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1. Introduction 

 

The study of elastic materials with microstructure was 

initiated by French Cosserat brothers 1909 and since then it 

has been investigated intensively in the literature. Eringen 

(1966) discussed the concept of micropolar continua which 

was similar to the Cosserat continua. He introduced a 

conservation law for the microinertia tensor as a particular 

case of micromorphic continua. Some fundamental results 

on micropolar bodies can be seen in Refs. Chirita and Ghiba 

(2012), Dyszlewicz (2004), Iesan (2004), Marin (1994), 

Marin (1995). The classical elasticity ignores that the 

response of the material to external stimuli heavily depends 

on the motions of its inner structure. So, it is not possible to 

consider this effect by ascribing only translational degrees 

of freedom to material points of the body. We recall that in 

the micropolar continuum theory, we have six degrees of 

freedom, instead of the three described within the classical 

elasticity. To describe the applied force on the surface 

element, a couple stress tensor together with classical stress 

tensor is introduced. Many papers devoted to the theory of 

microstretch elastic bodies were presented (see e.g., Eringen 

1999). This approach is a generalization of the micropolar 

theory and it represents a particular case of the 

micromorphic theory as well. According to this approach 

each material point is equipped with three deformable 

directors. A body denotes a microstretch continuum if the 

directors fulfill only breathing-type microdeformations. 

Other materials with microstructure are studied in Refs. 

Marin (2010), Marin et al. (2014) and some considerations 

on waves for micropolar bodies are available in Sharma and 

Marin (2014), Straughan (2011), respectively. 

The purpose of these approaches is to diminish the 
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discrepancies between the classical elasticity and 

experiments, bearing in mind that the classical elasticity is 

unable to provide acceptable results when the effects of 

material microstructure were known to contribute 

significantly to the body’s overall deformations. Also, the 

classical theory of elasticity cannot explain certain 

discrepancies that appear in problems dealing with elastic 

vibrations of high frequency and short wavelength. 

Grot (see Grot 1969) is considered as the initiator of the 

theory of bodies with micro-temperatures. He used the 

approach of bodies with inner structure and developed a 

theory of thermodynamics of elastic bodies with 

microstructure whose microelements possess 

microtemperatures. In this case, the entropy production 

inequality is adapted to include the microtemperatures. 

Thus, the first-order moment of the energy equations was 

added to the well-known balance laws of a continuum with 

microstructure. Besides, the theory of thermoelasticity with 

microtemperatures was debated in various papers (see, for 

instance, Chirita et al. (2012), Iesan and Quintanilla (2000), 

Scalia and Svanadze (2009)). 

An intelligent supersize finite element method was 

employed in the paper Kim et al. (2013) for the ultimate 

longitudinal strength analysis. 

In the paper Takabatake (2012), the existence and effect 

of dead loads are proven by numerical calculations based on 

the Galerkin method. Some very recent results regarding 

micro-temperatures are presented in Othman et al. (2016a, 

b), Othman et al. (2016). In this paper we discuss the effect 

of microtemperatures on the main characteristics of the 

mixed initial boundary value problems for micropolar 

thermoelastic bodies. It is important to note that the 

presence of microtemperatures allows the transmission of 

heat as thermal waves at finite speed. This mixed problem 

is transformed into an abstract evolution equation on a 

suitable Hilbert space. After that, by utilizing the results 

from the theory of semi-groups of operators, we deduce the 

existence and the uniqueness of solution. Also, the 

 
 
 

Effect of microtemperatures for micropolar thermoelastic bodies 
 

Marin Marin
1, Dumitru Baleanu2,3 and Sorin Vlase4 

 
1Department of Mathematics and Computer Science, Transilvania University of Brasov, Romania 

2Department of Mathematics and Computer Science, Cankaya University, Ankara, Turkey 
3Institute of Space Sciences, Magurele - Bucharest, Romania 

4Department of Mechanical Engineering, Transilvania University of Brasov, Romania 

 
(Received July 1, 2016, Revised October 21, 2016, Accepted November 14, 2016) 

 
Abstract.  In this paper we investigate the theory of micropolar thermoelastic bodies whose micro-particles possess 

microtemperatures. We transform the mixed initial boundary value problem into a temporally evolutionary equation on a Hilbert 

space and after that we prove the existence and uniqueness of the solution. We also approach the study of the continuous 

dependence of solution upon initial data and loads. 
 

