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1. Introduction  
 

Functionally graded materials (FGMs) are new 

multifunctional composites with smoothly varying volume 

fractions of constituent materials, which leads to a non-

uniform microstructure with continuously graded 

macroproperties. FGMs possess material non-homogeneity 

with regard to thermomechanical and strength related 

properties including yield strength, fatigue and creep 

behavior, and fracture toughness. These materials were 

investigated to take advantage of ideal behavior of its 

material constituents. The prediction of fracture parameters 

for graded structures, generically termed functionally 

graded materials (FGMs), has received considerable 

attention over the last decade. There have been several 

attempts to study mixed mode fracture in FGMs and to 

determine whether fracture criteria developed for 

homogeneous materials are also valid for FGMs: Kidane et 

al. (2010) studied mixed-mode dynamic crack growth 

behavior in FGMs under thermo-mechanical loading. Using 

the minimum strain-energy density criterion and the 
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maximum circumferential stress criterion, the crack growth 

direction for various crack-tip speeds, non-homogeneity 

coefficients and temperature fields are determined. Ma et al. 

(2010) studied numerical simulation of mixed-mode crack 

propagation in FGMs by means of extended finite element 

Method (XFEM). Determination of the crack growth 

direction is based on a specific fracture criterion, using the 

assumption of local homogenization of asymptotic crack-tip 

fields in FGMs. Kim and Paulino (2007) investigated FE 

method with mesh refinement techniques and interaction 

integral method (M-integral) to simulate the mixed-mode 

crack growth in FGMs, using maximum hoop stress 

(Erdogan and Sih 1963), maximum energy release rate 

(Hussain et al. 1993) and minimum strain energy density 

(Sih 1974). Kim and Paulino (2005) studied the fracture 

behavior of FGMs under mechanical loading by performing 

automatic simulation of the crack propagation FGM 

through remeshing algorithm in conjunction with the finite 

element method. Crack trajectories obtained by the 

maximum energy release rate criterion proposed. Hosseini 

et al. (2013) implemented a computational method based on 

the extended finite element method (XFEM) and the 

maximum energy release rate criterion for crack 

propagation analysis of isotropic and orthotropic FGMs. 

Becker et al. (2001) investigated finite crack kinking by 

considering a hyperbolic-tangent material gradation with 

steep gradient of Young‟s modulus. They used the 

maximum energy release rate (Palaniswamy and Knauss 

1978) and KII=0 (Cotterell and Rice 1980) criteria. Kim and 

Paulino (2004) used the maximum energy release rate 

criterion proposed by Hussain et al. (1993) for 

homogeneous materials to check crack initiation condition 
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and to determine crack initiation angles in plate FGM under 

mixed-mode and non-proportional loading. Benamara et al. 

(2017) analyzed the mixed mode crack propagation in the 

FGM plate uding the strain energy density approach. Lee 

and Erdogan (1995) calculated the effect of modulus 

gradient on the angle of maximum hoop stress near the free 

edge of a graded joint and discussed the implications on the 

direction of fracture initiation. Gu and Asaro (1997) 

investigated crack deflection in brittle FGMs by considering 

exponential gradation perpendicular to the crack, and used 

the KII=0 criterion. Burlayenko et al. (2016) analyzed the 

crack growth in the FGM plate under thermal shock using 

the virtual crack closure technique VCCT. It is shown that 

the crack lengths are influenced by the material gradient 

profile of the functionally graded plate.  Kim (2003) 

performed numerical simulation of mixed mode crack 

propagation in FGMs, and investigated the effect of 

material gradation on crack trajectory and critical loads. 

EL-Desouky and EL-Wazery (2013) investigated the 

maximum principle stress criterion to predict the mixed-

mode fracture of FGMs and non-graded specimens. It is 

shown that initial propagation direction of the non-graded 

composites and FGM specimens was approximately 

predicted as the range (7-15°) according to MPS theory and 

was in good agreement with the estimated propagation 

direction of the experimental result. 

