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1. Introduction 
 

During the last five or six decades, the methods which 

focus directly on the functions domain and numerical 

evaluation of the functions instead of evaluating their 

gradients, have been gained considerable interest to 

researchers. They are commonly categorized as the 

metaheuristic optimization techniques. These methods 

provide mathematical simplicity, they are, therefore, proper 

to apply on the different complex engineering optimization 

fields (Coello-Coello 2002). For these reasons, many new 

metaheuristic techniques have been developed and 

improved by researchers. Among others, the genetic 

algorithm (GA), which is based on the concept of natural 

selection, can be recognized as the most widely used 

optimization method. From the emergence of the GA up to 

now, it has been employed in the various structural 

optimization applications (Rajeev and Krishnamoorthy 

1992, Hajela and Lee 1995, Erbatur and Hasançebi 2000, 

Deb and Gulati 2001, Toğan and Daloğlu 2006, He and 

Hwang 2007, Gholizadeh et al. 2008, Rahami et al. 2008, 

Toğan and Daloğlu 2008, Li 2015, Alaimo et al. 2016, 

Dizangian and Ghasemi 2016). So far, many different 
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techniques inspired from the nature have been 

consecutively proposed and widely applied in distinct 

optimization problems. Among several techniques presented 

in this class, one can list water wave optimization (WWO), 

different variants of particle swarm optimizer (PSO), bat-

inspired algorithm (BI), ant colony optimization (ACO), 

artificial bee colony optimization (ABC), water cycle 

optimization (WCO) and mine blast algorithm (MBA) 

(Zheng 2015, Sadollah et al. 2015, Fan and Yan 2014, 

Hasançebi et al. 2013, Nickabadi et al. 2011, Camp and 

Bichon 2004, Sönmez 2011). In this regard, the efforts on 

developing optimization algorithms mimicking the biology, 

music, physics, social sciences, and natural phenomena are 

still being continued. The rationale behind this interest is 

the abilities of these methods on solving complicated 

optimization problems with different objective functions 

over cost, time, planning, route finding and etc. 

The particle swarm optimization (PSO) is one of the 

optimization algorithms developed by imitating the social 

behavior of the flock of birds, bees, and fish. It tries to 

generate mathematical model by considering these animals’ 

physical movements to avoid predators, and to seek the best 

food sources (Kennedy and Eberhart 1995). After 

recognizing affirmative features of the PSO, e.g. faster 

convergence rate and easier programming, it was employed 

in various fields. However, it was observed from these 

applications that the standard PSO has some drawbacks 

such as staggering of the convergence in later stages of the 

process. To relieve the shortcomings of the standard PSO, 

the different forms of this technique were developed to 
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Abstract.  This study presents a particle swarm optimization algorithm integrated with weighted particle concept and improved 

fly-back technique. The rationale behind this integration is to utilize the affirmative properties of these new terms to improve the 

search capability of the standard particle swarm optimizer. Improved fly-back technique introduced in this study can be a proper 

alternative for widely used penalty functions to handle existing constraints. This technique emphasizes the role of the weighted 

particle on escaping from trapping into local optimum(s) by utilizing a recursive procedure. On the other hand, it guaranties the 

feasibility of the final solution by rejecting infeasible solutions throughout the optimization process. Additionally, in contrast 

with penalty method, the improved fly-back technique does not contain any adjustable terms, thus it does not inflict any extra ad 

hoc parameters to the main optimizer algorithm. The improved fly-back approach, as independent unit, can easily be integrated 

with other optimizers to handle the constraints. Consequently, to evaluate the performance of the proposed method on solving 

the truss weight minimization problems with discrete variables, several benchmark examples taken from the technical literature 

are examined using the presented method. The results obtained are comparatively reported through proper graphs and tables. 

Based on the results acquired in this study, it can be stated that the proposed method (integrated particle swarm optimizer, iPSO) 

is competitive with other metaheuristic algorithms in solving this class of truss optimization problems. 
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improve its performances (Fan and Yan 2014, Nickabadi et 

al. 2011, Li et al. 2014). He et al. (2004) improved the 

standard PSO algorithm employing the fly-back mechanism 

to handle the constraints of the mechanical design 

optimization problems. 

Generally, in all metaheuristic methods based on the 

swarm intelligence, the process of using the information 

stored in the proper agents (e.g., global best particle) in the 

colony is very important (Camp and Bichon 2004, Kaveh 

and Talatahari 2009b, Chen and Zhao 2009, Hasançebi 

2008, Perez and Behdinan 2007). However, putting all 

workload just on some agents means to waste the probable 

searching capacity of the other agents. So, incorporating of 

higher number of agents on the navigation of the colony 

over the search space can play a determinative role on the 

performance of a metaheuristic method. In this respect, this 

study presents an integrated particle swarm optimizer 

(iPSO) with the weighted particle concept and the improved 

fly-back technique. The iPSO improves the search 

capability of the standard PSO algorithm by adding these 

approaches. In this study, the improved fly-back is 

introduced and used to handle the problem constraints. The 

improved fly-back approach uses a recursive algorithm on 

the weighted particle to hold the violated agent(s) into the 

feasible search space during the optimization process. Thus, 

it guarantees the feasibility of the final solution. On the 

other hand, since the weighted particle is the weighted 

average of all particles, such an approach increases the 

participation level of all particles in navigating of the 

swarm. Also, in contrast with standard PSO, which applies 

just two significant particles (i.e., global best and best prior 

position of the current particle) to conduct the swarm, iPSO 

additionally uses the weighted particle to form flying paths 

for particles. In later sections, the corresponding terms of 

the proposed method are illustrated in detail. Also, the 

performance of the proposed iPSO is tested through several 

trusses weigh minimization problems. 

