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1. Introduction 
 

Recently a new class of composite materials known as 

functionally graded materials (FGMs) has attracted 

considerable attention in many various industrial fields. 

These inhomogeneous composites usually are made from a 

mixture of metals and ceramics. In these materials, the 

mechanical properties change from one surface to another. 

The capability of functionally graded (FG) materials can be 

used in nano/microstructures by employing modern 

spattering machines. Meanwhile, nano/micro-beams have 

been widely used in biosensors, atomic force microscope 

and many other micro/nano-electro-mechanical systems 

(Schmid et al. 2009, Kahrobaiyan et al. 2010, Younis et al. 

2003). However, the properties of nano/micro-beams are 

closely related to their microstructures. To understand the 

mechanical behavior of such beams, it is significant to 

consider the size effect that resulting from their 

microstructures. Since the classical continuum theory could 

not captures the size effects, thus the non-classical theories 

such as classical couple stress theory (Mindlin and Tiersten 

1962), the nonlocal elasticity theory (Eringen 1972), and the 

strain gradient theory (Lam et al. 2003) have been 

proposed. 

Linear/nonlinear  vibration  is  very  common  for 

nano/micro-beams  subjected  to  external  forces  in  some 
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basic components of new nanoscale devices such as 

oscillators, and actuators. In this regard, some studies have 

been performed by employing various modified continuum 

theories together with different numerical or analytical 

solutions (Janghorban and Zare 2011, Bayat et al. 2013, 

Thai and Choi 2015, Sedighi et al. 2014, Bagdatli 2015, 

Setoodeh et al. 2015, Malekzadeh and Shojaee 2015, 

Setoodeh et al. 2016, Ehyaei et al. 2016, Ebrahimi and 

Shafiei 2016). Specifically, Malekzadeh and shojaee (2013) 

studied surface and nonlocal effects on the nonlinear 

flexural free vibration of elastically supported non-uniform 

nano-beams using differential quadrature method (DQM) 

based on Euler-Bernoulli and Timoshenko beam theories. 

Shenas and Malekzadeh (2016) presented the influences of 

thermal environment together with the geometrical 

parameters on the free vibration characteristics of the FG 

quadrilateral micro-plates based on the modified strain 

gradient theory using the Chebyshev-Ritz method. Ansari et 

al. (2016) investigated the coupled longitudinal-transverse-

rotational free vibration of post-buckled FG first-order 

shear deformable micro/nano-beams employing generalized 

differential quadrature (GDQ) method. They used Mindlin’s 

strain gradient theory to capture the size dependent features 

of the nanostructures. Jia et al. (2015) examined the size 

effect on the free vibration of geometrically nonlinear FG 

micro-beams under electrical actuation and temperature 

change in the context of Euler-Bernoulli beam theory using 

DQM. Taeprasartsit (2013) developed the large amplitude 

free vibration of thin Euler-Bernoulli FG beams based on 

finite element method.  

However, only few researchers have paid attention to  

 
 
 

Large amplitude free vibration analysis of functionally graded nano/micro 
beams on nonlinear elastic foundation 

 

AliReza Setoodeh

 and Mohammad Rezaeia 

 
Department of Mechanical and Aerospace Engineering, Shiraz University of Technology, Shiraz 71555, Iran 

 
(Received June 25, 2016, Revised August 15, 2016, Accepted August 15, 2016) 

 
Abstract.  The purpose of this paper is to study the geometrically nonlinear free vibration of functionally graded nano/micro 

beams (FGNBs) based on the modified couple stress theory. For practical applications, some analytical expressions of nonlinear 

frequencies for FGNBs on a nonlinear Pasternak foundation are developed. Hamilton’s principle is employed to obtain nonlinear 

governing differential equations in the context of both Euler-Bernoulli and Timoshenko beam theories for a comprehensive 

investigation. The modified continuum theory contains one material length scale parameter to capture the size effect. The 

variation of two-constituent material along the thickness is modeled using Reddy’s power-law. Also, the Mori-Tanaka method 

as an accurate homogenization technique is implemented to estimate the effective material properties of the FGNBs. The results 

are presented for both hinged-hinged and clamped-clamped boundary conditions. The nonlinear partial differential equations are 

reduced to ordinary differential equations using Galerkin method and then the powerful method of homotopy analysis is utilized 

to obtain the semi-analytical solutions. Eventually, the presented analytical expressions are used to examine the influences of the 

length scale parameter, material gradient index, and elastic foundation on the nonlinear free vibration of FGNBs. 
 

Keywords:  modified couple stress theory; nonlinear vibration; functionally graded nano/micro-beam; homotopy analysis 

method 

 



 

AliReza Setoodeh and Mohammad Rezaei 

 

 

the nonlinear vibration of FG nano/micro-beams as a new 

potential application of nanostructures. Asghari et al. 

