow is  

 𝑟𝑟
−1 2𝜏 +  𝑧𝑧

−1𝜏𝑧𝑧 =
𝜕  −  

𝜕 
,            (3) 

)(
2

1
,, ijjiij uue 








              (4) 

where  𝑟𝑟 =   2  𝑟𝑟⁄ ,  𝑧𝑧 =   2  𝑧𝑧⁄ ,  2  is Laplacian 

operator in polar coordinates,   is the viscosity, f is the 

porosity,  𝑟𝑟 ,  𝑧𝑧 are the permeability of the medium. The 

average displacements of solid and velocity of fluid phases 

are taken as ui 
and vi respectively.  

The strains are expressed as  

and dilation of the phases as 
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The equation of motion with magnetic field are 
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(6) 

where   is the density of the bone, μe is the magnetic 

permability coefficient and t is the time.  

Substituting from Eq. (1) into Eq. (6), we obtain 

 𝑐11 +  𝑒𝐻
2 *

𝜕2𝑢𝑟

𝜕𝑟2
+ 𝑟−1

𝜕𝑢𝑟

𝜕𝑟
+

 

𝑟2

𝜕2𝑢𝑟

𝜕𝑟𝜕𝜃
+ + 𝑟−2

 

2
 𝑐11 

−𝑐12 
𝜕2𝑢𝑟

𝜕𝜃2
+ 𝑟−1 (

 

2
 𝑐12 − 𝑐11 )

𝜕2𝑢𝜃

𝜕𝜃𝜕𝑟
 

−𝑟−2 (
3

2
 𝑐11 − 𝑐12 )

𝜕𝑢𝜃

𝜕𝜃
− 𝑐11

 

𝑟2
𝑢𝑟 

+ 𝑐13 + 𝑐44 +  𝑒𝐻
2 

𝜕2𝑢𝑧

𝜕𝑟𝜕𝑧
 +  𝑒𝐻

2
 

𝑟

𝜕𝑢𝑧

𝜕𝑧
  

+𝑀 *
𝜕2𝑣𝑟

𝜕𝑟2
+ 𝑟−1

𝜕𝑣𝑟

𝜕𝑟
− 𝑟−2𝑣𝑟 − 𝑟−2

𝜕2𝑣𝜃

𝜕𝜃2
 

+
𝜕2𝑣𝑧

𝜕𝑟𝜕𝑧
+ =  

𝜕2𝑢𝑟

𝜕 2
, 

𝑟−1 (
 

2
 𝑐11 + 𝑐12 )

𝜕2𝑢𝑟

𝜕𝜃𝜕𝑟
+ 𝑟−2 (

3

2
 𝑐11 − 𝑐12 )

