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1. Introduction 
 

Microelectronic integrated circuit technology can be 

exploited as the mastermind of numerous systems. Micro 

electromechanical systems (MEMS) can expand this 

function by adding eye and arm in order to enable the 

system to sense and control the surrounding environment. 

To do so, the employed sensors measure different 

environmental phenomena such as mechanical, thermal, 

biological, chemical, optical and magnetic data. The 

gathered data is then transferred to the integrated systems to 

activate the actuators. Since MEMS are fabricated by 

micromachining technology employment, they deliver a 

magnificent level of performance, reliability as well as the 

low-cost of manufacturing process (Beeby et al. 2004). 

Micro-cantilever or clamped micro beam is used as the 

principal element of many MEMS sensors. It may be used 

as a capacitive or resonance sensor. In micro capacitive 

sensors, the micro-cantilever beam is actuated by applying a 

DC voltage between the micro beam and an opposite fixed 

electrode plate. The applied DC voltage between the micro-

beam and the plate deflects the movable micro-beam into 

the fixed electrode plate. This new position is known as 
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static position. When the quantity under measurement such 

as the applied pressure on the micro beam changes, the 

static position changes as well. The variation of static 

deflection results in electricity production by the capacity 

alteration of the capacitor, which is composed of the 

movable micro-beam and the fixed electrode plate. The 

electric current fluctuation can be utilized to measure a 

multitude of quantity under measurement like pressure, 

mass and pollutant. In micro-resonator sensors, the 

combination of DC and AC voltage is used as the main 

source of excitation. The harmonic intrinsic attribute of AC 

voltage makes the micro-resonator sensors vibrate around 

the static deflection position. The resonance frequency 

variations, due to the measured quantity fluctuations, are 

monitored to determine the target quantity. The unfixed 

micro-beam becomes unstable when the voltage reaches a 

certain high level. Subsequently, it is magnetized towards 

the electrode plate. This occurrence, which is due to the 

nonlinear electrostatic actuation, is called „pull-in‟ (Younis 

2011). Concerning the micro beams, a large number of 

researches have been conducted in the area of static 

deflection, pull-in voltage, frequency and dynamic 

responses as follows. 

Nayfeh et al. (2007), Abdel-Rahman et al. (2002), 

Nayfeh and Younis (2005), Younis and Nayfeh (2003) 

present a comprehensive theoretical model for a clamped-

clamped micro beam under electrostatic excitation, and 

analyze its static and dynamic behaviors in different works. 

They solve the equations of motion using direct 
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perturbation method or discretize the equations of motion 

using Galerkin method and solve them using numerical 

shooting method. They observe a softening behavior due to 

electrostatic actuation and a hardening behavior due to 

nonlinear mid plane stretching term. The static and dynamic 

behavior of an electrostatically actuated micro-cantilever 

beam have been examined by Lizhoung and Xiaoli (2007). 