(2011) presented a size-dependent formulation for 

Timoshenko micro-beams made of FG material using 

modified couple stress theory (MCST). They obtained 

closed-form analytic expressions for the bending and axial 

deformations of beams and also investigated the free 

vibration of simply supported FG beams utilizing the 

Fourier series expansions as a case study. Ke et al. (2012) 

determined the nonlinear vibration frequencies of FG 

Timoshenko micro-beams with different boundary 

conditions employing DQM together with an iterative 

algorithm. They investigated size effect based on MCST 

and showed that the size effect on the nonlinear vibration is 

significant only when the thickness of beam has a similar 

value compared to the length scale parameter. Nateghi and 

Salamat-talab (2013) presented thermal effect on the size-

dependent behavior of FG micro-beams using classical and 

first order shear deformation theories in context of MCST 

using GDQ method. Setoodeh and Afrahim (2014) studied 

nonlinear vibrational behavior of FG Euler-Bernoulli micro-

pipes conveying fluid based on strain gradient theory. They 

used homotopy analysis method (HAM) to obtain the 

results. According to the available literature, no analytical 

expressions for the nonlinear frequencies of FG 

nano/micro-beams have been derived so far. 

The main target of this paper is to develop size-

dependent analytical expressions for the nonlinear vibration 

of FG nano/micro-beams using homotopy analysis method. 

A microstructure-dependent nonlinear Euler-Bernoulli 

(EBT) and Timoshenko beam (TBT) theories which 

account for through-thickness power-law variation of a two-

constituent material are developed in the context of 

modified couple stress theory. The effects of nonlinear 

elastic foundation and boundary conditions are taken into 

account. 

 

 

2. Nonlinear size-dependent equations of motion 
 

Fig. 1 shows a FG nano/micro-beam with length L, 

width b, and thickness h made from a mixture of ceramic 

and metal. In this investigation the top surface of micro-

beam (z=h/2) is ceramic-rich and the bottom surface (z=-h/2) 

 

 

is metal-rich. The beam is resting on a nonlinear Pasternak 

foundation with linear coefficient kl, nonlinear coefficient 

knl and shear coefficient kG. The effective material 

properties of FGNBs are estimated through the Mori-

Tanaka homogenization technique as follow (Ke et al. 

2012) 

(1) 
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(2)

 where K, μ and V denote the bulk modulus, the shear 

modulus and the volume fraction of the materials, 

respectively. The subscripts m and c stand for metal and 

ceramic phases, respectively and e denotes the corresponding 

effective property. The volume fractions of ceramic and 

metal phases are related by 

(3) 1m cV V 
 

(4)  ( ) 0.5
n

cV z z h   

In above formula n is the material gradient index. The 

effective values of the Young’s modulus E and Poisson’s 

ratio  can be expressed in terms of Ke and μe as follows 
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The mass density of the beam is also given by the rule 

of mixture as 

(7) ( ) c c m mz V V     

The equations of motion of the FGNBs are derived 

using Hamilton’s principle. The principle can be stated as 

(8)  
2

1

0
t

t
T U dt     

 

Fig. 1 Schematic configuration of FG nano/micro-beam 
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where T is the kinetic energy, and U is the potential energy 

including the strain and elastic foundation energies. 

According to the modified couple stress theory, the strain 

energy can be written as 

(9)    
1

     , , ,
2

e ij ij ij ij
V

U m dV i j x y z      

where ζij and εij denote the components of the stress and 

strain tensors; mij and χij represent respectively the 

deviatoric part of the couple stress tensor and symmetric 

curvature tensor defined as follows 
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(13) 
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where in all relations (i, j, k=x, y, z), λ and μ are the Lame’s 

constants, l denotes the material length scale parameter. 

Also, ui are the components of the displacement vector and 

θi are the components of the rotation vector which defined 

as 

(14) 
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2.1 Euler-Bernoulli FGNB theory  
 

The displacement field (ux, uz) along the coordinate 

directions (x, z) for an Euler-Bernoulli beam can be given in 

terms of (u, w) which are the displacements along the (x, z) 

coordinate directions of a point on the mid-plane of the 

beam 

(15) 
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According to Eqs. (11) and (15), the only nonzero 

nonlinear strain based on the von Kármán assumptions is 

(16) 
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In view of Eqs. (12)-(15), the nonzero components of 

rotation vector, curvature tensor and couple stress tensor 

can be obtained as 

(17) 
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Thus, the potential energy can be expressed as 
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After substituting appropriate components in Eq. (18), 

the potential energy can be written as 
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where 

(20) 
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The kinetic energy can be obtained as 
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Finally after employing Hamilton’s principle and using 

calculus of variations and then collecting the coefficients of 

(δu, δw), two nonlinear differential equations are obtained 

as follows 
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The stress resultants for the nano/micro-beam are 

defined as 
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(26) 
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In view of Eqs. (25)-(26), Eqs. (22)-(23) can be 

rewritten as below 
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As the value of longitudinal inertia is very small then 

Eq. (27) can be simplified as Nx=Nx0=cte. Thus, Eq. (25) 

can be written as (Ke et al. 2012) 
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By integrating Eq. (29) over the length of the micro-

beam, one obtains 
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If two ends of the beam are immovable, i.e., 

u(L)=u(0)=0, the following relations are respectively 

resulted from Eqs. (30) and (26) 
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By inserting Eq. (31) into (32) and then substituting the 

result into Eq. (28), two nonlinear governing equations are 

reduced to only one nonlinear equation as follow 
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2.2 Timoshenko FGNB theory  
 

The displacement field of the Timoshenko beam theory 

can be written as 

(34) 
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where u, ψ and w, are respectively the axial displacement, 

rotation and deflection of the FGNB. According to Eqs. 