This paper based on 2D mixed-mode crack propagation 

in FGMs using the finite element method (FEM) and 

compares the performance of some fracture criteria (σ(θ) 

and S(θ)) to predict the crack trajectory in cracked FGMs. 

The displacement extrapolation technique (DET) was used, 

to determine the SIFs around the crack-tip. In this 

investigation, the effect of inclusions and cavities on the 

crack trajectories in FGMs was examined. 

The present paper is organized as follows: Section 2 

presents the crack growth criteria investigated for this study. 

Section 3 addresses the numerical evaluation of SIFs. 

Section 4 explains the methodology of crack extension 

proposed for FGMs, and section 5 provides some numerical 

applications for FE evaluation of SIFs and crack 

propagation simulation. Finally, section 6 concludes the 

present investigation. 

 
 
2. Crack direction criteria 
 

2.1 Maximum tangential stress criterion (σθ-criterion) 
 

For this approach, the maximum tangential stress σθ,max 

is taken as the criterion of failure in terms of critical stress 

σc. The maximum tangential stress criterion was the first 

one presented by Erdogan and Sih (1963). It is assumed that 

the onset of crack propagation occurs when the maximum 

value of tangential stress reaches a critical stress value σc of 

the material under a simple tension test. Therefore, the 

condition for crack extension can be given by 

𝜎𝜃,𝑚𝑎𝑥 = 𝜎𝑐  (1) 

Under the combination of modes I and II loadings in 

polar coordinates, the tangential stress, as shown in Fig. 1, 

can be defined by the following equation 

 

Fig. 1 Definition of stress state at the crack-tip 
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The local stresses on an element near the crack-tip for 

2D stress state, could be expressed in terms of the spherical 
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by Sih (1975) as 
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𝜎𝑡 = 0      𝑝𝑙𝑎𝑛 𝑠𝑡𝑟𝑒𝑠𝑠 (7) 

where KI and KII are the stress intensity factors (SIFs) under 

mode-I and mode-II loading, respectively. 

Substituting the singular solution of Eqs. (3)-(7) into Eq. 

(2) and after rearranging, the tangential stress can be 

expressed as follows 
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where  is the crack propagation direction. Therefore, Eq. 

(1) can be expressed as follows 

1

√2𝜋𝑟
𝑓𝜃𝑚𝑎𝑥(𝐾𝐼, 𝐾𝐼𝐼, 𝜃) =  𝜎𝑐 (9) 
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The σθ-criterion assumed that the angle θ0 of the crack 

propagation direction can be obtained by maximizing the 

above σθ value, i.e. 

(
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1
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(10) 

 

2.2 Minimum strain energy density criterion (S-
criterion) 

 

Sih (1974) proposed the strain energy density approach. 

It states that the direction of crack initiation coincides with 

the direction of minimum strain energy density, along a 

constant radius around the crack-tip. This criterion is the 

only one that illustrates dependence of crack initiation angle 

on the material elastic properties represented by the 

Poisson‟s ratio, ν and the state of the stress Erdogan and Sih 

(1963). 

It is assumed that the onset of crack propagation occurs 

when the minimum value of Smin reaches a critical value Sc.  

For this criterion, the condition for crack extension is 

given by 

    =     (11) 

Under mixed modes I+II loadings, the strain energy 

density factor S was given by Sih (1973) as follows 
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Where: aij are constants which vary with the angles θ 

measured from the crack-tip, have been given by Sih (1973) 
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therefore, the strain energy density factor S can be 

expressed as follows 
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where the angle θ is the direction of crack propagation. 