 

 

2. Particle swarm optimization 
 

Particle swarm optimization (PSO) inspired form the 

behavior of animals’ colony in the nature like birds and 

fishes (Kennedy and Eberhart 1995). In this method, a 

group of particles called swarm are first randomly 

generated. Each particle is a potential solution to the 

problem. The swarm iteratively flies over the problem 

domain for a unit of time. At the end of iteration, every 

particle finds its own new position. Subsequently, the 

quality of recent positions of each particle is evaluated via 

calculating a proper objective function. In the end of 

iteration, the best particle’s location is identified. The 

position updating process of the ith particle in iteration is 

formulated as below 
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in which, c1 and c2 are two positive constants of 

acceleration, r1 and r2 are two uniform random values 

selected from U (0, l), xi and Vi represent the position and 

the velocity of the ith particle, respectively. w  is the 

inertia to consider the effect of initial velocity of particle. 

P
ix  is the previous best position of ith particle so called 

Pbest and x
G
 is the global best position among the swarm so 

called Gbest. Finally, superscripts “t” and “t+1” denote the 

current step and the next step, respectively. 

 

2.1 Weighted particle 
 

The weighted particle is defined as the weighted average 

of all particles. Indeed, it is the gravity center of Pbest’s 

swarm, thus, its position is determined as below (Li et al. 

2014) 

1

M
W W P

i i

i

x INT c x


 
  

 
  (3) 

ˆˆ=
=

∑
1

M

i

W
i

W
i

W
i ccc  (4) 

( )

( ) ( )

Mi

xfxf

xfxf

c
P
k

Mk

P
k

Mk

P
i

P
k

MkW
i

...,,,=

+)(min)(max

+)()(max

=ˆ

21

-

-

≤≤1≤≤1

≤≤1

ε

ε

 (5) 

In Eqs. (3)-(5), M is the number of particles, the operator 

INT(.) returns the integer part of any variable, x
W is the 

position of the weighted particle, W
iĉ  is the weighted 

constant of each particle. f(.) indicates the objective 

function of the problem. ( ))(max P
k

Mk
xf

≤≤1
 and 

( ))(min P
k

Mk
xf

≤≤1
 are the worst and best fitness values in the 

Pbest, respectively. 𝜀  (=0.001) is the small positive 

number to prevent division by zero condition.  

 

2.2 Improved fly-back technique to handle constraints 
 

In many engineering problems, several boundary 

conditions should be satisfied to obtain a feasible and 

meaningful solution. The common way to handle the 

constraints of the optimization problems is to apply a proper 

penalty function to penalize the infeasible solutions. Two 

drawbacks can be considered for such an approach. First, it 

requires appropriate penalty function which has own tuning 

parameter(s). Adjusting these parameters is tedious 

especially when the main metaheuristic algorithm also has 

its own ad hoc parameters. Second, it does not guarantee the 

feasibility of the final solution. Some investigations showed 

that this technique might cause a reduction in the efficiency 

of the applied optimization algorithm (Coello-Coello 2002). 

The fly-back mechanism (He et al. 2004) is one of the 

methods proposed to relieve this problem. In this study, the 

fly-back mechanism is improved with the concept of 

360



 

An integrated particle swarm optimizer for optimization of truss structures with discrete variables 

weighted particle. For implementing this improvement 

initially, the problem constraints are divided into two 

distinct categories in this study: characteristic and numeric. 

The characteristic constraints are those which require a 

structural analysis to recognize their violations (e.g., 

constraints on allowable stress or displacement). The 

numeric constraints are those which do not require any 

structural analysis to recognize their violations (e.g., 

constraints on cross sectional areas). By these definitions, 

improved fly-back can be implemented via the following 

steps: 

Step 1: Initially, the problem constraints are categorized 

into numeric and characteristic constraints. 

Step 2: During the optimization process, if a particle 

violates the numeric boundary conditions, the 

corresponding violated components in the particle are 

then replaced with same components in the weighted 

particle. 

Step 3: The new particle is verified. If it is feasible and 

gives a better objective value (i.e., has a lower weight), 

it is replaced with old one. If it is not feasible, the 

particle is rest to its prior best location saved in the 

Pbest matrix. 

By adopting such an approach, three main purposes are 

achieved: (i) the survival chance of the violated particles is 

increased, (ii) the feasibility of the final solution is 

guaranteed, and (iii) the role of the weighted particle is 

highlighted. Former two increase the global search ability 

of the algorithm (i.e., improve exploration), and the last one 

by emphasizing the role of the weighted particle leads to 

higher utilization of this specific particle in guidance of the 

swarm (i.e., improves exploitation). 

 

 

3. Discrete truss optimization problems 
 

Generally, during a structural optimization, it is 

attempted to minimize the weight of structure. Hence, in 

truss optimization problems, the weight of the truss system 

is taken as the objective function of the problem. However, 

some constraints should be satisfied to achieve a feasible 

solution. These constraints can be mathematically expressed 

with some inequalities. Under these circumstances, a 

structural optimization problem and its constraints are 

formulated as below 

{ } DdxxxxX dj ,,,=,...,,...,,= 2121  (6) 

QqXgq ,,,=)( 210≤  (7) 

in which, x1,x2,…,xj,...,xd
 

are design variables (e.g., 

components of the particle), X is a vector (e.g., a particle), 

and D is the problem dimension (i.e. number of design 

variables). Also, gq and Q are the constraints of the problem 

and their number, respectively. In an optimization problem, 

the main goal is to find the X vector, such that it produces 

the minimum value of the fitness function, f(X), while 

satisfies the all gq(X) limitations. In a discrete optimization 

problem, the particles can fly continuously over the domain, 

while they can lie just on the specified integer points. This 

continues movement is converted into the discrete point by 

employing an appropriate mapping function. It means that, 

in a discrete optimization problem, xj should be an integer 

number that refers to the sequence number of the specific 

variable in a predefined set (e.g., S=set of acceptable cross-

sectional area numbers). The mapping process is 

mathematically shown as 

{ } qissssS qi ≤≤121 ,,,,,=   (8) 

ij sxh =)(  (9) 

in which, h(.) is the mapping function. It means, 𝑥𝑗 is an 

integer number which 𝑥𝑗 ∈  *1,2,3, … , 𝑞+ and ℎ(𝑥𝑗) ∈  𝑆.  