(10)-(11) and the above displacement field, the nonzero 

components of von Kármán nonlinear strain and stress 

tensors are given by 
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where ks=5/6 denotes the shear correction factor. In a 

similar manner, the nonzero components of the rotation 

vector, curvature tensor, and couple stress tensor are 

(36) 
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In view point of Eqs. (35)-(36), the potential energy is 

expressed as 
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Using Eqs. (35)-(36), the potential energy is extended as 
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(38) 

The kinetic energy in terms of displacement and rotation 

components is given by 
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Substituting expressions for δU, and δT into Eq. (8) and 

integrating-by-parts with respect to t as well as x to relieve 

the virtual variations (δu, δψ, δw) of any differentiations, 

three coupled nonlinear governing equations are obtained as 
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Eqs. (41)-(43) can be expressed in terms of the stress 

resultants as 
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1

2

xyx
x

YMu
I I Q

t t x x

  
   

   
 

(46) 

22 2
3

1 2 2 2

1
( )

2

xyx
x l G nl

YQw w w
I N k w k k w

t x x x x x

   
     

      
22 2

3

1 2 2 2

1
( )

2

xyx
x l G nl

YQw w w
I N k w k k w

t x x x x x

   
     

     
 

where 

(47) 

2

1 1

2

1 1

2 2

1 12

1
( )

2

1
( )

2

( )  ,   ( )
2

x xx
A

x xx
A

xy xy x xz s
A A

u w
N dA A B

x x x

u w
M z dA B C

x x x

l w w
Y m dA D Q dA k D

x x x
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2

1 1

2 2

1 12

1
( )

2

1
( )

2

( )  ,   ( )
2

x xx
A

x xx
A

xy xy x xz s
A A

u w
N dA A B

x x x

u w
M z dA B C

x x x

l w w
Y m dA D Q dA k D

x x x
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2

1 1

2 2

1 12

1
( )

2

1
( )

2

( )  ,   ( )
2

x xx
A

x xx
A

xy xy x xz s
A A

u w
N dA A B

x x x

u w
M z dA B C

x x x

l w w
Y m dA D Q dA k D

x x x








 

   
     

   

   
     

   

  
        

  





 
 

2
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2

1 1

2 2

1 12

1
( )

2

1
( )

2

( )  ,   ( )
2

x xx
A

x xx
A

xy xy x xz s
A A

u w
N dA A B

x x x

u w
M z dA B C

x x x

l w w
Y m dA D Q dA k D

x x x








 

   
     

   

   
     

   

  
        

  





 
 

In order to solve the above coupled nonlinear governing 

equation, they are rewritten in the following forms after 

some mathematical manipulations 

(48) 

2 2 2 2 3

1 2 3 4 5 62 2 2 2 3

u u w w w w
u u u u u u

t x x x x x x




      
     

       
2 2 2 2 3

1 2 3 4 5 62 2 2 2 3

u u w w w w
u u u u u u

t x x x x x x




      
     

      
 

(49) 

2 2 2 2 3

1 2 3 4 5 62 2 2 2 3

u w w w w

t x x x x x x

 
      

      
     

       
2 2 2 2 3

1 2 3 4 5 62 2 2 2 3

u w w w w

t x x x x x x

 
      

      
     

      
 

(50) 
2 2 2 2 2 2

2

1 2 3 4 52 2 2 2 2 2

2 4 3
3

6 7 8 9 10 112 4 3

( ) +

         

w w w w u u w w w
w w w w w

t x x x x x x x x x x

w w
w w w w w w w w

x x x x

 

 

          
   

          

   
     

   

 

2 2 2 2 2 2
2

1 2 3 4 52 2 2 2 2 2

2 4 3
3

6 7 8 9 10 112 4 3

( ) +

         

w w w w u u w w w
w w w w w

t x x x x x x x x x x

w w
w w w w w w w w

x x x x

 

 

          
   

          

   
     

   

 

2 2 2 2 2 2
2

1 2 3 4 52 2 2 2 2 2

2 4 3
3

6 7 8 9 10 112 4 3

( ) +

         

w w w w u u w w w
w w w w w

t x x x x x x x x x x

w w
w w w w w w w w

x x x x

 

 

          
   

          

   
     

    

2 2 2 2 2 2
2

1 2 3 4 52 2 2 2 2 2

2 4 3
3

6 7 8 9 10 112 4 3

( ) +

         

w w w w u u w w w
w w w w w

t x x x x x x x x x x

w w
w w w w w w w w

x x x x

 

 

          
   

          

   
     

   

 

where coefficients , ,i i iu w  are defined in Appendix A. 