𝜕𝑢𝑟

𝜕𝜃
 

+
 

2
 𝑐11 − 𝑐12 *

𝜕2𝑢𝜃

𝜕𝑟2
+ 𝑟−1

𝜕𝑢𝜃

𝜕𝑟
− 𝑟−2𝑢𝜃+ + 𝑟−2𝑐11

𝜕2𝑢𝜃

𝜕𝜃2
 

+
44

c
𝜕2𝑢𝜃

𝜕𝑧2
+ 𝑟−1 𝑐13 + 𝑐44 

𝜕2𝑢𝑧

𝜕𝜃𝜕𝑧
 

+𝑟−1𝑀 *
𝜕2𝑣𝑟

𝜕𝑟𝜕𝜃
+ 𝑟−1

𝜕𝑣𝑟

𝜕𝜃
+ 𝑟−1

𝜕2𝑣𝜃

𝜕𝜃2
+

𝜕2𝑣𝑧

𝜕𝑟𝜕𝑧
+ =  

𝜕2𝑢𝜃

𝜕 2
, 

540
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 𝑐13 + 𝑐44 +  𝑒𝐻
2  

𝜕2𝑢𝑟

𝜕𝑟𝜕𝑧
+ 𝑟−1 𝑐13 + 𝑐44 

𝜕𝑢𝑟

𝜕𝑧
 

+𝑟−1 𝑐13 + 𝑐44 
𝜕2𝑢𝜃

𝜕𝜃𝜕𝑧
 + + 𝑐44 +  𝑒𝐻

2  

*
𝜕2𝑢𝑧

𝜕𝑟2
+ 𝑟−1

𝜕𝑢𝑧

𝜕𝑟
− 𝑟−2

𝜕2𝑢𝑧

𝜕𝜃2
+ +  𝑐44 +  𝑒𝐻

2 
𝜕2𝑢𝑧

𝜕𝑧2
 

+𝑄 *
𝜕 𝑣𝑟

𝜕𝑟𝜕𝑧
+ 𝑟−1 𝜕𝑣𝑟

𝜕𝑧
+ 𝑟−1 𝜕 𝑣𝜃

𝜕𝜃𝜕𝑧
+

𝜕 𝑣𝑧

𝜕𝑧 + =  
𝜕 𝑢𝑧

𝜕  
     (7)  

 

 

3. Solution of the problem 
 

We seek the solution in the form  

𝑢𝑟 𝑟, 𝜃, 𝑧,   = [
𝜕 

𝜕𝑟
+

 

𝑟

𝜕 

𝜕𝜃
]     𝑧−   , 

𝑣𝑟 𝑟, 𝜃, 𝑧,   = −
𝜕 

𝜕𝑟
    𝑧−   , 

𝑢𝜃 𝑟, 𝜃, 𝑧,   = [
 

𝑟

𝜕 

𝜕𝜃
−

𝜕 

𝜕𝑟
]     𝑧−   , 

  𝑣𝜃 𝑟, 𝜃, 𝑧,   = −
 

𝑟

𝜕 

𝜕𝜃
    𝑧−   , 

𝑢𝑧 𝑟, 𝜃, 𝑧,   = [
 

 
w ]     𝑧−   , 

 𝑣𝑧 𝑟, 𝜃, 𝑧,   = −       𝑧−   ,          (8) 

where, ur, uθ, uz, vr, vθ and vz are mechanical displacements 

and velocities, ω is the angular frequency, k is the wave 

number and thickness of the cylinder h=b−a where   is the 

inner radius, b is the outer radius and  ,   , 𝑤,   are 

functions of r and θ.  

Substituting from Eq. (8) into Eq. (7), the following 

equations are obtained 

  𝑐11+ 𝑒𝐻
2  2 +   2 −  2 𝑐44 −  𝑒𝐻

2    

− 𝑐13 + 𝑐44 +  𝑒𝐻
2 (

  

 
) − 𝑀  2 −  2  =   

  𝑐44+ 𝑒𝐻
2  2 +   2 −  2𝑐33 (

 

 
) 

+ 𝑐13 + 𝑐44 +  𝑒𝐻
2   2 −  𝑄  2 −  2  =  , 

{𝑀 [
 4

 rr
−

 2 2

 𝑧𝑧

] +    2}   

+{(
𝑄

 
) [

−  2

 rr
+

 3

 𝑧𝑧

] −
   

 
}   

+{𝑅 [
− 2  2 −  2 

 rr
+

 2  2 −  2 

 𝑧𝑧

]     2 −  2 }  =   

(
 

2
 𝑐11 +  𝑒𝐻

2 − 𝑐12  
2 +   2 −  2 𝑐44 −  𝑒𝐻

2 ) 

  =                       (9) 

 2  2 −    2 +     −   (𝑄′́  2 +  𝑄′  2 −   )  

+(−𝑅′́  2 +  𝑅′́   2 +   ) =  ,         (10) 