 

 

4. Integrated particle swarm optimization (iPSO) 
 

In the standard PSO algorithm, when a particle stands 

very close to its own previous best position and/or to the 

global best particle, the guidance role of one or both 

particles can be highly reduced or even be vanished. It 

means if either one or both points are trapped into a local 

optimum, any particles located much closer to them are also 

trapped into the local optimum. To prevent such a condition, 

iPSO uses the weighted particle as a third guidance point. 

Accordingly, the corresponding formulation for iPSO is 

formulated for the discrete optimization problems as 
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where φ1i =C1 x rand1i , φ2i =C2 x rand2i , φ3i =C3 x rand3i , φ4i 

=C4 x rand4i. The operator INT(.) returns the integer part of 

any variable. Superscripts “t” and “t+1” denote current and 

next time steps, respectively. Also, i
t ν1+  is the updated 

velocity, wi is the inertia factor of current velocity, and i
t ν  

is the current velocity of i
th

 particle. C1=−(𝜑2𝑖 + 𝜑3𝑖), 

C2=2, C3=1, and C4=2 are accelerator factors, rand𝑘𝑖  

where k∈{0,1,2,3,4}, is a random number selected from [0, 

1] interval, P
j

t X  is randomly selected particle from the 

current X
P
 vector. Also, 

t
X

G
 is the global best particle up to 

recent step at 
t+1

Xi and 
t
Xi which are the updated and the 

current position of the i
th

 particle, respectively. Also, 
t
X

W is 

the weighted particle calculated for the current step. Li et al. 

(2014) tested the performances of this formulation on 

optimizing the scalar functions with continuous search 

spaces. Based on those tests, in each iteration, w is 

randomly selected from [0.5, 0.55] and α=0.4. 

The iPSO uses improved fly-back method to handle the 

constraints of the problem and to keep all solutions in the 

feasible area during the whole optimization process. The  
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weighted particle improves the flight path of the particles 

flying excessively close to either own prior best point stored 

in Pbest or global best point (Gbest). On the other hand, 

since the weighted particle is the weighted average of all 

particles, it makes possible to share the information 

between all particles in the swarm. The pseudo-code for the 

proposed iPSO method is shown in Table 1. 

 

 

5. Numerical examples 
 

Design examples of 10, 25 and 72 and 244 bar truss 

structures are solved to demonstrate the effectiveness and 

robustness of the proposed iPSO. The design examples 

considered were already optimized by researchers using 

different algorithms, i.e., genetic algorithm (GA), harmony 

search (HS), particle swarm optimization and heuristic 

particle swarm optimization (HPSO), mine blast algorithm 

(MBA) and particle swarm ant colony optimization 

(DHPSACO). The results obtained using the iPSO and the 

reported ones are tabulated to make a comparison among 

them. 

In this study, the optimizations process is repeated 20 

times by the swarms consisting of 10 and 20 particles for 

the first three and the last examples, respectively. The best 

solution is presented as the result of the corresponding 

 

Fig. 1 10-bar truss structure 

 

 

examples together with the statistical results of 20 

independent runs. The algorithm is coded in MATLAB 

environment, and all computations are performed in a 

computer with the CORE i7 @ 2.2 GHz and 6.0 MB of 

RAM. The structural analysis is performed in terms of a 

program based on the finite element method (FEM).  

 

5.1 10 bar planar truss structure 
 

A 10-bar truss structure shown in Fig. 1 is studied as a 

first example for comparison purpose. This truss was 

optimized by Wu and Chow (1995) using GA, by Li et al. 

(2009) using PSO, PSOPC, and HPSO, and Sadollah et al. 

(2012) using MBA. Fig. 1 also illustrates the geometry, 

supporting, and loading conditions for the truss.  

The material density is 0.1 lb/in
3
, and Young’s modulus 

is 10000 ksi. The stress limitations of the members are 

considered as ±25 ksi, and the displacement limitations of 

all nodes in both main directions (x and y) are ±2 in. The 

loading conditions P1=100 and P2=0 kips imposed to nodes 

3, 4, 5 and 6 in y direction are considered. Two cases of 

discrete variables are studied for this example. The discrete 

variables are selected from the set D={1.62, 1.80, 1.99, 

2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 

3.55, 3.63, 3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 4.80, 

4.97, 5.12, 5.74,7.22, 7.97, 11.50, 13.50, 13.90, 14.20, 

15.50, 16.00, 16.90, 18.80, 19.90, 22.00, 22.90, 26.50, 

30.00, 33.50} in
2
 for Case 1, and from the set D={0.1, 0.5, 

1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 

7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 11.5, 12.0, 12.5, 

13.0, 13.5, 14.0, 14.5, 15.0, 15.5, 16.0, 16.5, 17.0, 17.5, 

18.0, 18.5, 19.0, 19.5, 20.0, 20.5, 21.0, 21.5, 22.0, 22.5, 

23.0, 23.5, 24.0, 24.5, 25.0, 25.5, 26.0, 26.5, 27.0, 27.5, 

28.0, 28.5, 29.0, 29.5, 30.0, 30.5, 31.0, 31.5} in
2
 for Case 2. 

A maximum number of iteration is taken into account as 

1000 in the design process of this example. Tables 2-3 show 

the best designs obtained by using iPSO and the methods 

employed in the related works for Case 1 and 2, 

respectively.  

The result obtained in this study using the iPSO 

produces lighter design than other methods for Case 1. For 

Case 2, the iPSO finds lighter design than PSO, PSOPC, 

HPSO, slightly difference design than MBA, and heavier 

than GA. 

Typical design histories for the best design of the 10-bar 

truss are illustrated in Figs. 2(a)-(b) for Case 1 and Case 2, 

respectively. 