 

2.3 Boundary conditions 
 

After using Hamilton’s principle, the boundary 

conditions in terms of stress resultants for Euler-Bernoulli 

FGNB can be obtained as 

 0,x L : 

0         0

0         0 

0       0 

x

xyx
x G

x xy

u or N

YMw w
w or N k

x x x x

w
or M Y

x

 

 
    

   


  



(51) 

which are specified respectively for the hinged and clamped 

end supports according to Eqs. (52) and (53) 

 0,x L :    0u  , 0w  , 0x xyM Y   (hinged-hinged) 

 (52) 

 0,x L :    0u  , 0w  , 0
w

x





 (clamped-clamped) 

(53) 

It can be noted that the third boundary condition in Eq. 

(52) is simply reduced to 
2

2
0

w

x





 by ignoring the 

nonlinear term. 

In a similar way, the boundary conditions for 

Timoshenko FGNB can be written as 

 0,x L : 

0         0  

1
0         0 

2

0       0    
2

0       0 

x

xy

x x G

xy

x

xy

u or N

Yw w
w or N Q k

x x x

Y
or M

w
or Y

x



 

 
    

  

  


 



(54) 

In view of Eq. (54), the associated boundary conditions 

of hinged and clamped nano/micro-beams are identified as 

 0,x L :    0u  , 0w  , 0
2

xy

x

Y
M   , 0 xyY   

(hinged-hinged)                           (55) 

 0,x L :    0u  , 0w  , 0  , 0
w

x





 

(clamped-clamped)                                (56) 
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Similarly, it should be noted that the third and fourth 

boundary conditions in Eq. (55) are suppressed to 
2

2
0

w

x





, 

0
x





 when the nonlinear terms are neglected. 

It is found from Eqs. (51) and (54) that the number of 

boundary conditions is increased to eight for the case of the 

non-classical Timoshenko beam model based on the 

modified couple stress theory in comparison to the six 

boundary conditions of classical beam theory (Ma et al. 

2008).   

 

 

3. Galerkin method 
 

Separation of variable analysis and Galerkin procedure 

are used to obtain uncoupled nonlinear ordinary differential 

equations. The transverse displacement of FGNBs can be 

written as 

(57) ( , ) ( ) ( )w x t Q x W t  

where W(t) is a time dependent unknown function. For 

hinged-hinged beams, Q(x) is defined as (Rao 2007) 

(58) 
x

( ) sin( )Q x
L


  

And for the case of clamped-clamped beams, it can be 

written as follows 

(59) 

cosh( ) cos( )
( ) cosh( ) cos( ) sinh( ) sin( )

sinh( ) sin( )

qx qx q q qx qx
Q x c

L L q q L L


   



  
  
   

cosh( ) cos( )
( ) cosh( ) cos( ) sinh( ) sin( )

sinh( ) sin( )

qx qx q q qx qx
Q x c

L L q q L L


   



  
  
  

 

here, c=0.6297 and q=4.730041.  

After substituting Eq. (57) into (33), multiplying the 

result by Q(x) and then integrating over the length of the 

nano/micro-beam, one obtains the following nonlinear time-

dependent ordinary differential equation for the Euler-

Bernoulli beam theory 

(60) 2 3 0W W W W       

where dot-superscript convention indicates the 

differentiation with respect to the time variable t. Also, α, β, 

γ are defined in Appendix A.  

Similar to the Euler-Bernoulli theory, separation of 

variables can be used for Timoshenko nano/micro-beam by 

considering 

(61) 
( , ) ( ) ( ),    ( , ) ( ) ( ),    ( , ) ( ) ( )u x t P x U t x t S x t w x t Q x W t   

 
( , ) ( ) ( ),    ( , ) ( ) ( ),    ( , ) ( ) ( )u x t P x U t x t S x t w x t Q x W t     

The functions P(x), S(x), Q(x) can be respectively 

selected for hinged-hinged and clamped-clamped boundary 

conditions according to Eqs. (62) and (63) 

(62) 
( ) sin( )   ,    ( ) cos( )   ,    ( ) sin( )

x x x
Q x S x P x

L L L

  
  

 

( ) sin( )   ,    ( ) cos( )   ,    ( ) sin( )
x x x

Q x S x P x
L L L

  
    

(63) 

cosh( ) cos( )
cosh( ) cos( ) sinh( ) sin( )

sinh( ) sin( )
( )

2
( ) sin( ) ,    ( ) sin( )

qx qx q q qx qx
c

L L q q L L
Q x

x x
S x P x

L L

 


  



  
   

  

 

 

cosh( ) cos( )
cosh( ) cos( ) sinh( ) sin( )

sinh( ) sin( )
( )

2
( ) sin( ) ,    ( ) sin( )

qx qx q q qx qx
c

L L q q L L
Q x

x x
S x P x

L L

 


  



  
   

  

 

 

cosh( ) cos( )
cosh( ) cos( ) sinh( ) sin( )

sinh( ) sin( )
( )

2
( ) sin( ) ,    ( ) sin( )

qx qx q q qx qx
c

L L q q L L
Q x

x x
S x P x

L L

 


  



  
   

  

 

 

By substituting Eqs. (61) into Eqs. (48)-(50) and 

multiplying the resulted equations respectively by P(x), 

S(x), Q(x) and integrating over the length of the beam, three 

nonlinear time-dependent ordinary differential equations are 

obtained as 

(64) 

2

1 2 3 4

2

1 2 3 4

3

1 2 3 4 5

0

0

0

U W W

U W W

W W W UW W

    

    

      

   

    

     

 

where αi, βi, γi are defined in Appendix A. 