 𝑐66 
2 +  𝑐  2 −   2  =  ,           (11) 

where 

 =   2 −  2    =
  2 𝑟𝑟

𝑀
,𝑄′́ =

𝑄

𝑀
 ,  

𝑅′ =
𝑅

𝑀
, 𝑀̅ =

𝑀

𝑐44+ 𝑒𝐻
2
, 

𝑄̅ =
𝑄

𝑐44+ 𝑒𝐻
2
, 𝑐2 =

  2

𝑐44+ 𝑒𝐻
2
, 

 =
 𝑟𝑟

 𝑧𝑧

, 𝑐 ̅ =
𝑐  

𝑐44
   ,  =  ,2,3 , 

By defining the dimensionless coordinate 𝑟 =
𝑟

 
  and 

  =   , the above equations are written in dimensionless 

parameter r  and    as 

  𝑐11+ 𝑒𝐻
2  2 +  𝑐  2 −   2   

− 𝑐13 +        − 𝑀̅ =  , 
  2 +  𝑐  2 −   2𝑐33  +  𝑐13 +      2 −   𝑄̅ =  , 

 2=
𝜕 

𝜕𝑟 +
1

𝑟

𝜕

𝜕𝑟
+

1

𝑟 

𝜕 

𝜕𝑟            (12) 

The reason for   begin defined as above and not being 

solved for the variable   is that the flow of fluid through 

the boundaries of bone does not take place during the study 

of the propagation of waves. However   can be calculated 

if the flow on the boundaries are prescribed. Writing Eq. 

(10) in the determinant form 

|

  𝑐11+ 𝑒𝐻
2   2 +   − −𝑀̅

   2   2 +   −𝑄̅  
 1  2  3

|   ,  ,   =  , 

 (13) 

Where 

 1 =  2  2 −    2 +    ,  

 2 = −   𝑄′ 2 +  𝑄′  2 −    , 

 3 =  −𝑅′ 2 +  𝑅′  2 +    ,  =  𝑐  2 −   2,  

 ̅ =   + 𝑐1̅3          =  𝑐  2 −   2𝑐3̅3  

Evaluating the determinant form, the following 

equations are obtained 

  6 +   4 +   2 +     ,  ,   =  ,      (14) 

where 

 = 

 𝑅′  2 𝑐1̅1+ 𝑒𝐻
2 +    𝑐1̅1+ 𝑒𝐻

2 + 𝑐𝑅′ 𝑐1̅1+ 𝑒𝐻
2 ̀   

−𝑄̅𝑄′  2 𝑐1̅1+ 𝑒𝐻
2  𝑅′ −  2𝑅′ +  𝑄′  + 𝑀̅  2 

−𝑄̅   +  𝑀̅ + 𝑀̅    −𝑅′ 𝑐1̅1+ 𝑒𝐻
2 + 𝑀̅ , 

 = 

  𝑅′  2 𝑐1̅1+ 𝑒𝐻
2 +     𝑐1̅1+ 𝑒𝐻

2  
+𝑄′  4𝑄̅ 𝑐1̅1+ 𝑒𝐻

2 −   𝑄̅  2 𝑐1̅1+ 𝑒𝐻
2  

+ 𝑅′  2 +    +  𝑅′ −  𝑄′𝑄̅  2 +     3 

−    +    2 −  𝑄̅  3 +      𝑀̅ +    𝑀̅ − 𝑀̅   2  

  −𝑅̀′ 𝑐1̅1+ 𝑒𝐻
2 ́ + 𝑀̅  

 =
   𝑅′  2 +    + 𝑄̅𝑄′  4 −   𝑄̅  2 

−𝑅′ 𝑐1̅1+ 𝑒𝐻
2 + 𝑀̅

  

The solution of Eq. (14) can be written as  

 = ∑[       𝑥 +        𝑥 ]      𝜃 ,

3

  1

 

 = ∑  [       𝑥 +        𝑥 ]      𝜃 ,

3

  1
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  = ∑   [       𝑥 +        𝑥 ]      𝜃 ,
3
  1    (15) 

where   
2 are the non-zero roots of the equation and Jn( ), 

Yn( ) are Bessel’s functions of first and second kind of order 

n respectively 

 6 −   4 +   2 − 𝐻 =  , 
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Where 

