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1. Introduction 
 

A thin plate is a structural member having the middle 

surface in the form of a plane and whose thickness is 

sufficiently small compared with its other two dimensions. 

Plate theories take advantage of this disparity in length 

scale to reduce the full three-dimensional elasticity problem 

to a two-dimensional problem such that the resulting theory 

can be used to calculate the deformations and stresses in a 

plate subjected to loads (Ventsel and Krauthammer 2001). 

The load-carrying action of plates is similar, to certain 

extent, to that of beams or cables; thus, plates can be 

approximated by the gridwork of an infinite number of 

beams or by the network of an infinite number of cables, 

depending on the flexural rigidity of the structures. Plates 

have numerous applications and the increasing use of thin 

plates structures in many branches of technology such as 

civil, mechanical, aeronautical, marine, and chemical has 

prompted intensive research in the fields of engineering, 

physics, and applied mathematics (Fadodun 2014). In the 

context of classical elasticity, Kirchhoff’s plate model 

governs the deflection of an isotropic linear elastic thin 

plate which has been the basis for analysis of thin plate 

structures in various areas of engineering (Lychev et al. 

2011, An et al. 2015, Imrak and Fetvaci, 2009, Wu et al. 

2007, Zhong et al. 2013, Imrak and Gerdemeli, 2007, Lie et 

al. 2009, Batista, 2010, Zhang et al. 2014). However, the 

hypotheses on which Kirchhoff’s model relies limit its 

range of applicability. Numerous researchers have 

attempted to refine Kirchhoff’s theory and such attempts 

continue to this day. Reissner and Mindlin made the most 

important advance in this direction (Ventsel and 

Krauthammer 2001). In the present work, we consider the 

deflection of an isotropic thin plate in finite deformation 

with a view to refine the Kirchhoff’s plate model. The plate 

under consideration is assumed to be made of John’s semi- 
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linear hyperelastic material (Akinola 2001). The obtained 

bending model which governs the deflection of non-

classical plate under consideration generalizes the famous 

Kirchhoff’s plate equation. This plate exhibits in-plate 

harmonic forces whereas the classical model fails to 

apprehend this phenomenon. Exact solution for deflection 

of the plate under sinusoidal load is obtained. This paper is 

organized as follow: section two presents the three-

dimensional formulation; section three details the reduction 

to an equivalent two-dimensional plate equation; section 

four highlights the moments and stresses within the plates; 

section five gives the exact solution for deflection of the 

plate under sinusoidal load while section six concludes the 

study. 

 

 

2. Three-dimensional governing equation 
 

Let Ω be a subset of 
3  occupied by an isotropic 

hyperelastic thin plate. Further, assume the deformation  

function 
m 


, m=1,2,3 of Ω from reference configuration 

Ω0 onto current configuration Ω by the action of load g


 

is such that 
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where w=w(x1,x2) is the deflection (or transverse 

displacement) of the plate, (x1,x2,x3) is the material 

coordinates in the reference configuration Ω0, and c . 

The energy function W for the hyperelastic plate in 

consideration is (Akinola 2011) 
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where DOU
~~




 is the gradient of deformation, DO
~

 is 

the rotation tensor associated with the deformation 


 , 

U
~

 is the left stretch symmetric second rank tensor such 
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that TU 


2~
, T


  is the transpose of 


 , E

~
 

is the unit second rank tensor, and )
~

(
~~

)
~

(1 AtrAEAS   is 

the trace of any second rank tensor A
~

. 

Let the geometry of deformation be the gradient of  

deformation 


 , we take the Frechet derivative of the 

energy function Eq. (2) with respect to the geometry of 

deformation 


  and obtain the first Piola-Kirchhoff 

stress tensor P
~

 to which it is energy conjugate 

.
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P              (3)  

Substituting Eq. (2) into Eq. (3) gives the constitutive 

relation 
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Using Eq. (4), the three-dimensional state equation for 

the problem under consideration is 
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where dΣ is the element of the boundary in the current  

configuration Ω on which the force g


 acts, dΣ0 is the  

element of the boundary in the reference configuration Ω0,  

f


 is the body force, and N


, n


 are the orientation  

outward normal unit vectors on Σ, Σ0 respectively.     