Therefore Eq. (11) becomes 

  ,   (  ,    ,  ) =       (17) 

This criterion assumed that the crack will begin to 

extend in certain direction in which the strain energy 

density factor possesses a relative minimum value, i.e. 
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3. Numerical calculation of stress intensity factors 
SIFs 
 

In LEFM, the SIFs are the important parameters used in 

various modes. Several techniques have been proposed to 

obtain these parameters for homogeneous and non-

homogeneous materials, such as the displacement 

correlation technique (DCT) (Sabuncuoglu et al. 2012, Shih 

et al. 1967, Kim et al. 2002), the modified crack-closure 

integral MCC (Rybicki and Kanninen 1977, Kim and 

Paulino 2002), the interaction integral (Topal and Dag 2013, 

Dag 2006, Dag et al. 2010, Kim and Paulino 2003a, 2003b, 

2004, 2007) and the stress correlation (Raju et al. 1979). In 

this investigation, the displacement extrapolation technique 

(DET) used to calculate the SIFs KI and KII for 

homogeneous materials (Boulenouar et al. 2016, 2014, 

2013a, 2013b, and Benouis et al. 2015) is modified to 

calculate the SIFs for non-homogeneous materials. For the 

FGMs, the SIFs KI and KII can be expressed as follows 
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where: 

Etip and νtip are the Young‟s modulus and the Poisson‟s 

ratio at the crack-tip location, respectively. кtip=3-4νtip for 

plane strain, кtip=(3-νtip)/(1+νtip) for plane stress. 

ui and vi (i=b, c, d and e) are the nodal displacements at 

nodes b, c, d and e in x and y directions, respectively (Fig. 

2). 

In this paper, the special quarter point finite elements 

proposed by Barsoum (1974) are used to obtain a better 

approximation of the field near crack-tip. As shown in Fig. 

2, the mid-side node of the element in the crack-tip is 

moved to 1/4 of the length of the element. 

 

 

4. Methodology of crack propagation modelling 
 

The main objective of this study is to evaluate mixed 

mode stress intensity factors KI and KII for mixed-mode 

fracture analysis under mechanical loading conditions by 

considering isotropic FGMs. For this purpose, a two  

 

 

 

Fig. 2 Special quarter point finite elements proposed 

by Barsoum used for DET 
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Fig. 3 Algorithm of the main operations for the crack 

propagation modeling 

 

 

dimensional finite element model is developed using finite 

element software, ANSYS.  

In the technical literature, two basic approaches are 

utilized to compute the material properties of FGMs. In the 

first approach, the physical properties are represented by 

certain continuous functions of spatial coordinates. In the 

second approach, micromechanics models are used to 

estimate the material parameters. In this paper, an APDL 

subroutine is developed for the implementation of material 

property variations of FGM‟s. The material properties (Ei 

and vi) are specified for each element (i) at its centroid. 

In order to simulate the stress concentration at the crack 

tip more accurately displacement extrapolation technique 

(DET) subroutines, the mesh is skewed at the crack tip and 

the 8-noded quadrilaterals are collapsed to triangles around 

the crack tip. In order to examine the accuracy of the model, 

calculated SIFs are compared with those available in the 

literature.  

In this study, two crack direction criteria (σθ and Sθ) are 

investigated to determine the crack direction θ. At each 

crack increment length Δa, the angle θ is evaluated as a 

function of stress intensity factors KI and KII (using Eqs. 

(10) and (18)). The mathematical solution of these 

equations is assured using the computer code MAPLE 6.0. 

Generally, the crack propagation in FGMs is 

characterized by successive propagation steps. Each step 

consists of: 

1. Setting the geometrical with initial crack and input 

material properties data of the problem. 

2. Discretization of the FE model by plane2 elements 

„PLANE183‟. 

3. Mesh definition; 3. Mesh definition: the mesh and the 

re-mesh operation of FGM plate are given automatically 

by Ansys code. 

4. FE calculation. 

5. Computation of SIFs KI and KII (using Eqs. (19a) and 

(19b)). 

6. Computation of crack growth direction. 

 

Fig. 4 (a) Crack propagation mechanism proposed in this 

investigation; (b) FE modeling 

 

 

Fig. 5 Configuration for uncracked strip under under 

tension loading 

 

 

7. Continues analysis? If yes, go to step 8. If no, go to 

step 9. 