They only considered the nonlinear terms due to 

electrostatic forces and used perturbation approach to solve 

the nonlinear equations. A similar micro beam which is 

separated from the fixed plane by relatively larger gap has 

been studied by Chaterjee and Pohit (2009). They showed 

that the geometrical nonlinearities due to shortening effect 

play a notable part when pull-in transpires. Rasekh and 

Khadem (2011) studied dynamic response of an 

electrostatically excited nano-cantilever as numeric and 

indicated that the softening effect is due to nonlinear inertia 

term as opposed to hardening effect which is because of 

nonlinear curvature term. Pull-in features of a reinforced 

CNT has been analytically examined by taking geometric 

nonlinearity, thermally-corrected Casimir force and surface 

effect into account and the ultimate outcomes indicate that 

the pull-in voltage grows as the volume fraction of CNTs 

rises (Yang and Wang 2016). A revised deformation 

function has been proposed by Huang et al. (2014), which 

takes both of tilted and curled bending into consideration 

and the results give clear indication of accuracy 

improvement of pull-in voltage analytical solution. Najar et 

al. (2015) have analyzed the DC voltage excited capacitive 

nanoactuator with a focus on small scale effect on the 

nonlinear static and dynamic responses. They considered 

Casimir and von der Waals intermolecular forces, and 

revealed that the nonlinear midplane stretching term has 

significant influence on the results of pull-in. Employing 

the strain gradient theory, the static deflection and pull-in 

voltage of a micro cantilever, which is excited 

electrostatically, have been surveyed and it is inferred that 

the gap between theory and practice can be bridged by 

means of strain gradient theory (Rahaeifard and Ahmadian 

2015). Aboelkassem et al. (2010) state some 

recommendations in order to improve the design of the 

current micro sensors by modelling a bio-mass sensor with 

the assistance of a cantilever beam with a proof mass 

attached to its tip. Static and dynamic responses, pull-in 

voltage, rate sensitivity, resolution, bandwidth, and shock 

resistance of a gyroscope, which has been modelled by a 

tipped patch micro-cantilever operating in the flexural-

flexural mode, have been investigated by Rasekh and 

Khadem (2013). The electro-elasto-static and electro-elasto-

dynamic behaviors of a nonlinear size-dependent MEMS 

have come under scrutiny. The proposed model is excited 

by DC and AC voltages and it considers 

electrical/displacement nonlinearities (Ghayesh et al. 2015). 

An effective length of the flexible pads has been determined 

by means of shooting method to close the gap between 

theoretical and experimental analysis by Bataineh and 

Younis (2015). Zamanian and Karimiyan (2015) have 

studied nonlinear vibration of a ┴ shaped mass attached to a 

clamped-clamped micro beam under electrostatic actuation 

considering the effect of stretching. The examination of a 

clamped-clamped micro beam dynamic behavior, actuated 

near its third and fifth natural frequencies has led to a 

conclusion that the dynamic amplitude of the partial 

electrode, excited with two-phase shift sources of voltage, is 

more than a single-voltage-source full electrode (Masri and 

Younis 2015). The nonlinear dynamic behavior modelling 

of a resonator presents that several complicated nonlinear 

behaviors, such as quasiperiodic motion, torus bifurcations, 

coexistence of attractors, and modulated chaotic attractors, 

may exist (Younis 2015). A carbon nanotube cantilever is 

studied by Kim and Lee (2015) where super harmonic, 

subharmonic and primary resonances under AC and DC 

harmonic actuation are taken into consideration. Surface 

effects and nonlinear curvature have been incorporated into 

a typical model of nano-cantilever switches by Wang and 

Wang (2015), and the outcomes indicate that attributes such 

as nonlinear curvature and surface elasticity stiffen the 

cantilever beam, as opposed to the positive residual surface 

stress which softens it. Rayleigh-Ritz approach, premised 

upon Lagrange and Newton Harmonic Balance approaches, 

has been employed to investigate the nonlinear vibration 

behavior of single and double tapered cantilever beams by 

Sun et al. (2016). 

Several studies have focused on multi-layer micro 

beams.  A two layered clamped-clamped micro beam has 

been modelled using finite-difference method by Nie et al. 

(2006). They proposed the measurement of material 

properties of a layer deposited on the micro beam by pull-in 

method. Multilayered cantilever and clamped-clamped 

beams are simulated in a similar study and solving the 

nonlinear equations numerically suggests that the obtained 

outcomes can be helpful in the optimization process of 

MEMS switch designs or other actuators (Rezazadeh 2008). 

A new remote temperature sensor is proposed by Rezazadeh 

et al. (2012), in which thermo-mechanical behavior is 

studied with the help of numerical and perturbation 

approach. The acquired results demonstrate that the rise of 

natural frequency alongside the temperature relaxation time 

decline cause the sensor operates more dynamically and 

sensitively. The effect of piezoelectric layer on the 

mechanical behavior of an electrostatically actuated micro 

beam have been considered by Raeisifard (2014) and 

Zamanian and Khadem (2010.) 

A number of studies on the viscoelastic micro beams or 

a micro beam coated by viscoelastic layer have been 

reported. The dynamic response of an electrostatically 

clamped-clamped viscoelastic micro beams subjected to 

nonlinear stretching effect has been studied by Zamanian et 

al. (2010) and Fu et al. (2009). Chitsaz and Jalali (2015) 

study the nonlinear dynamic response of a nanocomposite 

clamped-clamped Euler-Bernoulli viscoelastic micro beam 

under simultaneous electrostatic and piezoelectric 

actuations by means of Galerkin and perturbation methods. 