Table 1 The pseudo-code for iPSO 

t=1; 

Initialize positions and velocities of all particles randomly; 

WHILE (the termination conditions are not occurred) 

   Calculate the weighed particle xw using Eqs. (3)-(5) 

      FOR (each particle in the swarm) 

         IF (rand0i ≤ α) 

            Generate velocity vector according Eq. (10) 

         ELSEIF (rand0i > α) 

            Generate velocity vector according Eq. (11) 

         END IF 

            Update the position of the current particle (xi)  

      END FOR 

   Numeric constraints violation controlling:  

       If any component of current particle violates the numeric 

constraint (e.g., cross sections), replace it by another one, 

which is selected from corresponding component stored in 

the weighted particle.  

   Characteristic constraints violation controlling: 

      If the current particle violates characteristic constraints 

(e.g., allowable deflections), reset it to its previous best 

position stored in the Pbest swarm. 

   Evaluate objective function for the current particle f(xi) and 

also for the weighted particle f(xw) 

   IF (f(xi)<f( Pbestx i ))   (i.e., Pbestx i  is the previous best 

position of the current particle) 

      Update Pbest ( Px )   (i.e., replace Pbestx i  with xi) 

   ELSEIF (f(xi)<f(xG)) 

       Set xG = xi 

   ELSE IF (f(xw) < f(xG)) 

        Set xG = xw 

      END IF 

   t = t + 1 

END WHILE 
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Fig. 3 25-bar truss structure 

 

 

5.2 25-bar spatial truss structure 
 

Another problem to test the performance of the iPSO is 

 

 

 

the 25-bar space truss shown in Fig. 3. Members of the truss 

are divided into 8 groups to reduce the search space. The 

displacement limitations for all nodes are ±0.35 in in x, y, 

and z directions. The discrete variables are chosen from the 

set D={0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 

1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.6, 

2.8, 3.0, 3.2, 3.4} in
2
 for Case 1; from the set D={0.01, 0.4, 

0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6, 4.0, 4.4, 4.8, 5.2, 5.6, 

6.0} in
2
 for Case 2; and from the American Institute of Steel 

Construction (AISC) Code given in Table 4 for Case 3. 

Young’s modulus is 10000 ksi, the stress limitations of 

the members are adopted as ±40 ksi, and the material 

density is 0.1 lb/in
3
. Truss structure is subjected to three 

load cases shown in Table 5. 

The best solutions with weights of 484.85 lb, 551.61 lb 

and 540.03 lb obtained by using iPSO and the other 

algorithms are presented in Tables 6, 7, and 8, respectively, 

for Case 1, Case 2, and Case 3. 500 iterations are taken as 

the maximum iteration number. 

For Case 1, the result of iPSO is similar to HS (Lee and 

Geem 2004), HPSO (Li et al. 2009), and MBA (Sadollah et 

al. 2012), but in Cases 2 and 3 the designs obtained by 

iPSO are better than all results achieved by distinct 

Table 2 Optimal design comparison for the 10-bar planar truss structure (Case 1) 

Variables 

(in2) 

Wu and Chow 

(1995) GA 

Li et al. (2009) 

PSO 

Li et al. (2009) 

PSOPC 

Li et al. (2009) 

HPSO 

Sadollah et al. 

(2012) MBA 

This study  

iPSO 

A1 33.50 30.00 30.00 30.00 30.00 33.50 

A2 1.62 1.62 1.80 1.62 1.62 1.62 

A3 22.00 30.00 26.50 22.90 22.90 22.90 

A4 15.50 13.50 15.50 13.50 16.90 15.50 

A5 1.62 1.62 1.62 1.62 1.62 1.62 

A6 1.62 1.80 1.62 1.62 1.62 1.62 

A7 14.20 11.50 11.50 7.97 7.97 7..97 

A8 19.90 18.80 18.80 26.50 22.90 22.00 

A9 19.90 22.00 22.00 22.00 22.90 22.00 

A10 2.62 1.80 3.09 1.80 1.62 1.62 

Best weight (lb) 5613.84 5581.76 5593.44 5531.98 5507.75 5491.70 

Worst weight (lb) - - - - 5536.965 5517.12 

Mean weight (lb) - - - - 5527.296 5496.33 

Standard deviation (lb) - 64.079 12.842 3.840 11.38 5.75 

Objective function 

evaluations (OFEs) 
- 50000 50000 20150 3600 2480 

  
(a) Case 1 (b) Case 2 

Fig. 2 Convergence history of the 10-bar truss 
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Table 4 The available cross-section areas from the AISC 

code 

No in2 No in2 No in2 No in2 

1 0.111 17 1.563 33 3.840 49 11.50 

2 0.141 18 1.620 34 3.870 50 13.50 

3 0.196 19 1.800 35 3.880 51 13.90 

4 0.250 20 1.990 36 4.180 52 14.20 

5 0.307 21 2.130 37 4.220 53 15.50 

6 0.391 22 2.380 38 4.490 54 16.00 

7 0.442 23 2.620 39 4.590 55 16.90 

8 0.563 24 2.630 40 4.800 56 18.80 

9 0.602 25 2.880 41 4.970 57 19.90 

10 0.766 26 2.930 42 5.120 58 22.00 

11 0.785 27 3.090 43 5.740 59 22.90 

12 0.994 28 1.130 44 7.220 60 24.50 

13 1.000 29 3.380 45 7.970 61 26.50 

14 1.228 30 3.470 46 8.530 62 28.00 

15 1.266 31 3.550 47 9.300 63 30.00 

16 1.457 32 3.630 48 10.850 64 33.50 

 

Table 5 The loads Cases 1, 2 and 3 for the 25-bar truss 

structure 

 Load (kips) 

 Case 1 Case 2 Case 3 

Nodes Px Py Pz Px Py Pz Px Py Pz 

9 1 -10 -10 0 20 -5 1 10 -5 

10 0 -10 -10 0 -20 -5 0 10 -5 

7 0.5 0 0    0.5 0 0 

5 0.6 0 0    0.5 0 0 

 

 

optimization methods. 

Figs. 4(a)-(c) show the typical weight histories and the 

convergence rates of the 25-bar truss during the iPSO 

process.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 72-bar truss structure 

 

 

5.3 72-bar space truss structure 
 

The 72-bar spatial truss structure and its configuration 

are demonstrated in Fig. 5 with nodes numbering scheme. 