8. Stop. 

9. Automatic delete of the crack segment and insertion 

of the new crack-tip position.  

10. Return to Step 3 

Fig. 3 describes the flowchart for predicting the crack 

growth trajectory based on the combination of the FE 

analysis and the crack direction criteria. Fig. 4 shows the 

crack propagation mechanism proposed in this work. 

 

 

5. Numerical analysis and validation 
 
The FGM can be defined by the variation of the volume 

fractions. The majority of the researchers employ the power 

law function, the exponential function, or the sigmoid 

function to describe the volume fractions. In present 

investigation, an APDL subroutine is developed for the 

implementation of material property variations of FGM‟s 

using the exponential model. The material properties are 

specified for each element at its centroid. 

 
5.1 Stress distribution for uncracked strip under 

tension 
 

The basic geometry of the FGM uncracked strip 
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considered in this study is shown in Fig. 5(a). The plate is 

subjected to uni-axial loading at the both ends. The elastic 

modulus for FGMs plate was assumed to follow an 

exponential function given by 

   1 exp , 0  E x E x x w    (20) 

with E= E1(0), E=E2 (w), and λ=Ln(E2/E1). 

Fig. 5(b) shows a typical mesh model of FGM plate 

with 1600 elements and 5000 nodes. In this study, the 

following data were used: 

σ=1, E1= 1; E2/E1 = (1, 2, 5, 10 and 20); ν=0.3 and L/w=8.  

Fig. 6 shows the evolution of stress distributions σyy for 

uncracked plate under tension loading. The results obtained 

are compared with FEM results obtained by Kim and 

Paulino (2002). This comparison shows that the two results 

agree within plotting accuracy. Thus such excellent results 

validate the present FEM implementation for elastic FGMs. 

 

5.2 FE evaluation of SIFs 
 
In this section, the geometry of the single edge cracked 

FGM plate with an initial crack of length a is considered for 

2-Dimensional FE analysis (Fig. 7(a)). This geometry was 

originally investigated by Erdogan and Wu (1997), and it is 

one of the few analytical solutions available for fracture in 

FGMs. In this investigation, the following data were used 

under plane strain condition: 

σ=1, E1=1; E2/E1=(0.1, 0.2, 1, 5 and 10); ν=0.3; a/w 0.2, 

0.3, 0.5 and 0.6; L/w=8. 
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Fig. 6 Stress distribution σyy for uncracked strip 

 

 

Fig. 7 (a) Geometry and boundary conditions of FGM plate; 

(b) Singular element around the crack-tip (a/w=0.2) 

Fig. 7(b) shows the mesh discretization of cracked 

FGMs plate with 710 elements and 2241 nodes. The special 

quarter point finite elements proposed by Barsoum (1974) 

are used for modeling the singular field around the crack-

tip.  

Table I compare the normalized SIFs obtained by DET 

with: 

1. The analytical solution obtained by Erdogan and Wu 

(1997),  

2. The numerical results of Kim and Paulino (2002b) 

using two techniques: J*-Integral method and the 

modified crack-closure (MMC) integral method and, 

3. The results obtained by Chen et al. (2000) using the 

element free Galerkin (EFG) method.  

The results obtained indicate good agreement between 

ours results and other author‟s solution for this example. 

These results allow us to conclude that the displacement 

extrapolation technique modified for non-homogeneous 

materials, correctly described the stress-strain field around 

the crack-tip.  

 

5.3 Crack propagation simulation inFGM 
 

In this section, two examples are presented (single edge 

cracked plate with one hole and another cracked plate with 

an inclusion). For these examples, the variation of the 

elastic modulus for FGM was modeled by Eq. (20). 

 

5.3.1 Single edge cracked FGM plate with one hole  
This geometry was considered to study the effect of 

defect on the crack extension in FGMs. Fig. 8(a) shows the 

geometry of the single edge cracked plate with one hole. 