They demonstrate that in electrostatic excitation, hardening 

effect takes place for the lower range of DC voltage. On the 

contrary, softening effect is observed as the DC voltage 

increases. Nonlinear free vibrations of a viscoelastic 

microcantilever subjected to the nonlinear shortening effect 

have been presented by Shooshtari et al. (2012). They 

consider the micro beam under piezoelectric actuation and  
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Fig. 1 Micro beam configuration 

 

 

state that the damping coefficient and the piezoelectric layer 

length play vital roles in system response. In a similar study 

(Hoseini et al. 2014), the nonlinear-forced vibrations of the 

mentioned model have been investigated. In this work, the 

Multiple Scale method is utilized for the frequency response 

consideration and the required outcomes represent that both 

softening and the maximum vibration amplitude attributes 

are significantly influenced by piezoelectric layer length 

factor.  

Recently the cantilever micro beam coated by a 

viscoelastic patch has been attended as a main element of 

gas and mass sensors (Boudjiet et al. 2015, Dufour et al. 

2007 and Younis and Alsaleem 2009). In this configuration, 

the gas or mass is absorbed by viscoelastic layer.  When 

this configuration is excited by electrostatic actuation then 

the amount or existence of mass or gas is detected by the 

process which is mentioned at the second paragraph of this 

section. The length and thickness of viscoelastic layer have 

main effect on the sensitivity and performance of these 

devices. Poloei et al. (2015) study a modification on the 

geometry of the viscoelastic patch when the sensor is based 

on the change on capacitance change. They determine the 

optimum length and thickness for viscoelastic layer by the 

assumption that the viscoelastic layer mass is constant.  

This work can be viewed as significant development of 

the last mentioned paper. The main distinguishing feature of 

this work is that the applied voltage between the micro 

beam and the set plate is combination of DC and AC 

voltage, as opposed to the previous work which was solely 

premised upon DC voltage. In other words, the sensor 

performance is mainly based on resonance frequency in this 

work, in contrast with the preceding paper which is based 

on capacitance. It should be noted that the structural 

damping of the viscoelastic layer is taken into consideration 

in the dynamic motion equation due to the vibration caused 

by AC voltage. By assuming that the volume of deposited 

layer is constant, the variation of frequency response for 

different lengths and thicknesses of the viscoelastic layer 

have been founded. The ultimate objective of the current 

study is to obtain the optimum length and thickness which 

 

Fig. 2 Deflected micro beam 

 

 

result in the minimum amount of nonlinear resonance 

variation. The considered nonlinear terms, in this work, are 

composed of geometrical, inertia, electrostatic and 

viscoelastic nonlinearities. Viscoelastic layer abides by the 

Kelvin-Voigt model. The motion equation is then 

discretized by Galerkin method. It is noteworthy that the 

mode shapes of a viscoelastic patched micro beam have 

been exploited to discretize the motion equation. The 

multiple scale perturbation method has been applied to 

solve the discrete dynamic equation. The analytical 

perturbation solution is verified by comparing the analytical 

perturbation solution with numerical solution. 

 

 

2. Problem statement and formulation 
 

Fig. 1 indicates a typical micro beam configuration. As 

is seen, the fixed plate is set opposite the movable micro 

beam, and the viscoelastic layer is patched on the micro 

beam. As the voltage is applied to the set plate and the 

micro beam, the micro beam moves towards the plate. 

Two coordinate systems have been employed, inertial 

coordinate system (𝒙, 𝒛)  and local coordinate 

system (𝒙, 𝒛̅) , as so to expand the motion equations. 

Assuming that 𝒖 and 𝒘 are the displacement along the 

longitudinal axis (𝒙)  and the transverse axis (𝒛) , the 

correlation between the deflected elements displacements 

(𝒅𝒔) can be formulated as follows.  

- 2 2
(1 ) -1                 

1
cos ,   sin ,   arctan

1 1 1

ds dx
e u w

dx

u w w
g

e e u
  

    

  
  

  

 (1) 

Where 𝜃 is the rotation angle, 𝑒 is the longitudinal 

strain of the neutral axis, and 𝑑𝑠 is the deflected element 

length.   

Considering the assumption of shortening effect, the 

cross section strain (𝜀)̅ is calculated as follows. 

      ,       z      (2) 

Where 𝑧̅ is the distance from the neutral axis, and 𝜅 is 

the bending curvature in 𝑥𝑧 plane. 

Computing the derivative of 𝜃 (in Eq. (1)) with respect 

to 𝑥 results in bending curvature, by means Taylor series 

2 + ... w w u w u w w              (3) 
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The neutral axis coincides with midline of the micro 

beam cross section at the parts which are not covered by the 

viscoelastic layer. It is worth remembering that the distance 

of the neutral axis from the micro beam middle layer is 

presented by 𝑧𝑛̅ in the patched parts, as shown in Fig. 1. 
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Where 𝑡𝑏 and 𝑡𝑣 are the thicknesses and 𝐸𝑏  and 𝐸𝑣 

are the elasticity modules of the micro beam and 

viscoelastic layer respectively (Mahmoodi et al. 2007).  