Keywords:  micro-particles; microtemperatures; micropolar; semigroup; continuous dependence 

 



 

Marin Marin, Dumitru Baleanu and Sorin Vlase 

continuous dependence of solution upon the initial data and 

loads is discussed. 

 

 

2. Basic tools 
 

Below we suppose that a bounded region   of    is 

filled by a microstretch elastic body, referred to the 

reference configuration and a fixed system of rectangular 

Cartesian axes. Here   denotes the closure of   and    

represents the boundary of  , respectively. In this paper we 

let    be a piecewise smooth surface and we denote by    

the components of the outward unit normal to   . The 

motion of the body is analyzed with respect to a fixed 

system of rectangular Cartesian axes    , where        . 

Let    be the coordinates of the displacement vector and 

   be the coordinates of the microrotation vector, 

respectively. In addition, let   be the microstretch function 

and   be the temperature measured from the constant 

absolute temperature    of the body. 

Below     are the components of the stress tensor and 

    represent the components of the couple stress tensor 

over  . Thus, the equations of motion for micropolar 

thermoelastic bodies are given by Iesan and Nappa (2005) 

            ̈   

                      ̈           (1)       

The balance of the first stress moment has the form 

             ̈                (2) 

In these equations    denote the components of the 

body force,    represent the components of the body 

couple,   is the generalized external body load,   denotes 

the reference constant mass density,   and         are the 

coeffcients of microinertia. 

If   is the temperature within the body, we denote by 

  the temperature measured from the constant absolute 

temperature    in the body in its reference state, that is, 

      . We consider a generic microelement in the 

reference configuration and denote by (  
 ) the coordinates 

of its center of mass. If (  ) are the coordinates of an 

arbitrary point in the body, then we can assume that the 

absolute temperature in the body is a sum of the form 

       
     ,      (3) 

where the functions    are microtemperatures. We will 

denote by    the microtemperatures measured from the 

microtemperatures   
  in reference state, namely,      

  
 . The behavior of a micropolar thermoelastic body with 

microtemperatures can be characterized using the above 

mentioned variables         and the variables   and   , 

defined by 

  ∫        ∫      
 

  

 

  
           (4) 

in which, obviously,    is a reference time. The 

components of the strain tensors         and    are 

defined as 

                                     (5) 

Here      denotes the alternating symbol. 

Using a procedure analogous to that in Iesan and 

Quintanilla (2000), we obtain the constitutive equations for 

an anisotropic and homogeneous micropolar thermoelastic 

body with microtemperatures 

                               ̇             

                               ̇                

             ̇          

                     ̇           

                      ̇           

              ̇         

             ̇         

                               ̇            

(6) 

In the above equations, the used notations have the 

following meanings:         and    are the components 

of the stress,    are the components of the internal 

hypertraction vector,   is the generalized internal body 

load,   is the entropy per unit mass,    is the first entropy 

moment vector,    is the entropy flux vector and     is 

the first entropy flux moment tensor. 

Also, the quantities                   and       are 

characteristic constitutive coeffi-cients and they obey to the 

following symme-try relations 

                                 

                                 

                                       (7) 

If we denote by    the internal rate of production of 

entropy per unit mass and by    the mean entropy flux 

vector, then from the equation of energy we deduce the 

relation 

                          (8) 

wherein the meaning of    was exposed above. 

Also, if we denote by   the external rate of supply of 

entropy per unit mass and by    the first moment of the 

external rate of supply of entropy, we can write two more 

equations of energy 

  ̇           

  ̇                          (9) 

We substitute the geometric Eq. (5) and the constitutive 

Eq. (6) into equations of motion (1), in balance of first 

stress moment (2) and into equations of energy (9). Thus, 

we get a system of partial differential equations in which 

the unknown functions are           and   , namely 

     (              )                    

    ̇                    ̈ , 

     (              )                        ̇   
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               [     (           )            

         ̇           ]          ̈ , 

            ̇               (           ) 

              ̇               ̈, 

            ̇               ( ̇         ̇ ) 

     ̇      ̇    ̈     , 

     (              )                        ̇   

                ̇       ̈       

(10) 

Here we used the notation            . 

If we take into account the Dirichlet problem associated 

to the system of Eq. (10), then the boundary conditions have 

the form 

    ̅      ̅     ̅    ̅  

      ̅                         (11) 

where  ̅   ̅   ̅  ̅   ̅ are known functions. 

For a boundary value problem of Neumann type, the 

boundary conditions (11) are replaced as 

        ̅        ̅        ̅  

      ̅         ̅                   (12)            

where, also, the functions   ̅  ̅   ̅  ̅ and   ̅ are given.  