3

1

323

3

)41827433

2927(1

TPGTPTG

PGPTF




 

and    and    are given by  

 (  + 𝑐1̅3     + 𝑀̅  =  𝑐1̅1+ 𝑒𝐻
2   

2 −  𝑐  2 −   2), 

 −  
2 +  𝑐  2 −   2𝑐3̅3   − 𝑄̅      

 =   + 𝑐1̅3     
2       (17) 

Solving Eq. (11) we have 

 = [ 4    4𝑥 +  4    4𝑥 ]      𝜃 ,      (18) 
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Fig. 1 Variations of the roots |αj| (j=1,2,3,4) with respect to the thickness h with the variation 
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where  

 4
2 =

2  𝑐  2 −   2 

 𝑐1̅1 − 𝑐1̅2 + 𝐻2 
  

 
 
4. Boundary conditions and the frequency equation 
 

For the vibration, the mechanical boundary conditions 

are 

 

 

𝜏𝑟𝑟 +  𝑟𝑟 = 𝜏𝑟𝑧 = 𝜏𝑟𝜃 = 𝜏 =      𝑟 =  ̅, 

𝜏𝑟𝑟+ 𝑟𝑟 = 𝜏𝑟𝑧 = 𝜏𝑟𝜃 = 𝜏 =      𝑟 =  ̅,     (19) 

where  ̅ =
 

 
,  ̅ =

 

 
 

Using Eqs. (8), (15), (18) in (19), we obtain frequency 

equation in the form 

|   | =     ,  =  ,2,3,  ,  ,          (20) 

where, the coefficients of     are take the form in  
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Fig. 2 Variations of |dj| (j=1,2,3,4) with respect to the thickness h with the variation of ρ, ω and H 
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Appendix A in the paper end. 

Eq. (20) is a transcendental equation of the frequency 

and wave number. The roots of Eq. (20) provide the 

dispersion curves of the guided modes. i.e., the wave 

number as a function of frequency 

 

 

5. Numerical results and discussion 

 

The numerical results for the frequency equation are 

computed for the bone. Since the frequency equation is 

transcendental in nature, there are an infinite number of 

roots for the frequency equation. The results are evaluated  

 

 

in the 410    and 40  ch  with the ratio b/a=3.0. 

The values of the elastic constant of the bone are taken from 

Ahmed and Abd-Alla (2002) and the poroelastic constant is 

evaluated from the expression given by Davis Sr (1970), i.e. 

))/(/(

)),/(/())(1(

22

2












fR

fQ
 

where f
 

is the porosity and γ, δ, χ are given by Young’s 

modulus and the Poisson ratio. The expression for γ, δ, χ are 

given by χ=3(1−2v)/E, δ=0.6χ
 
and γ=f(c−δ) where c is taken 

to be zero for incompressibility of the fluid. 
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The porosity of the human bone in the age group 35-40 

years is taken to be 0.24 (Ghista 1979). In oder to evaluate 

one more poroelastic constant it is assumed that 

M/Q c12/c13 as the value M is not provided. Since the fluid 

in general is isotropic, it is taken that brr=bzz. The density of 

the fluid in the porospace, permeability of the medium and 

mass density of the bone are taken from Ahmed and Abd-

Alla (2002). 

The magnitude of the frequency equation |aij|, wave 

velocity Re(|aij|) and attenuation coefficient Im(|aij|), we 

now numerical results by using bi-section method for 

different density ρ, the angular velocity ω and magnetic 

field H. The numerical work has been carried out with the 

help of computer programming using the software Matlab. 