The stress-strain relationship of the micro beam is 

formulated with respect to Hook's law as Eq. (5) 

 b bE   (5) 

Where 𝜎𝑏 is perceived as the micro beam stress. 

The viscoelastic layer stress and strain equations of the 

Kelvin-Voit model can be formulated as Eq. (6) (Mahmoodi 

et al. 2008) 

 

     ,    

c nc
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v v v

v v vE C

  

   

 

 
 (6) 

Where 𝜎𝑣 is the axial stress of the viscoelastic layer, 𝐶 

is the viscoelastic coefficient, 𝜎𝑣𝑐is the conservative term, 

and 𝜎𝑣𝑛𝑐 is the non-conservative term. 

The longitudinal and transverse motion equations are 

calculated by the employment of Hamilton principle. To do 

so, the kinetic and potential energies must be determined in 

the first place.  

The kinetic energy can be formulated as Eq. (7) with the 

ignorance of rotational inertia. 

  2 2

0

1
 

2

l

T m x u w dx   (7) 

The above-mentioned derivatives are considered with 

respect to time, and another point is that micro beam length 

is 𝑙. Mass per unit of length is calculated as follows 
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Where 𝑤𝑏  is width of the micro beam and the 

viscoelastic layer, 𝜌𝑏is the micro beam density, and 𝜌𝑣 is 

the viscoelastic layer density. 

The integration of the micro beam strain energy and the 

viscoelastic layer conservative strain energy results in the 

conservative strain energy of the micro system as 

formulated in Eq. (9). 
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(9) 

Where 𝑑𝑉𝑏 and 𝑑𝑉𝑣  are the differential volumes of the 

micro beam and the viscoelastic layer respectively. The 

conservative strain energy can be calculated by the 

application of the above-mentioned equations.   
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Where 𝐶𝜂(𝑥)  is the flexural stiffness and can be 

formulated as follows 
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(11) 

The electrostatic potential energy is calculated as 

follows 

2

0

0

1 1
- (v v cos )

2

l

v b dc acQ w t dx
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  
  (12) 

Where 𝜀0 is the Dielectric constant and 𝑑 is the gap 

between set plate and micro beam, vdc 
and vac are DC and 

AC voltages applied between microbeam and fixed 

electrode plate, respectively. Moreover t is time and Ω is the 

frequency of AC voltage.  

Virtual work, arising from non-conservative term, is 

calculated as follows 

nc

v

nc v v

V

W dV     
(13) 

The employment of Eqs. (2)-(6) in Eq. (13) can be 

written as follows 
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The utilization of Eq. (3) will result in 
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The integration by parts application of Eq. (15) and 

keeping the terms up to third order result in the following 

equation 
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Since the shortening effect exists in a cantilever beam, 

in which the longitudinal load is ignored (Nayfeh and Pai 

2004), the axial strain(𝑒) , in Eq. (1), is zero and the 

shortening effect is formulated as follows 

 
2 2(1 ) 1 0e u w       (17) 

The Hamilton principle is defined as Eq. (18). 
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Where 𝜆 is utilized to take the shortening effect into 

account with the assistance of 𝐺 which is the constraint 

arising from the inextentional attribute of neutral axis. 

The longitudinal and transverse governing motion 

equations are formulated by means of Hamilton principle as 

follows 
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(19) 

Solving Eq. (17) for 𝑢′ and its Taylor series, it can be 

finalized that  
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By application of integral, with respect to 𝑥 and in the 

range of 𝑥  to 𝑙 , in Eq. (19(a)), and the boundary 

conditions employment in the free end of the micro beam, 

the following outcome can be obtained 
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The insertion of Eqs. (20)-(21) into Eq. (19(b)) results in 
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The micro cantilever beam boundary conditions are 
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In Eq. (22), the first two terms show the micro beam 

linear equation, the third term represents geometric 

nonlinearities, the fourth term indicates the inertia 

nonlinearity, the fifth term presents the viscoelastic layer 

effect, and the last term specifies the nonlinear electrostatic 

force which is in agreement with Chaterjee and Pohit 

(2009) if the viscoelastic terms are neglected. 