In the following we restrict our considerations only on the 

Dirichlet problem. 

The mixed initial boundary value problem associated to 

the system (10) is complete if we consider the initial 

conditions, namely 

          
      ̇         

      

          
       ̇         

      

              ̇             

              ̇             

          
      ̇         

           (13) 

for any    . Here the functions   
    

    
    

            
      

  and   
 

 are prescribed. 

 

 

3. Qualitative results of the solutions 
 

Below we investigate the existence and uniqueness of 

solution of the mixed initial boundary value problem in our 

context. Also, we obtain the continuous dependence of 

solution with respect to the initial data and charges. 

We assume that the functions, that appear in the 

equations and the conditions formulated in Section 2, are 

sufficiently regular on their domain of definition to allow 

the mathematical operations. 

For the next result of uniqueness, we need the following 

auxiliary result. 

 

Theorem 1. Among the variables that characterize the 

deformation of a thermoelastic micropolar body with 

microtemperatures the following equality holds true 

                          ̇      ̇        

          

                                                

                                              

                                    

                 ̇      ̇  ̇        (14) 

 

Proof. Multiply each equation of the system of the 

constitutive Eq. (6), namely                          

      ̇         and         . Then, we add the equalities 

which are obtained and considering the relations of 

symmetry (7) we obtain the desired equality (14). 

The quadratic form   is defined as follows 

  
 

 
                                   

                                    

                                     

                                           

(15) 

We can state and prove the uniqueness of the solution of 

the mixed initial boundary value problem considered in the 

previous section. 

 

Theorem 2. We assume that the following assumptions 

are met 

1.          and the constitutive coefficient   are strictly 

positive;  

2. the symmetry relations (7) hold true;  

3. the quadratic form   defined in (15) is positive 

semi-definite;  

4. the constitutive coefficients     are compo-nents of a 

positive definite tensor. Then, the mixed initial 

boundary value problem consists of Eq. (10), the initial 

conditions (13) and boundary conditions (11) admits at 

most one solution.  

 

Proof. As in the proof of Theorem 1 we start by 

multiplying each equation of the system of the constitutive 

Eq. (6) as follows:       ̇       ̇       ̇      ̇   ̇  

 ̇      ̇   and      ̇   . Then, we add the equalities which 

are obtained and considering the relations of symmetry (7) 

and the quadratic form   from (15) we report the 

following equality 

     ̇      ̇      ̇     ̇    ̇ ̇    ̇  ̇     ̇   

     ̇    
 

  
   

 

 
  ̇   

 

 
    ̇  ̇        (16) 

Now, we take into account the geometric Eq. (5), the 

equations of motion (1), the balance of first stress moment 

(2) and the equations of energy (9). So, the following 

equality is obtained  

     ̇      ̇      ̇   

      ̇ ̇    ̇  ̇     ̇       ̇    
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 ̇ (    ̇      ̇     ̇     ̇      ̇ )  
 

  (   ̇     ̇    ̇    ̇     ̇ )   

   ̈  ̇      ̈  ̇    ̈ ̇          (17)                             

It is easy to see that Eqs. (16) and (17) provide the 

equality 

 

 

 

  
(     ̇  ̇      ̇  ̇    ̇    ̇      ̇  ̇ ) 

      ̇      ̇     ̇     ̇      ̇      

     ̇     ̇    ̇    ̇     ̇          (18) 

The equality (18) is integrated over the domain B such 

that, with the help of the divergence theorem, we obtain 

 

 

 

  
∫       ̇  ̇      ̇  ̇ 
 

   ̇    ̇  

     ̇  ̇     ∫      ̇     ̇     ̇     ̇
  

 

     ̇       ∫   
 

   ̇     ̇    ̇    ̇ 

    ̇                   (19) 

where    are the components of the outward unit normal of 

the surface   . 