However, it is more convenient to convert the set of 

aforementioned equations into two coupled ordinary 

differential equations as follows 

(65) 

2

1 2 3

3 2

4 5 6 7 8

0

0

z z W z W

W z W z W z W z z W

 

 

   

     
 

The coefficients 
iz  are introduced in Appendix A. 

 

 

4. Analytical solution 
 

The developed nonlinear governing differential 

equations are analytically solved for two different boundary 

conditions using homotopy analysis method. The HAM 

initially introduced by Liao (2004). The HAM is a powerful 

and computationally cost-effective method which is capable 

of solving strongly nonlinear differential equations. At first, 

the solution procedure is briefly explained. For further 

details one can refer to Setoodeh et al. (2016). Consider a 

series of time dependent nonlinear differential equations as 

follows 

(66)  ( ) 0    1,2,...,i iN z t i n   

In Eq. (66), Ni are nonlinear operators, t denotes an 

independent variable and zi(t) are unknown functions. Liao 

(2004) constructed the so-called zero-order deformation 

equations as 

(67)  ,0(1 ) ( ) z ( ( ) ( )i i i i i iq L t;q t) q h t N t;q       

where q is an embedding parameter which changes in the  

range of [0,1], 
i

 are nonzero auxiliary parameters and  

hi(t) denote nonzero auxiliary functions. The function zi,0(t) 

are the initial guesses of zi(t), ϕi(t;q) are unknown functions 

and the selected auxiliary linear operator is designated by L. 

There are some freedoms to select auxiliary linear operator  

and hi(t). The parameters 
i

 and hi(t) are important and  

adjust the convergence region of the solution. Here, when q 

increases from 0 to 1, the solutions ϕi(t;q) alters from the 
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zi,0(t) to the zi(t) solutions. In other words, ϕi take the 

following forms for q=0 and q=1, respectively 

(68) 
  ,0( ;0) z ( ), ( ;1) z ( )i i i it t t t    

By differentiating Eq. (68) with respect to q, the first-

order deformation equation can be obtained as 

(69)   
 ,1 0

( ) ( ) ( ; )i i i i i q
L z t h t N t q


   

 

By expanding ϕi(t;q) in the form of Taylor series, one 

has 

(70) 
,0 ,

1

( ) z ( ( , ) ,m

i i i m

m

t;q t) z x t q




 
   

,

0

( )1

!

m

i
i m m

q

t;q
z

m q










 

 

4.1 Nonlinear frequencies of EBT 
 

It is convenient to transform from the frequency 

domain to the time domain by setting a new variable =ωt 

in Eq. (33), wherein ω denotes the nonlinear frequency. 

Accordingly, it yields 

(71) 

2

2 2 3

2

( )
( ) ( ) ( ) 0

d V
V V V

d


      


     

subject to the following initial condition at the center of the 

FG beam 

(72) 0
0 max

(0)
(0) , 0

dV
V W

d
   

Wmax denotes the maximum amplitude of the vibration. The 

initial guess V0(η) should be selected such that the initial 

condition is satisfied (Jafari-Talookolaei et al. 2011) 

(73) 
0
( ) cos( )maxV W   

The linear and nonlinear operators can be written as 

 (74) 
2

20

( ; )
[ ( ; )] ( ; )

2 d q
L q q

d
ω

 
   


 

 
 
 

 

 (75) 

2

2 2 3

2

( ; )
[ ( ; ), ( )] ( ; ) ( ; ) ( ; )( )

d q
N q q q q q q

d

 
            


   

 
2

2 2 3

2

( ; )
[ ( ; ), ( )] ( ; ) ( ; ) ( ; )( )

d q
N q q q q q q

d

 
            


   

 

Subsequently, the first-order deformation equation is 

found out as below 

 (76) 

22
2 2 301

0 1 0 0 0 02 2

( )( )
( ) ( ) ( ) ( )2 d Vd V

ω V V V V
d d


       

 

  
      

    
22

2 2 301
0 1 0 0 0 02 2

( )( )
( ) ( ) ( ) ( )2 d Vd V

ω V V V V
d d


       

 

  
      

   

 

with initial conditions of 

(77) 1
1

(0)
(0) 0

dV
V

d
   

After inserting the initial guess from Eq. (73) into Eq. 