This plate is simply fixed at the bottom edge and loaded by 

uni-axial traction along the top edge. The geometry was 

meshed using 8-node quadratic elements and triangular 

elements concentric at crack-tip (Fig. 8(b)). The 

determination of SIFs, direction angle and crack growth 

path are made under plane stress problem. For first step of 

crack propagation, the number of element used in this 

analysis is 1144 elements with 3570 nodes. 

The numerical calculations obtained are compared with 

other results, for a homogeneous material case (with 

E2/E1=1). Fig. 9 shows the final configuration 

corresponding to the last position of crack-tip for the results 

obtained by Bouchard et al. (2000), Rashid (1988), and that 

obtained in present study. The crack propagation paths 

obtained are seminars between them.  
 

 

        
(a)                  (b) 

Fig. 8 (a) Geometry model of cracked FGMs plate with 

one hole and (b) typical FE mesh for initial configuration 

375



 

Benamara Nabil, Boulenouar Abdelkader, Aminallah Miloud and Benseddiq Noureddine 

 

     
(a)           (b)             (c) 

Fig. 9 Final configuration corresponding to the last 

position of crack-tip (with E2/E1=1): (a) Bouchard et al. 

(2000), (b) Rashid (1988) and (c) Present study 

 

Table 1 Normalized SIFs for edge cracked FGM plate for: 

a/w=0.2, 0.3, 0.5 and 0.6 

Method E2/E1 
a/w 

0.2 0.3 0.4 0.5 0.6 

Erdogan and Wu (1997) 

0.1 

0.2 

1 

5 

10 

1.296 

1.395 

N/A 

1.131 

1.001 

1.858 

1.839 

N/A 

1.369 

1.229 

2.569 

2.443 

N/A 

1.748 

1.588 

3.570 

3.326 

N/A 

2.365 

2.176 

5.188 

4.761 

N/A 

3.445 

3.212 

Kim and Paulino (2002b) 

J* Integral 

0.1 

0.2 

1 

5 

10 

1.284 

1.39 

1.358 

1.132 

1.003 

1.846 

1.831 

1.658 

1.37 

1.228 

2.544 

2.431 

2.11 

1.749 
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Fig. 10 shows the evolution of normalized SIFs KI 

(KI/σ(πa)0.5) and KII (KII/σ(πa)0.5) during crack propagation 

extension obtained in FGM plate using the σθ-criterion. 

These results are compared with those obtained by S-

criterion. The plotted curves show a good agreement 

between the two approaches.  

Fig. 11 compares the crack trajectories obtained by σθ 

and Sθ criteria due to the presence of the hole. The two 

approaches give good results on the crack propagation path 

and the results between them are very close. 

Fig. 12 illustrates four steps for crack extension in FGM 

plate using the σθ-criterion. This crack would move in a 

straight path if there was no hole at the plate for opening-

mode (mode-I) loading (Fig 12(a)). However, due to the 

presence of the default, the crack did not follow a straight 

line path, but curved towards the hole as shown in Fig. 

12(b). This was due to the stress concentration effect; 

cracks are likely to initiate at a hole boundary. Once the 

crack-tip has moved beyond the default, the crack 

reoriented horizontally in the mode I loading as shown in  
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Fig. 10 Evolution of normalized SIFs during crack 

extension in FGM plate with one hole: (a) Normalized KI  

and (b) Normalized KII 
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Fig. 11 Crack trajectories comparison 

 

 
(a)          (b)          (c)          (d) 

Fig. 12 Four steps of crack propagation trajectory for a 

single edge cracked FGM plate with one hole 

 

 

Figs. 12(c) and 12(d). 

Fig. 13 shows the crack trajectories obtained for 

homogeneous and FGMs plates obtained by σθ-criterion. 