We will mark with “*” the difference of two solutions of 

the mixed problem consisting of (10), (13) and (11), that is, 

  
    

    
    

    
    

   

                    
    

    
  

Also, we will mark with “*” the other quantities which 

correspond to the above differences. Because of linearity, 

these differences satisfy the equations of motion (1), the 

balance of first stress moment (2) and the energy Eq. (9) but 

with null body loads. Also, the initial conditions become 

homogeneous, that is, for any    , 

  
          ̇ 

          

  
          ̇ 

                    

 ̇                    ̇          

  
          ̇ 

                   (20) 

and, certainly, the boundary conditions become null 

  
      

               

  
                       (21) 

and 

   
            

            
          

   
             

                    (22) 

Taking into account these considerations, the relation 

(19) written for these differences, becomes 

∫        ̇ 
  ̇ 

      ̇ 
 

 

 ̇ 
   ( ̇ )

 
  

   ̇        ̇ 
  ̇ 

                  (23) 

Based on the hypothesis 3 of the theorem and by using 

(22) we deduce that the quadratic form   written for the 

differences becomes null. From (23) we deduce 

∫    ̇ 
  ̇ 

      ̇ 
  ̇ 

   ( ̇ )
 
 

 

 

   ̇        ̇ 
  ̇ 

                (24) 

Considering the hypothesis 1 of the theorem regarding 

the amounts         and   and the hypothesis 4 regarding 

the tensor    , from (24) we must have 

 ̇ 
     ̇ 

     ̇     ̇     

 ̇ 
               

such that, if we take into account (20), we deduce 

  
      

               

  
                

So, the proof of the theorem is complete. 

We shall prove now a result of the existence of solution 

for the mixed initial boundary value problem mentioned 

above, but in the case where the boundary conditions are 

homogeneous, that is 

                               (25) 

Taking into account that the system of governing 

equations and conditions for the investigated problem are 

more sophisticated, it is necessary a new approach for the 

existence of solution. Thus, we will transform the problem 

into an abstract evolution equation on a Hilbert space 

suitable chosen. 

Using the usual Hilbert spaces   
   

 and   , we 

consider the Hilbert space   defined by 

    
         

         
       

   
         

       

where we used the notation   
      

      
      

   
, 

or, shorter,   
       

     . Also,         . For more 

details about Hilbert and Sobolev spaces see Adams (1975). 

On the space   we define the following scalar product 

〈                             〉   

 

 
∫       

  
 

       
                   

     

 
 

 
∫             

       (      
     

    )  
 

 

   (    
     

  )       (       
     

     )   

           
     (    

     
  ) 

      (       
     

     )           
  

   (      
     

    )           

      
      

                    (26) 

We can prove that the norm induced by this scalar 

product is equivalent to the original norm on the Hilbert 

space  . 

Now, with a suggestion given by (10), we introduce the 
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operators 

  
   

 

 
            

  
   

 

 
[                        ]  

  
   

 

 
          

   
 

 
        

  
   

 

 
            

  
   

 

   
(                        )  

  
      [                                    ]  

  
      (               ), 

  
       (               )  

  
      (                        )  

   
 

 
(          )     

 

 
         

   
 

 
            

 

 
         

    
 

 
(                 )  

   
 

 
       

 

 
           

 

 
         

   
 

 
           

 

 
         

   
 

 
         

    
 

 
                   , 

    
 

 
     

                  

  
      (                        )  

                              

                   

                           (27) 

in which the matrices     and     are defined by means of 

the  equations 

                       

If we denote by   the matrix operator which has as 

components the operators defined in (27), then the mixed 

initial boundary value problem is transformed into a Cauchy 

problem associated to an evolutionary equation, namely 

  

  
             

                       (28) 

In order to use the theoretical results that follow, we 

have to take as domain for the operator  , that is,     , 

the next set 

(  
        )    

    (  
        )   

  
       

            
       

          

   
       

            
       

          

   
       

            
       

            
   

 

Also, the unknown matrix function  , the initial data 

   and the matrix of charges   are defined by 

                               

      
    

    
    

                
    

    

                          . 

In the next theorem, we will show, a property of the 

operator   which is needed to prove the existence of the 

solution of the abstract problem (28). 

 

Theorem 3. We assume that the following assumptions 

are fulfilled: 

1.         and the constitutive coefficient   are strictly 

positive;  

2. The symmetry relations (7) hold true; 

3. The quadratic form U defined in (15) is positive 

definite;  

4. The constitutive coefficients     are components of a 

positive definite tensor. Then, the operator   is 

dissipative.  