(76), solving the resulted equation and then equating the 

coefficient of the secular term, η sin(η) to zero, leads to the 

first approximation of the vibration response and the 

nonlinear frequency as 

(78) 

   ' 2 ' 3

1

2 3
' 'max max

2 2

0 0

( ) 2 cos( ) cos ( ) cos( ) cos ( )

,        
3 8

V

W W

      

 
 

 

    

 

 

(79) 
0

23

4
maxW     

The second stage of formulations can be written by 

setting m=2 as 

(80) 
2 1 0

[ ( ; )]
[ ( ) ( )] ( ) ,q

N t q
L V V h t

q


  


 

    
2

2

(0)
(0) 0

dV
V

d
   

Similarly the second analytical approximation for 

FGNBs is obtained 

(81) 

2 2 4 6 1 2 3 4 6

2 3 4 51 32 4 2 1

8 2 7 1 1 1
( ) cos( )

15 3 48 5 8 3

25 3064 80
      - cos ( ) cos ( ) cos ( ) cos ( )   

240 240 15 24

         

V A A A A A A A A

A AA A A A

 

   

   
          
   

       
        

      

 

2 2 4 6 1 2 3 4 6

2 3 4 51 32 4 2 1

8 2 7 1 1 1
( ) cos( )

15 3 48 5 8 3

25 3064 80
      - cos ( ) cos ( ) cos ( ) cos ( )   

240 240 15 24

         

V A A A A A A A A

A AA A A A

 

   

   
          
   

       
        

      

 
2 2 4 6 1 2 3 4 6

2 3 4 51 32 4 2 1

8 2 7 1 1 1
( ) cos( )

15 3 48 5 8 3

25 3064 80
      - cos ( ) cos ( ) cos ( ) cos ( )   

240 240 15 24

         

V A A A A A A A A

A AA A A A

 

   

   
          
   

       
        

        
2 2 4 6 1 2 3 4 6

2 3 4 51 32 4 2 1

8 2 7 1 1 1
( ) cos( )

15 3 48 5 8 3

25 3064 80
      - cos ( ) cos ( ) cos ( ) cos ( )   

240 240 15 24

         

V A A A A A A A A

A AA A A A

 

   

   
          
   

       
        

      

 

(82) 

 
1.5

1 2 2 3 2 4 2

1 max max max

9 3
384 160 96

2 4
maxW W W W      


   

      
   

 
1.5

1 2 2 3 2 4 2

1 max max max

9 3
384 160 96

2 4
maxW W W W      


   

      
  

 

where Ai are presented in Appendix A.  

Finally, the analytical expressions for linear (ωL) and 

nonlinear (ωNL) natural frequencies as well as vibration 

response of FGNBs are developed by collecting the related 

terms as 

(83) 0 1,L NL     

 

0 1 2( ) ( ) ( ) ( )V V V V       

 

4.2 Nonlinear frequencies of TBT 
 

Initial conditions of deflection and rotation of the beam 

can be expressed as 

(84) 
'(0) ,  (0) 0    ,    (0) ,  (0) 0W a W Ψ a Ψ     

In Eq. (84) parameter a’ is the maximum initial rotation 

that must be determined. After applying initial conditions, 

the first approximations for the deflection and rotation 

functions can be expressed as 

(85) 
'

0 0( ) cos( )   ,    ( ) cos( )NL NLW t a t t a t     
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where ΩNL is the nonlinear frequency of the Timoshenko 

beam. Also, The linear frequency is designated by ΩL.The 

linear and nonlinear operators can be respectively expressed 

as 

(86) 
   

2 2
2 21 2

1 1 2 22 2

( ; ) ( ; )
( ; ) ( ; ),   ( ; ) ( ; )NL NL

V t q V t q
L V t q Ω V t q L V t q Ω V t q

t t

 
   

  

   
2 2

2 21 2
1 1 2 22 2

( ; ) ( ; )
( ; ) ( ; ),   ( ; ) ( ; )NL NL

V t q V t q
L V t q Ω V t q L V t q Ω V t q

t t

 
   

 
 

(87) 

)];(),;([ 211 qtVqtVN

  

 

3 2

1 1 2 1 4 1 5 1 6 1 2 7 2 8 1

2

2 1 2 2 1 2 2 1 3 1

( ; ), ( ;

( ; ), ( ;

N V t q V t q V z V z V z V V z V z V

N V t q V t q V z V z V z V

     

   
 

)];(),;([ 212 qtVqtVN

 

 

 

3 2

1 1 2 1 4 1 5 1 6 1 2 7 2 8 1

2

2 1 2 2 1 2 2 1 3 1

( ; ), ( ;

( ; ), ( ;

N V t q V t q V z V z V z V V z V z V

N V t q V t q V z V z V z V

     

   
 

where 

(88) 1 2( ) ( ) , ( ) ( )V t W t V t Ψ t   

The first-order deformation equation is constructed as 

below

 
(89) 

02122222

02111111

)];(),;([)()];([

)];(),;([)()];([









q

q

qtVqtVNthqtVL

qtVqtVNthqtVL




 

In Eq. (89) after considering h1(t)=h2(t)=1 and 

1 2 1  , one can get 

(90) 

 

 

2 3 2

1 1 0 4 0 5 0 6 0 0 7 0 8 0 1 1

2 2

1 1 0 1 0 2 0 3 0 1 1

   (0) (0) 0

    (0) (0) 0

NL

NL

W Ω W W z W z W z W z z W W W

Ψ Ω Ψ Ψ zΨ z W z W Ψ Ψ

         