One can notice the same crack propagation behavior for 

both plates but the two crack paths are different from each 

other. This may explain the fact that the stress distribution 

around the hole is different for the two plates, which may 

influence directly on the propagation trajectory (Benamara 

et al. 2017). 
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Fig. 13 Positions of the crack-tip obtained for 

homogeneous and FGM plate (σθ-criterion) 

 

 
 

(a) (b) 

Fig. 14 (a) Geometrical model of the cracked FGM plate 

with an inclusion and (b) final mesh for initial configuration 

 

  
(a) (b) 

Fig. 15 Final configuration corresponding to the last 

position crack-tip: (a) EInc/E1=0.1, (b) EInc/E2=10 

 

 

5.3.2 Cracked FGM plate with an inclusion   
In what follows, we propose to study the inclusion effect 

on the crack path in FGMs. For this purpose, we considered 

a pre-cracked FGM plate with a circular inclusion, having 

the following dimensions: W/R=3.5 and L/W=0.5 (Fig. 

14(a)). The FGM plate is fixed at the bottom edge and 

loaded by uniform tension along the top edge. A typical FE 

model of the FGM plate with an inclusion is shown in Fig. 

14(b). The crack propagation prediction is performed under 

plane stress conditions. For first step of crack propagation, 

the FGM plate was modeled by 4098 elements with 8309 

nodes. 

The mechanical properties of the FGM plate are given 

by Eq. (20). The inclusion considered is characterized by its 

Poisson‟s ratio νInc= ν=0.3 and Young‟s modulus EInc.  

Firstly, our numerical model was to check for a 

homogeneous material and the results obtained are 

compared with the numerical results obtained by Bouchard  
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Fig. 16 Evolution of normalized SIFs during crack 

extension in FGM plate with an inclusion (E1=1, E2=10 and 

EInc /E2=0.1): (a) Normalized KI and (b) Normalized KII 
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Fig. 17 Evolution of normalized SIFs during crack 

extension in FGM plate with an inclusion (E1=1, E2=10 and 

EInc /E2 = 10): a) Normalized KI  and  b) Normalized KII 

 

 

et al. (2003). The crack propagation trajectories are 

obtained for two cases (Benamara et al.2017): 

a) EInc /E1 = 0.1 with E1=1, E2=10 (Fig. 15(a)), 

b) EInc /E2 = 10 with E1=1, E2=10 (Fig. 15(b)).  

The predicted crack propagation trajectory of the present 

study is quite similar to that obtained by Bouchard et al. 

(2003). 
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Fig. 18 Crack trajectories comparison in cracked FGM 

plate with an inclusion 

 

 

For FGM plate case, the evolution of normalized SIFs 

KI and KII during crack propagation obtained by σθ and Sθ 

criteria, for two cases EInc<E1 (with EInc/E1=0.1) and EInc>E2 

(with EInc/E2= 10) is shown in Figs. 16 and 17, respectively.  

The plotted curves show a good agreement between these 

two approaches.  

For two cases, Fig. 17 shows the prediction of the crack 

propagation path using the σθ -criterion. A calculation made 

by our numerical techniques shows that: 

• If EInc /E1=0.1, the inclusion is less rigid than the 

FGM, the crack is attracted to the inclusion (Fig. 17(a)). 

• If EInc /E2=10, the inclusion is more rigid than the 

FGM, the crack is moving away from the inclusion (Fig. 

17(b)).   

Fig. 18 compares the crack trajectories obtained by the 

two approaches due to the presence of inclusion. For the 

two cases, the two criteria give good results on the crack 

propagation path and the results between them are very 

close. 

 
 
6. Conclusions 

 

In this study, the quarter-point singular elements 

proposed by Barsoum are used to consider the singularity of 

stress and deformations fields at crack-tip in FGMs.  

The displacement extrapolation technique was used to 

obtain the SIFs at crack-tip and to predict then the final 

crack trajectory by evaluation, for each propagation step, 

the kinked angle using two different crack growth criteria. 

The SIFs for a single edge cracked plate was evaluated 

and compared with available analytical and numerical 

solutions. The comparison shows that our numerical 

techniques are capable of demonstrating the SIF evaluation. 

The methodology of crack propagation modeling proposed 

in this paper has been used successfully to predict the crack 

path in FGM plate contains holes and inclusion.  
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