 
 
3. An equivalent two-dimensional plate equation 

 

By definition, the gradient of deformation is 
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Substituting Eq. (1) into Eq. (6) yields 
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Employing the polar decomposition DOU
~~




 and 

the relation TU 


2~
, where · is the usual scalar 

product give 
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Substituting Eqs. (7)-(8) into Eq. (4) and invoking the 

hypothesis of zero stress along the transverse axis of the 

plate, the components Pmn, m,n=1.2.3 of first Piola-

Kirchhoff’s tensor P
~

 are 
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In the absence of the body force ( 0
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Substituting the stress components Pmn in Eqs. (9)-(11) 

into Eqs. (12)-(14) gives  

0),(),( 212

21

3

213

1

3

3

* 
















xxw

xx
xxw

x
xD ,   (15)  

0),(),( 213

2

3

21

2

2

1

3

3

* 
















xxw

x
xxw

xx
xD ,   (16) 

gxxw
x

xxw
x




















),(),(2 212

2

2

212

1

2

 ,    (17)   

438



 

Bending of an isotropic non-classical thin rectangular plate 

where 
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Multiplying Eq. (15) by x3; integrate the resulting 

equation with respect to x3 in the limit 
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In the same fashion, Eq. (16) leads to 
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The integration of Eq. (17) with respect to x3 in the limit 
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the plate. 

Addition of Eqs. (18)-(20) gives  
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Introducing the standard relation  
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in the above equation yields 
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where E and υ are the Young’s modulus and Poisson’s ratio 

of the material of the plate respectively. 

Remark 1. Eq. (22) is the two-dimensional model 

which governs the bending of an isotropic non-classical 

plate under consideration. Clearly, this equation generalizes 

the famous Kirchhoff’s plate equation. 

Remark 2. The existence of harmonic term  

),(
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 on the left hand side of Eq. (22) shows 

that the non-classical plate under consideration exhibits 

harmonic forces within its planes. Meanwhile, the classical 

plate model fails to apprehend this phenomenon. 

4. Moments and stresses within the plate 
 

The generalized stresses within the plate are the bending 

moments M11, M22, twisting M12, M21, and the stresses 

Zα3,Z3α, α=1,2. 

These quantities are defined as 
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5. Exact solution for deflection of thin plate under 
sinusoidal loads 
 

Consider an hyperelastic rectangular thin plate of sides a 
and b, simply supported on all edges and subjected to a 

sinusoidal load    
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The origin of the plate is assumed to be at any of its 

corner. Then, one solves the boundary value problem 
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The solution of Eq. (30) in view of the boundary 

conditions Eqs. (31)-(32) is 
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Using Eqs. (25)-(29), the corresponding moments and 

stresses are 
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Meanwhile the governing differential equation of 

Kirchhoff’s plate on an elastic foundation in classical 

elasticity is given by Winkler’s model 

   pxxkwxxwD  ),(),( 2121

4
,         (39) 

where k is the foundation modulus. 

The solution of Eq. (39) subject to the boundary 

conditions Eqs. (31)-(32) coincides completely with 

solution Eq. (33) when one sets the foundation modulus 
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6. Conclusions 
 

The obtained bending model for non-classical plate 

considered generalizes the famous Kirchhoff’s plate 

equation. This plate exhibits in-plane harmonic forces. 

Exact solution for deflection of the plate under sinusoidal 

loads is obtained. Finally, it is shown that the non-classical 

plate in this study can be used as a replacement for 

Kirchhoff’s plate on an elastic foundation when the 

foundation modulus k is chosen correctly. 
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