      

 

 

 

2 3 2

1 1 0 4 0 5 0 6 0 0 7 0 8 0 1 1

2 2

1 1 0 1 0 2 0 3 0 1 1

   (0) (0) 0

    (0) (0) 0

NL

NL

W Ω W W z W z W z W z z W W W

Ψ Ω Ψ Ψ zΨ z W z W Ψ Ψ

         

      

, 

 

2 3 2

1 1 0 4 0 5 0 6 0 0 7 0 8 0 1 1

2 2

1 1 0 1 0 2 0 3 0 1 1

   (0) (0) 0

    (0) (0) 0

NL

NL

W Ω W W z W z W z W z z W W W

Ψ Ω Ψ Ψ zΨ z W z W Ψ Ψ

         

      

 
 

 

2 3 2

1 1 0 4 0 5 0 6 0 0 7 0 8 0 1 1

2 2

1 1 0 1 0 2 0 3 0 1 1

   (0) (0) 0

    (0) (0) 0

NL

NL

W Ω W W z W z W z W z z W W W

Ψ Ω Ψ Ψ zΨ z W z W Ψ Ψ

         

      , 
 

 

2 3 2

1 1 0 4 0 5 0 6 0 0 7 0 8 0 1 1

2 2

1 1 0 1 0 2 0 3 0 1 1

   (0) (0) 0

    (0) (0) 0

NL

NL

W Ω W W z W z W z W z z W W W

Ψ Ω Ψ Ψ zΨ z W z W Ψ Ψ

         

      
 

By substituting W0(t) and Ψ0(t), and their derivatives 

from Eq. (85) into (90) and solving the resulted equations 

and then equating the coefficients of the secular terms  

t sin(ΩNLt) to zero, two equations are obtained as 

(91) 3 2

5 4 7

2

1 3

4 4 4
0

3 3 3

0

NL NL

NL

Ω z a Ω z a z a

aΩ a z az

  
      

  

    

 

 

 

3 2

5 4 7

2

1 3

4 4 4
0

3 3 3

0

NL NL

NL

Ω z a Ω z a z a

aΩ a z az

  
      

  

    
 (91) 

After combining the related equations and eliminating 

parameter a′ from two relations in Eq. (91), the nonlinear 

natural frequencies are developed 

(92) 

2 4 2 2 2

5 4 5 1 5 4 1 4 2

1 5 4 12

1 3 7

2 4 2 2 2

5 4 5 1 5 4 1 4 2

2 5 4 12

1 3 7

9 24 24 16 321
2 6 8 8

4 16 64

9 24 24 16 321
2 6 8 8

4 16 64

NL

NL

z a z z a z z a z z z
Ω z a z z

z z z

z a z z a z z a z z z
Ω z a z z

z z z

     
          

     
           

 
2 4 2 2 2

5 4 5 1 5 4 1 4 2

1 5 4 12

1 3 7

2 4 2 2 2

5 4 5 1 5 4 1 4 2

2 5 4 12

1 3 7

9 24 24 16 321
2 6 8 8

4 16 64

9 24 24 16 321
2 6 8 8

4 16 64

NL

NL

z a z z a z z a z z z
Ω z a z z

z z z

z a z z a z z a z z z
Ω z a z z

z z z

     
          

     
           

 

2 4 2 2 2

5 4 5 1 5 4 1 4 2

1 5 4 12

1 3 7

2 4 2 2 2

5 4 5 1 5 4 1 4 2

2 5 4 12

1 3 7

9 24 24 16 321
2 6 8 8

4 16 64

9 24 24 16 321
2 6 8 8

4 16 64

NL

NL

z a z z a z z a z z z
Ω z a z z

z z z

z a z z a z z a z z z
Ω z a z z

z z z

     
          

     
           

2 4 2 2 2

5 4 5 1 5 4 1 4 2

1 5 4 12

1 3 7

2 4 2 2 2

5 4 5 1 5 4 1 4 2

2 5 4 12

1 3 7

9 24 24 16 321
2 6 8 8

4 16 64

9 24 24 16 321
2 6 8 8

4 16 64

NL

NL

z a z z a z z a z z z
Ω z a z z

z z z

z a z z a z z a z z z
Ω z a z z

z z z

     
          

     
             

It is worth noting that among the obtained solutions for 

the frequency, only two positive values are acceptable.  

 

 

5. Numerical results 
 

The FGNB considered here composed of ceramic (SiC) 

and aluminum (Al). The mechanical properties of the beam 

are listed as; Metal (Al): Em=70 GPa, ρm=2702 kg/m
3
, 

m=0.3; Ceramic (SiC): Ec=427 GPa, ρc=3100 kg/m
3
, 

c=0.17. The following dimensionless parameters are 

considered through the results for the convenience.  

max
max

W

h
  , 

2 2 2

1m 1m 1m

  ,  =   ,  Gl nl
L G NL

kk L k h L
K K K

A A A
   

NL

L





  (for EBT), NL

L





  (for TBT) 

where A1m is the corresponding value of the A1 for a 

homogenous metal nano-beam. 