The material density is 0.1 lb/in
3
 and Young’s modulus is 

10000 ksi for the all members. 

The stress limitation is ±25 ksi, and the displacement 

limitation is ±0.25 for all nodes in three directions. To 

reduce the size of the search space, the members are divided 

into 16 groups in symmetrical manner. There are two 

loading conditions for this example shown in Table 9. For 

Case 1, the discrete variables are chosen from the set 

D={0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,0.9,1.0, 1.1,1.2, 

1.3,1.4, 1.5,1.6, 1.7, 1.8, 1.9, 2.0, 2.1,2.2, 2.3,2.4, 2.5, 2.6, 

2.7, 2.8, 2.9, 3.0, 3.1, 3.2} in
2
. However, the set taken from 

American Institute of Steel Construction (AISC) Code and 

shown in Table 4 is considered for Case 2. 

Table 3 Optimal design comparison for the 10-bar planar truss structure (Case 2) 

Variables 

(in2) 

Wu and Chow 

(1995) GA 

Li et al. 

(2009) PSO 

Li et al. (2009) 

PSOPC 

Li et al. (2009) 

HPSO 

Sadollah et al. 

(2012) MBA 

This study  

iPSO 

A1 33.50 24.50 25.50 31.50 29.50 29.50 

A2 0.50 0.10 0.10 0.10 0.10 0.10 

A3 16.50 22.50 23.50 24.50 24.00 23.00 

A4 15.00 15.50 18.50 15.50 15.00 16.00 

A5 0.10 0.10 0.10 0.10 0.10 0.10 

A6 0.10 1.50 0.50 0.50 0.50 0.50 

A7 0.50 8.50 7.50 7.50 7.50 7.50 

A8 18.00 21.50 21.50 20.50 21.50 21.00 

A9 19.50 27.50 23.50 20.50 21.50 22.00 

A10 0.50 0.10 0.10 0.10 0.10 0.10 

Best weight (lb) 4217.30 5243.71 5133.16 5073.51 5067.33 5067.30 

Worst weight (lb) - - - - - 5072.98 

Mean weight (lb) - - - - - 5067.11 

Standard deviation (lb) - - - - 0 1.08 

Objective function 

evaluations (OFEs) 
- 50000 50000 25000 3000 2050 
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Table 10 and Fig. 6(a), respectively, show the results 

and the weight history for 72-bar truss obtained by iPSO for 

Case 1. In addition, numerical solutions and typical weight 

history obtained for Case 2 are demonstrated in Table 11 

and Fig. 6(b), respectively. 

By comparing the results reported in Tables 10-11 for 

both cases, it can be observed that the results obtained with 

iPSO are similar to MBA for Case 1 and better than the 

others for Case 2. 

 

5.4 244-bar space truss tower structure 
 

A 244-bar transmission tower displayed in Fig. 7 is 

studied as the last example to demonstrate the performance 

of the proposed method. The members of this tower are 

collected into 26 independent groups. The multiple loading 

condition and allowable nodal displacement are presented 

in Table 12. The allowable cross sections are picked from 

single angle structural profiles given in AISC code, that are 

tabulated in Table 13. 

 

 

 

Young’s modulus of the material is taken as 210 

kN/mm
2
, the allowable tensile stress is considered as 140 

N/mm
2
 while the compressing stress is limited according to 

the AISC-ASD89 design code 

{
𝜎𝑖

+ = 0.6𝐹𝑦          𝜎𝑖 ≥ 0  

𝜎𝑖
−                          𝜎𝑖 < 0

   (12) 

where σi
+  and σi

−  are tensile and compressive stresses, 

respectively. In which σi
− varies by the slenderness ratio as 

follows 

𝜎𝑖
− = *(1 −

𝜆𝑖
2

2𝐶𝑐
2

) 𝐹𝑦 (
5

3
+

3𝜆𝑖

8𝐶𝑐

−
𝜆𝑖

3

8𝐶𝑐
3

)⁄ +  

𝑓𝑜𝑟 𝜆𝑖 < 𝐶𝑐 

(13a) 

𝜎𝑖
− =

12𝜋2𝐸

23𝜆𝑖
2          𝑓𝑜𝑟 𝜆𝑖 ≥ 𝐶𝑐 

(13b) 

𝐶𝑐 is the slenderness ratio (k) dividing the elastic and 

inelastic buckling regions, defined as follows 

Table 6 Optimal design comparison for the 25-bar spatial truss structure (Case 1) 

Variables 

(in2) 

Wu and Chow 

(1995) GA 

Li (2015) 

GA 

Lee and Geem 

(2004) HS 

Li et al. 

(2009) PSO 

Li et al. (2009) 

PSOPC 

Li et al. 

(2009) HPSO 

Sadollah et al. 

(2012) MBA 

This study  

iPSO 

A1 0.10 0.10 0.10 0.40 0.10 0.10 0.10 0.10 

A2 - A5 0.50 1.80 0.30 0.60 1.10 0.30 0.30 0.30 

A6 - A9 3.40 2.30 3.40 3.50 3.10 3.40 3.40 3.40 

A10 - A11 0.10 0.20 0.10 0.10 0.10 0.10 0.10 0.10 

A12 - A13 1.50 0.10 2.10 1.70 2.10 2.10 2.10 2.10 

A14 - A17 0.90 0.80 1.00 1.00 1.00 1.00 1.00 1.00 

A18 - A21 0.60 1.80 0.50 0.30 0.10 0.10 0.50 0.50 

A22 - A25 3.40 3.00 3.40 3.40 3.50 3.50 3.40 3.40 

Best weight (lb) 486.29 546.01 484.85 486.54 490.16 484.85 484.85 484.85 

Worst weight (lb) - - - - - - 485.048 484.85 

Mean weight (lb) - - - - - - 484.885 484.85 

Standard deviation 

(lb) 
- - - 256.7491 1.04208 0.02664 7.2E-02 0 

OFEs - - - 50000 50000 3750 2150 620 

Table 7 Optimal design comparison for the 25-bar spatial truss structure (Case 2) 

Variables 

(in2) 

Wu and 

Chow 

(1995) GA 

Li (2015) 

GA 

Lee and 

Geem 

(2004) HS 

Li et al. 