Fig. 1 shows the coefficients of α1, α2, α3 and α4 for 

poroelastic bone with respect to the thickness h for different 

values of density ρ, the angular velocity ω and magnetic 

field H, which it increases as the thickness increases, while 

it increases with increasing of the density, frequency and 

magnetic field, except when effect of the density, as well, 

 

 

the coefficient of α3 
increases and decreases as the density 

increases. 

Fig. 2 shows the coefficients of |d1|, |d2|, |d3|
 
and |d4| for 

poroelastic bone with respect to the thickness h for different 

values of density ρ, the angular velocity ω and magnetic 

field H, which it increases with increasing of thickness, 

while it increases with increasing of density, as well there is 

no effect of density, frequency and magnetic field on 

coefficients |d1|, |d2|, |d3|, It is obvious that the coefficient 

|d4| decreases as the frequency and magnetic field increase 

while it increases as the density increase, which it has 

oscillatory behavior in the whole range of the h-axis for 

different values of the density, frequency and magnetic 

field. 

Fig. 3 shows the variations of the coefficients for 

poroelastic bone of e1, e2, e3 and e4 with respect to the 

thickness h for different values of density ρ, the angular 

velocity ω and magnetic field H, which it increases with 

increasing of the thickness, while it increases as the density, 

frequency and magnetic field increase, as well |e3| increases  
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Table 1 Summarizes the approximate geometry of the femur 

and the material constants which are used in the 

computations Ahmed and Abd-Alla (2002)  

c11 c12 c13 c33 c44 a b 

2.12 0.95 1.02 3.76 0.75 0.8 1.4 

 

 

and decreases when effect of density, while |e4| has 

oscillatory behavior in the whole range of the h-axis for 

different values of frequency and magnetic field.  

Fig. 4 show the variations of the magnitude of the 

magnitude of the frequency equation |aij|, wave velocity 

Re(|aij|)and attenuation coefficient Im(|aij|) with respect to 

the thickness h for different values of density ρ, frequency 

  and magnetic field H, which it coincides on the interval 

[0,2], while it has oscillatory behavior for h>2, It is notice 

that the magnitude of the frequency equation, wave velocity 

and attenuation decrease with increasing of density and 

frequency for 2h , while it increases as the magnetic 

field increases. 

 

 

6. Conclusions 
 

In this paper, the wave propagation of poroelastic bone 

with circular cylinder subjected to traction free surfaces 

isconsidered. We adopted the analysis of [3], and the 

solution of the problem was expressed in terms of a Bessel 

function of the first and second kind, respectively.  

The resulting frequency equation has been solved 

numerically. The contribution of the fluid term to wave 

propagation is a well-established possible mechanism of 

wave propagation connected to many biological phenomena 

observed in bone. Although the prediction of the model 

cannot be trusted quantitatively at this stage, its qualitative 

behavior complies with the predictions of other theoretical 

and experimental models referred to in the literature. 

Acalibration of themodel and its verification with 

experimental data is in progress. Important phenomena are 

observed in all these computations as follows: 

(i) The frequency equation of axial symmetric vibrations 

is independent of the nature of the surface, magnetic field, 

and the presence of fluid in the poroelastic cylindrical. 

(ii) By comparing Figs. 1-4, it was found that the 

frequency equation, phase velocity, and attenuation 

coefficient have the same behaviour in both media; but, 

with the passage of magnetic field, frequency, density and 

thickness, numerical values of frequency in the poroelastic 

cylinder are large in comparison due to the influences of 

magnetic field. 

(iii) Special cases are considered as motion independent 

of θ, motion independent on z and Motion independent of θ 

and z in poroelastic medium, as well as in the isotropic case 

for very large wave numbers and dispersion curves for 

longitudinal mode. 

(iv) The results presented in this paper will be very 

helpful for researchers concerning with poroelastic 

materials, designers of new materials, as well as for those 

working on the development of a theory of hyperbolic 

propagation. Study of the phenomenon of magnetic field are 

also used to improve the medicial fields. 
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The remaining four can be obtained from the above 

equations by replacing  ̅ by  ̅ 
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