At first, the present analytical model is validated by 

Table 1 Comparison of frequency ratio () for FGNBs (n=2, L/h=12, max=0.8) 

B.C.s h/l 
 

EBT TBT Ke, Wang et al. (2012) 

H-H 

Classic 1.6453 1.7369 1.7136 

10 1.6201 1.7144 1.6934 

6 1.5798 1.6778 1.6598 

3 1.4456 1.5480 1.5370 

2 1.3226 1.4177 1.4119 

1.5 1.2331 1.3150 1.3103 

1 1.1302 1.1871 1.1827 

C-C 

Classic 1.1790 1.2127 1.2202 

10 1.1711 1.2058 1.2128 

6 1.1588 1.1947 1.2009 

3 1.1187 1.1556 1.1589 

2 1.0836 1.1172 1.1183 

1.5 1.0591 1.0876 1.0877 

1 1.0332 1.0515 1.0514 
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comparing the results with those of Ke et al. (2012) in 

Table 1. Ke et al. ( 2012) studied the nonlinear vibration of 

FG micro-beams using numerical method of differential 

quadrature. The frequency ratios () are provided for both 

of hinged-hinged (H-H) and clamped-clamped (C-C) 

boundary conditions as well as two different theories of 

beams. The present results exhibit good agreement in 

comparison with the numerical results in the aforementioned 

reference. It is observed that the frequency ratio increases 

by increasing the dimensionless length scale parameter. It 

can be noted that although TBT exhibits more accurate 

results, however the solutions correspond to EBT are also 

within an acceptable accuracy. 

Fig. 2 demonstrates the importance of capturing the size 

effect and also the influence of geometric nonlinearity on 

the nonlinear frequency ratios of hinged-hinged FGNBs. 

The small scale parameter is set to zero in formulations 

to obtain the corresponding classic frequencies. It is seen 

that the impact of size effect is maximum for h/l=1 while its 

influence is negligible for h/l ratios higher than 8. 

In Fig. 3, the effects of dimensionless length scale 

parameter on the frequency ratio are demonstrated for beam 

with hinged ends. It should be noted that the frequency 

rat ios  are  di ffe rent  and the  resul ted  curves  a re 

unsymmetrical for identical values of max but with opposite 

signs. The reason is due to bending-stretching coupling 

 

 

 

effect.  

The effects of linear, shear and nonlinear coefficients of 

the Pasternak foundation on the frequency ratio versus 

dimensionless maximum amplitude for clamped FGNBs are 

studied in Figs. 4-6. It is seen that the frequency ratio 

increases monotonically with increasing the nonlinear 

coefficient of the foundation and this effect is amplified for 

higher values of maximum amplitude. It is interesting that 

this effect is vice-versa for the linear and shear coefficients 

of the foundation.  

The effects of material gradient index n on the 

frequency ratio of hinged-hinged as well as clamped micro-

beams are shown in Figs. 7-8. Similar to the trend observed 

in Fig. 3, the value of frequency ratio is changed in the case 

of hinged beams for max with opposite signs, however the 

related curve is symmetric for the clamped beams. In other 

words, the frequency ratio of clamped beams is independent 

of the sign of the vibration amplitude. 

 

 

6. Conclusions 
 

In this study, the nonlinear free vibration of FG 

nano/micro-beams is investigated based on modified couple 

stress theory in presence of nonlinear Pasternak foundation. 

The Mori-Tanaka homogenization technique is employed  

 
 

Fig. 2 The influence of size effect parameter and nonlinearity 

on the frequency ratios of FGNBs (n=2, L/h=12) 

Fig. 3 Effects of dimensionless length scale parameter on the 

frequency ratio for hinged-hinged FGNBs (n=2, L/h=12) 

  

Fig. 4 Effects of linear coefficient on the frequency ratio of 

clamped FGNBs (n=2, h/l=2 and L/h=12) 

Fig. 5 Effects of shear coefficient on the frequency ratio of 

clamped FGNBs (n=2, h/l=2 and L/h=12) 
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Fig. 8 Effects of material gradient index n on the frequency 

ratio of clamped FGNBs (h/l=2 and L/h=12) 

 

 

for material properties of the beams. The nonlinear 

governing differential equations are derived by Hamilton’s 

principle and the HAM is successfully utilized to obtain the 

nonlinear frequencies. The comparisons between the 

present analytical solutions and the available numerical 

results exhibit the accuracy and efficacy of the method. The 

influences of the length scale parameter, material gradient 

index and elastic foundation on the nonlinear free vibration 

of FGNBs are discussed. The main obtained results are: 

• The frequency ratio increases by increasing the 

dimensionless length scale parameter. 

• The results demonstrate the necessity of performing a 

nonlinear analysis even for small values of the vibration 

amplitude. 

• The maximum difference between the couple stress 

and classical theories is observed when h=l. 

• The frequency ratio of hinged-hinged beams is 

dependent on both the magnitude and sign of the 

vibration amplitude. 
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