(2009) 

PSO 

Li et al. 

(2009) 

PSOPC 

Li et al. 

(2009) 

HPSO 

Sadollah et 

al. (2012) 

MBA 

Kaveh and 

Talatahari (2009a) 

DHPSACO 

This 

study  

iPSO 

A1 0.40 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

A2 - A5 2.00 1.60 2.00 2.00 2.00 2.00 2.00 1.60 1.60 

A6 - A9 3.60 3.60 3.60 3.60 3.60 3.60 3.60 3.20 3.20 

A10 - A11 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

A12 - A13 0.01 0.01 0.01 0.40 0.01 0.01 0.01 0.01 0.01 

A14 - A17 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.8 0.8 

A18 - A21 2.00 2.00 1.60 1.60 1.60 1.60 1.60 2.0 2.0 

A22 - A25 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.4 2.4 

Best weight (lb) 563.52 568.69 560.59 566.44 560.59 560.59 560.59 551.61 551.61 

Worst weight (lb) - - - - - - 560.59 - 551.61 

Mean weight (lb) - - - - - - 560.59 - 551.61 

Standard deviation 

(lb) 
- - - - - - 0 - 0 

OFEs - - - 50000 1500 7500 950 5000 820 
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Table 9 The loads cases for the 72-bar truss structure 

 Load (kips) 

 Case 1 Case 2 

Nodes Px Py Pz Px Py Pz 

17 5.0 5.0 -5.0 0.0 0.0 -5.0 

18 0.0 0.0 0.0 0.0 0.0 -5.0 

19 0.0 0.0 0.0 0.0 0.0 -5.0 

20 0.0 0.0 0.0 0.0 0.0 -5.0 

 

 

 

𝐶𝑐 = √
2𝜋2𝐸

𝐹𝑦

 (14) 

The maximum allowable slenderness ratio, respectively, 

is 200 and 300 for compression and tension elements. 

According to the AISC-ASD code provisions, this 

constraint can be identified as follows 

𝜆𝑖 =
𝑘𝑖𝑙𝑖

𝑟𝑖

≤ {
300   for tension members          
 200   for compression members

 (15) 

Table 8 Optimal design comparison for the 25-bar spatial truss structure (Case 3) 

Variables 

(in2) 

Wu and Chow 

(1995) GA 

Li et al. (2009)  

PSO 

Li et al. (2009) 

PSOPC 

Li et al. (2009) 

HPSO 

Sadollah et al. 

(2012) MBA 

Kaveh and 

Talatahari (2009a) 

DHPSACO 

This study  

iPSO 

A1 0.307 1.0 0.111 0.111 0.111 0.111 0.111 

A2 - A5 1.990 2.62 1.563 2.130 2.130 2.130 2.38 

A6 - A9 3.130 2.62 3.380 2.880 2.880 2.880 2.63 

A10 - A11 0.111 0.25 0.111 0.111 0.111 0.111 0.111 

A12 - A13 0.141 0.307 0.111 0.111 0.111 0.111 0.111 

A14 - A17 0.766 0.602 0.766 0.766 0.766 0.766 0.766 

A18 - A21 1.620 1.457 1.990 1.620 1.620 1.620 1.8 

A22 - A25 2.620 2.880 2.380 2.620 2.620 2.620 2.63 

Best weight (lb) 556.43 567.49 556.90 551.14 551.14 551.14 540.03 

Worst weight (lb) - - - - - - 542.21 

Mean weight (lb) - - - - - - 540.67 

Standard deviation 

(lb) 
- - - - - - 0.89 

OFEs - 50000 50000 10000 2400 5000 1340 

  
(a) Case 1 (b) Case 2 

 
(c) Case 3 

Fig. 5 Convergence history of the 25-bar truss 
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where λi is slenderness ration of the ith member; li and ri are 

the element length and the radius of gyration, respectively. 

If the constraint on slenderness ratio of compression 

elements is not satisfied, the allowable stress must not 

 

 

 

exceed the value obtained by (
12π2E

23λi
2 ) (AISC-ASD, 1989). 

Table 14 shows the statistical data of solution process 

and optimum cross-sectional areas obtained in this study. In 

Table 10 Optimal design comparison for the 72-bar space truss structure (Case 1) 

Variables 

(in2) 

Wu and Chow 

(1995) GA 

Li et al. (2005)  

HS 

Li et al. (2009)  

PSO 

Li et al. (2009) 

PSOPC 

Li et al. (2009) 

HPSO 

Sadollah et al. 

(2012) MBA 

This study  

iPSO 

A1- A4 1.5 1.9 2.6 3.0 2.1 2.0 2.0 

A5 - A12 0.7 0.5 1.5 1.4 0.6 0.6 0.5 

A13 - A16 0.1 0.1 0.3 0.2 0.1 0.4 0.1 

A17 - A18 0.1 0.1 0.1 0.1 0.1 0.6 0.1 

A19 - A22 1.3 1.4 2.1 2.7 1.4 0.5 1.3 

A23 - A30 0.5 0.6 1.5 1.9 0.5 0.5 0.5 

A31 - A34 0.2 0.1 0.6 0.7 0.1 0.1 0.1 

A35 - A36 0.1 0.1 0.3 0.8 0.1 0.1 0.1 

A37 - A40 0.5 0.6 2.2 1.4 0.5 1.4 0.5 

A41 - A48 0.5 0.5 1.9 1.2 0.5 0.5 0.5 

A49 - A52 0.1 0.1 0.2 0.8 0.1 0.1 0.1 

A53 - A54 0.2 0.1 0.9 0.1 0.1 0.1 0.1 

A55 - A58 0.2 0.2 0.4 0.4 0.2 1.9 0.2 

A59 - A66 0.5 0.5 1.9 1.9 0.5 0.5 0.6 

A67 - A70 0.5 0.4 0.7 0.9 0.3 0.1 0.4 

A71 - A72 0.7 0.6 1.6 1.3 0.7 0.1 0.6 

Best weight (lb) 400.66 387.94 1089.88 1069.8 388.94 385.542 385.543 

Worst weight (lb) - - - - - 390.615 389.09 

Mean weight (lb) - - - - - 387.665 387.11 

Standard deviation 

(lb) 
- - - - - 1.62 0.62 

OFEs - - 50000 50000 12500 9450 2450 

Table 11 Optimal design comparison for the 72-bar space truss structure (Case 2) 

Variables 

(in2) 

Wu and Chow 

(1995) GA 

Li et al. (2009)  

PSO 

Li et al. (2009) 

PSOPC 

Li et al. (2009) 

HPSO 

Sadollah et al. 