 

Proof. In fact, we have to prove that 

〈    〉                     (29) 

Let us consider  , an arbitrary element in the domain 

of the operator  . Taking into account the definition of the 

scalar product (26) and the expressions of the operators 

defined in (27), we obtain 

〈    〉   ∫ (                         )
  

 

     ∫             
       (      

     
    )

 

 

    (    
     

  )       (       
     

     ) 

            
     (    

     
  ) 

      (       
     

     )           
  

    (      
     

    )          (     
      

  ) 

          
               

            (30) 

The integrand in the last integral from (30) is a quadratic 

form which corresponds to the elements 

                 and                  , that is, 

this integral is of the form 

∫          
 

 

 ∫  (                             )
 

   

Keep in mind this observation and apply the divergence 

theorem in the first integral in (30) to get 

〈    〉 

  ∫                                      
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 ∫  (                             )     
 

 

which concludes the proof of the theorem. 

The property of the operator   which will be proved in 

the following theorem is essential to characterize the 

solution of the problem (28). 

 

Theorem 4. Suppose that the conditions of Theorem 3 

are satisfied. Then the operator   satisfies the range 

condition. 

 

Proof. Let    be an element of the Hilbert space  , 

such that 

      
    

    
    

                
    

    

The affirmation of the statement of the theorem is 

equivalent to showing that the equation       has a 

solution       . In view of operators (27), we use the 

vector notations 

      
         

         
    

      
         

         
    

      
         

         
    

      
         

         
    

                                 (31) 

Taking into account the operators from (27) and the 

notations (31), the system of Eq. (10) can be rewritten in the 

form 

      

                        

      

                        

     

                      

      

                   

      

                          (32) 

In the next step, from (32) we get a new system of 

equations in which the main unknowns are             

and other variables pass on the right-hand side, in the role 

of “free terms”. The resulting system is 

                         

                         

                        

                     

                              (33) 

Now we introduce the notations 

  ̃                   

 ̃                   

 ̃               

 ̃         

 ̃                        (34) 

such that the following scalar product  

〈( ̃  ̃  ̃  ̃  ̃)            〉  is a bounded bilinear 

form on   
   

. Moreover, by direct calculations we obtain 

〈                       〉 

=∫                                    
 

 

                                    

                                    

                                          (35) 

such that, based on the assumptions of the theorem, we infer 

that this bilinear form is coercive on space   
   

. 

Clearly, the functions from the right-hand side of the 

system (33), namely                        
                  , and           , are 

functions which belong to the space     . So, we met the 

conditions to apply the Lax-Milgram theorem, which 

ensures the existence of functions               as a 

solution of the system (33), and this, in turn, ensure the 

existence of solution for the system (32). Thus, the proof of 

the theorem is completed. 

Based on Theorem 3 and Theorem 4 we deduce that the 

operator   satisfies the requirements of the Lumer-Phillips 

corollary of the known Hille-Yosida theorem (see Pazy 

1983). That is, we have the following result. 

 

Theorem 5. We assume that the following assumptions 

are fulfilled 

1.         and the constitutive coefficient   are strictly 

positive;  

2. The symmetry relations (7) hold true;  

3. The quadratic form   defined in (15) is positive 

definite;  

4. The constitutive coefficients     are components of a 

positive definite tensor. 

Then the operator   generates a semigroup of 

contracting operators on Hilbert space  .  

With the help of the same Lumer-Phillips corollary, we 

deduce the following result of uniqueness. 

 

Theorem 6. Suppose that the conditions of Theorem 5 

are satisfied. Moreover, we assume that  

             
                       

     

and the initial data    belongs to the domain of the 

operator  .  

Then the abstract problem (28) admits the only one 

solution                 . 

A final result to characterize the solution of the abstract 

problem (28) (as such, of the solution to our mixed initial 

boundary value problem), which also is obtained by means 

of Lumer-Phillips corollary, is a result regarding the 

continuous dependence of the solutions with respect to 

initial data and loads. 
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Theorem 7. Suppose that the conditions of Theorem 5 

are satisfied. Then the solution               of 

problem (28) depends continuously with regard to the initial 

data    and the loads             , that is, 

|    |  |  |  ∫ ‖              ‖
 

 

   

 

 

4. Conclusions 
 

For a more valuable characterization of the modern 

materials,in our study, we proposed to take into account the 

intimate structure of materials together with the fact that 

microparticles possess microtemperatures. In our problem 

because the number of initial conditions and the boundary 

conditions increased we investigate complex differential 

equations. By using some powerful techniques of the semi-

group theory, we analyzed these differential equations, 

namely, we described the qualitative results of the mixed 

problem within the content of thermoelastic micropolar 

bodies. We benefited from the flexibility of the theory of 

semi-groups which allows that behind a single equation of 

evolution we have a great number of partial differential 

equations. With this tool, we proved the existence and 

uniqueness results together with the continuous dependence 

of solutions with regard to the initial data and loads. 