(2012) MBA 

Kaveh and Talatahari 

(2009a) DHPSACO 

This study  

iPSO 

A1- A4 0.196 7.220 4.490 4.970 0.196 1.800 1.800 

A5 - A12 0.602 1.800 1.457 1.228 0.563 0.442 0.442 

A13 - A16 0.307 1.130 0.111 0.111 0.442 0.141 0.111 

A17 - A18 0.766 0.196 0.111 0.111 0.602 0.111 0.111 

A19 - A22 0.391 3.090 2.620 2.880 0.442 1.228 1.266 

A23 - A30 0.391 0.785 1.130 1.457 0.442 0.563 0.602 

A31 - A34 0.141 0.563 0.196 0.141 0.111 0.111 0.111 

A35 - A36 0.111 0.785 0.111 0.111 0.111 0.111 0.111 

A37 - A40 1.800 3.090 1.266 1.563 1.266 0.563 0.563 

A41 - A48 0.602 1.228 1.457 1.228 0.563 0.563 0.563 

A49 - A52 0.141 0.111 0.111 0.111 0.111 0.111 0.111 

A53 - A54 0.307 0.563 0.111 0.196 0.111 0.250 0.111 

A55 - A58 1.563 1.990 0.442 0.391 1.800 0.196 0.196 

A59 - A66 0.766 1.620 1.457 1.457 0.602 0.563 0.563 

A67 - A70 0.141 1.563 1.228 0.766 0.111 0.442 0.391 

A71 - A72 0.111 1.266 1.457 1.563 0.111 0.563 0.563 

Best weight (lb) 427.203 1209.48 941.8 933.09 390.73 393.80 389.87 

Worst weight (lb) - - - - 399.49 - 397.77 

Mean weight (lb) - - - - 395.432 - 394.01 

Standard deviation 

(lb) 
- - - - 3.04 - 2.80 

OFEs - 50000 50000 12500 9450 10650 1980 

367



 

Ali Mortazavi, Vedat Toğan and Ayhan Nuhoğlu 

 

Table 12 Load cases and allowable nodal displacements for 

244-bar transmission tower 

 Case 1 Case 2 

 
Loading  

(kN) 

Displacement 

limitation (mm) 

Loading  

(kN) 

Displacement 

limitation (mm) 

Joint 

number 
x z x y x z x y 

1 10 −30 45 15 0 −360 45 15 

2 10 −30 45 15 0 −360 45 15 

17 35 −90 30 15 0 −180 30 15 

24 175 −45 30 15 0 −90 30 15 

25 175 −45 30 15 0 −90 30 15 

 

 

addition, Table 14 also compares the results achieved with 

those available in the literature. 

Weight history for this example is given in Fig. 8. Based 

on the provided data, the iPSO finds optimum volume as 

649,109.41 cm
3
 which is smaller than other cited results 

used different algorithms. Standard deviation of the entire 

process is 9.31 cm
3
 over total number of runs, which  

 

 

Fig. 8 Volume history of the 244-bar truss tower 

 

 

indicates that deviation of the solutions around the mean 

value is in acceptable range for such a truss sizing 

optimization problem. Also, it is important to point out that 

since the discrete set of available sizing variables is 

employed in this example, the obtained result has more 

practical validity. 

 

  
(a) Case 1 (b) Case 2 

Fig. 6 Convergence history of the 72-bar truss 

 

 

Fig. 7 244-bar truss tower structure 
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Table 14 Optimal design comparison for the 244-bar space 

truss tower 

Element 

group  

Togan and 

Daloglu (2008) 

AGA 

Kaveh et al. 

(2016) 

MMSM 

This study 

iPSO 

1 - L 11/4×11/4×3/16 L 11/4×11/4×3/16 

2 - L 4×4×3/8 L 4×4×3/8 

3 - L 21/2×21/2×3/16 L 2×2×3/16 

4 - L 4×4×5/16 L 4×4×1/4 

5 - L 3×3×3/16 L 3×3×3/16 

6 - L 5×5×7/16 L 4×4×5/16 

7 - L 11/4×11/4×3/16 L 11/4×11/4×3/16 

8 - L 6×6×3/8 L 5×5×7/16 

9 - L 21/2×21/2×3/16 L 2×2×1/8 

10 - L 3×3×3/16 L 2×2×1/8 

11 - L 4×4×7/16 L 4×4×7/16 

12 - L 5×5×3/8 L 5×5×3/8 

13 - L 21/2×21/2×3/16 L 3×3×1/4 

14 - L 2×2×1/8 L 2×2×1/8 

15 - L 6×6×3/4 L 6×6×9/16 

16 - L 4×4×5/16 L 4×4×5/16 

17 - L 2×2×1/8 L 11/4×11/4×3/16 

18 - L 2×2×1/8 L 11/4×11/4×3/16 

19 - L 21/2×21/2×3/16 L 11/4×11/4×3/16 

20 - L 5×5×7/8 L 6×6×9/16 

21 - L 31/2×31/2×1/4 L 31/2×31/2×1/4 

22 - L 21/2×21/2×3/16 L 11/4×11/4×3/16 

23 - L 21/2×21/2×3/16 L 11/4×11/4×3/16 

24 - L 2×2×1/8 L 11/4×11/4×3/16 

 

Table 14 Continued 

Element 

group  

Togan and 

Daloglu 

(2008) AGA 

Kaveh et al. 

(2016) 

MMSM 

This study 

iPSO 

26 - L 11/4×11/4×3/16 L 11/4×11/4×3/16 

Best volume (cm3) 920050 757637.35 649109.41 

Worst volume (cm3) - - 649137.81 

Mean volume (cm3) - - 649157.22 

Stand. 

eviation (cm3) 
  9.31 

OFEs   3580 

 

 

6. Conclusions 

 

In this study, an integrated particle swarm optimization 

(iPSO) algorithm is presented. In comparison with standard 

PSO, the iPSO uses a new concept on velocity updating 

process as well as a new approach to handle the problem 

constraints. They are, respectively, the weighted particle 

concept and improved fly-back approach. Use of the 

weighted particle as a supplementary particle provides more 

efficient flight path for the particles especially for those 

which lie so close to the global best (X
G
) and/or its prior 

best ( P
i

t X ) points. Also, since the weighted particle is the 

weighted average of all agents of the colony, all particles 

based on their objective values play the role on guidance of 

the other particles. On the other hand, iPSO uses improved 

fly-back technique to handle the problem constraints. This 

technique gives an extra chance to the particle(s) which 

violate the existing numeric constraints via changing their 

Table 13 Available cross-sections for 244-bar truss tower 

No Section A in2 (mm2) r in (mm) No Section A in2 (mm2) r in (mm) 

1 L 6×6×1 11.0 (7096.76) 1.17 (29.72) 24 L 31/2×31/2×1/2 3.25 (2096.77) 0.683 (17.35) 

2 L 6×6×7/8 9.73 (6277.41) 1.17 (29.72) 25 L 31/2×31/2×7/16 2.87 (1851.61) 0.684 (17.37) 

3 L 6×6×3/4 8.44 (5445.15) 1.17 (29.72) 26 L 31/2×31/2×3/8 2.48 (1600.00) 0.687 (17.45) 

4 L 6×6×5/8 7.11 (4587.09) 1.18 (29.97) 27 L 31/2×31/2×5/16 2.09 (1348.38) 0.690 (17.53) 

5 L 6×6×9/16 6.43 (4148.38) 1.18 (29.97) 28 L 31/2×31/2×1/4 1.69 (1090.32) 0.694 (17.63) 

6 L 6×6×1/2 5.75 (3709.67) 1.18 (29.97) 29 L 3×3×1/2 2.75 (1774.19) 0.584 (14.83) 

7 L 6×6×7/16 5.06 (3264.51) 1.19 (30.23) 30 L 3×3×7/16 2.43 (1567.74) 0.585 (14.86) 

8 L 6×6×3/8 4.36 (2812.90) 1.19 (30.23) 31 L 3×3×3/8 2.11 (1361.29) 0.587 (14.91) 

9 L 6×6×5/16 3.65 (2354.83) 1.20 (30.48) 32 L 3×3×5/16 1.78 (1148.38) 0.589 (14.96) 

10 L 5×5×7/8 7.98 (5148.38) 0.973 (24.71) 33 L 3×3×1/4 1.44 (929.03) 0.592 (15.04) 

11 L 5×5×3/4 6.94 (4477.41) 0.975 (24.77) 34 L 3×3×3/16 1.09 (703.22) 0.596 (15.14) 

12 L 5×5×5/8 5.86 (3780.64) 0.978 (24.84) 35 L 21/2×21/2×1/2 2.25 (1451.61) 0.487 (12.37) 

13 L 5×5×1/2 4.75 (3064.51) 0.983 (24.97) 36 L 21/2×21/2×3/8 1.73 (1116.13) 0.487 (12.37) 

14 L 5×5×7/16 4.18 (2696.77) 0.986 (25.04) 37 L 21/2×21/2×5/16 1.46 (941.93) 0.489 (12.42) 

15 L 5×5×3/8 3.61 (2329.03) 0.990 (25.15) 38 L 21/2×21/2×1/4 1.19 (767.74) 0.491 (12.47) 

16 L 5×5×5/16 3.03 (1954.83) 0.944 (25.25) 39 L 21/2×21/2×3/16 0.902 (581.93) 0.495 (12.57) 

17 L 4×4×3/4 5.44 (3509.67) 0.778 (19.76) 40 L 2×2×3/8 1.36 (877.42) 0.389 (9.88) 

18 L 4×4×5/8 4.61 (2974.19) 0.779 (19.79) 41 L 2×2×5/16 1.15 (741.93) 0.390 (9.91) 

19 L 4×4×1/2 3.75 (2419.35) 0.782 (19.86) 42 L 2×2×1/4 0.938 (605.16) 0.391 (9.93) 

20 L 4×4×7/16 3.31 (2135.48) 0.785 (19.94) 43 L 2×2×3/16 0.715 (461.29) 0.394 (10.00) 

21 L 4×4×3/8 2.86 (1845.16) 0.788 (20.02) 44 L 2×2×1/8 0.484 (312.26) 0.398 (10.11) 

22 L 4×4×5/16 2.40 (1548.38) 0.791 (20.09) 45 L 11/4×11/4×3/16 0.434 (280.00) 0.244 (6.198) 

23 L 4×4×1/4 1.94 (1251.61) 0.795 (20.19)     
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inappropriate components (which cause the violation) with 

those available in the weighted particle. In contrast with 

conventional penalty approach, improved fly-back does not 

contain any adjustable ad hoc parameters, thus, it does not 

inflict any extra adjustable parameters to the main optimizer 

engine. Additionally, improved fly-back presented as a 

distinct module can be integrated with any other 

optimization method to handle the constraints.  

It is notable that since improved fly-back keeps all 

particle inside the feasible region, by applying this approach 

obtained the final solution also is feasible. To evaluate the 

performance of proposed iPSO algorithm a series of test 

problems over the truss structures with discrete design 

variables are solved using the present method. Achieved 

results show that the new algorithm is competitive with 

other metaheuristic algorithms on this class of problems. 
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