 

 

Acknowledgments 
 

The authors are very grateful to the reviewers for useful 

observations that led to improvements to this paper. 

 

 

References 
 
Adams, R.A. (1975), Sobolev Spaces, Academic Press, New York. 

Chirita, S, Ciarletta, M. and D’Apice, C. (2013), “On a theory of 

thermoelasticity with microtem-peratures”, J. Math. Anal. Appl., 

397, 349-361.  

Chirita, S. and Ghiba, I.D. (2012), “Rayleigh waves in Cosserat 

elastic materials”, Int. J. Eng. Sci., 51, 117-127.  

Dyszlewicz, J. (2004), “Micropolar Theory of Elasticity”, Lect. 

Notes Appl. Com-put. Mech., Vol. 15, Springer, 

Berlin/Heidelberg/New York.  

Eringen, A.C. (1966), “Linear theory of micropolar elasticity”, J. 

Math. Mech., 15, 909-924.  

Eringen, A.C. (1999), Microcontinuum Field Theories I: 

Foundations and Solids, Springer-Verlag, New York/Berlin/ 

Heidelber. 

Grot, R.A. (1969), “Thermodynamics of a continuum with 

microstructure, Int. J. Eng. Sci., 7, 801-814.  

Iesan, D. (2004), Thermoelastic Models of Continua, Kluwer 

Academic Publishers, Dordrecht.  

Iesan, D. and Nappa, L. (2005), “On the theory of heat for 

micromorphic bodies”, Int. J. Eng. Sci., 43, 17-32.  

Iesan, D. and Quintanilla, R. (2000), “On a theory of 

thermoelasticity with mi-crotemperatures”, J. Therm. Stress., 

23, 199-215.  

Kim, D.K., Yu, S.Y. and Choi, H.S. (2013), “Condition 

assessment of raking dam-aged bulk carriers under vertical 

bending moments”, Struct. Eng. Mech., 46(5), 629-644.  

Marin, M, (1996), “Some basic theorems in elastostatics of 

micropolar materials with voids”, J. Comput. Appl. Math., 

70(1), 115-126.  

Marin, M, Abbas, I. and Kumar, R. (2014), “Relaxed Saint-Venant 

principle for thermoelastic micropolar di usion”, Struct. Eng. 

Mech., 51(4), 651-662.  

Marin, M. (1995), “On existence and uniqueness in 

thermoelasticity of micropolar bodies”, Comptes Rendus, Acad. 

Sci. Paris, Serie II, 321(12), 475-480.  

Marin, M. (2010), “A domain of in uence theorem for microstretch 

elastic materials”, Nonlin. Anal. R.W.A., 11(5), 3446-3452.  

Marin, M. and Marinescu, C. (1998), “Thermo-elasticity of 

initially stressed bodies. Asymptotic equipartition of energies”, 

Int. J. Eng. Sci., 36 (1), 73-86.  

Othman, M.I., Tantawi, R.S. and Abd-Elaziz, E.M. (2016), “Effect 

of initial stress on a porous thermoelastic medium with micro-

temperatures”, J. Porous Media, 19(2), 155-172.  

Othman, M.I., Tantawi, R.S. and Hilal, M.I. (2016), “Hall current 

and gravity effect on magneto-micropolar thermoelastic 

medium with microtempe-ratures”, J. Therm. Stress., 39(7), 

751-771.  

Othman, M.I., Tantawi, R.S. and Hilal, M.I. (2016), “Rotation and 

modified Ohm’s law influence on magneto-thermoelastic 

micropolar material with microtemperatures”, Appl. Math. 

Comput., 276(5), 468-480  

Pazy, A. (1983), Semigroups of Operators of Linear Operators 

and Applications, Springer, New York, Berlin. 

Scalia, A. and Svanadze, M. (2009), “Potential method in the 

linear theory of thermoelasticity with microtemperatures”, J. 

Therm. Stress., 32, 1024-1042. 

Sharma, K. and Marin, M. (2014), “Reflection and transmission of 

waves from imperfect boundary between two heat conducting 

micropolar thermoelastic solids”, An. Sti. Univ. Ovidius 

Constanta, 22(2), 151-175.  

Straughan, B. (2011), Heat Waves, Applied Mathematical 

Sciences, Springer, New York. 

Takabatake, H. (2012), “Effects of dead loads on the static 

analysis of plates”, Struct. Eng. Mech., 42(6), 761-781. 

 

 

CC 

387