The following changes in variables have been defined so 

as to obtain the dimensionless governing motion equation. 
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Omitting the ^  sign  of  the  variables  for  the  

sake  of  simplicity,  the non-dimensional  governing 

motion equation and boundary conditions can be formulated 

as follows 
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(25) 

Where 
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(26) 

Where 𝛼1 , 𝛼2  and 𝛼3𝑉𝑒
2  are the dimensionless 

variables. 

The static deflection equation is obtained by the 

ignorance of time derivatives terms in Eq. (25).   
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The above equation has been solved by utilizing three 

mode shapes of a uniform beam as the comparison function 

by poloei et al. (2015). 

 
 
3. Dynamic response of the primary resonance 
actuation 
 

𝑤  can be perceived as the integration of dynamic 

deflection (𝑤𝑑(𝑥, 𝑡))  and static deflection (𝑤𝑠(𝑥))  as 

follows (Chaterjee and Pohit 2009) 
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Inserting Eq. (28) into governing motion equation, 

omitting the static deflection terms, and expanding the 

electrostatic excitation up to third order result in 
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(29) 

The Galerkin method is employed to discretize the 

governing motion equation. To do so, the non-uniform 

mode shapes have been utilized as comparison function.  

 
 
4. Non-uniform linear mode shapes 
 

The linear mode shapes of the non-uniform micro beam 

can be calculated by solving the homogeneous 

dimensionless equation with the consideration of 

viscoelastic geometric effect as follows 
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By the assumption that 𝑤(𝑥, 𝑡) = 𝜑(𝑥)𝑒𝑖𝜔𝑡 
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Where 𝜑(𝑥) the non-uniform linear mode is shape, and 

𝜔 is the natural frequency.  

Eq. (31) is composed of three principal parts. The first 

part is *0,
𝑙1

𝑙
) without the viscoelastic layer, the second part 

is  (
𝑙1

𝑙
,
𝑙2

𝑙
) which has been coated with viscoelastic layer, 

and the last part is (
𝑙2

𝑙
, 1+ in which there is no viscoelastic 

layer as well.  
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Eq. (32) is solved as follows, assuming that 𝜑(𝑥) 
consists of 𝑊1(𝑥), 𝑊2(𝑥), and 𝑊3(𝑥). 
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Where 
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 (34) 

The constant coefficients of 𝐶𝑖 are obtained from the 

micro cantilever boundary conditions, 𝑊1(𝑥) and 𝑊2(𝑥), 
and the succeeding continuity conditions. 
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(35) 

Where 𝐾1 =
𝐼𝑏̅

𝐼𝑏
+

𝐸𝑣𝐼𝑣

𝐸𝑏𝐼𝑏
. 

By determining the above-mentioned constant 

coefficients, the non-uniform linear mode shapes are 

acquired as follows 

  

     

     

1

1 2 2

1

2 3

1

 

l

l

l l l

l l l

n

n n

x H W x

H H W x H W x

   

 

 (36) 

Now it is assumed that 𝑤𝑑 = 𝑃(𝑡)𝜑(𝑥), where 𝑃(𝑡) is 

time coordinate of the system response. By substituting this 

assumption into Eq. (29) and multiplying the outcome by 

φ(x), and integrating along the length of microbeam the 

governing equation motion at primary resonance case will 

be as follows 
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(37) 

Where 𝑘𝑙
𝐼, (𝑘𝑙,0

𝐸 , 𝑘𝑙,1
𝐸 , 𝑘𝑙,2

𝐸 ) and 𝑘𝑙
𝐺 arise from the linear 

inertia, electrostatic, and curvature respectively, 𝑘𝑞
𝐼 =

𝑘𝑞1
𝐼 + 𝑘𝑞2

𝐼 , (𝑘𝑞0
𝐸 , 𝑘𝑞1

𝐸 , 𝑘𝑞2
𝐸 ) and 𝑘𝑞

𝐺 are arisen from second 

order non-linear inertia, electrostatic and curvature, and 𝑘𝑐
𝐼 , 

(𝑘𝑐0
𝐸 , 𝑘𝑐1

𝐸 , 𝑘𝑐2
𝐸 ) and 𝑘𝑐

𝐺  arise from the third order non-

linear inertia, electrostatic and curvature. 𝑘0,1
𝐸  and 𝑘0,2

𝐸 are 

the electrostatic excitation effect, and 𝑘𝑙
𝑣  is the linear 

viscoelastic effect. These coefficients are listed in Appendix 

A. 

 

 

5. Perturbation theory 
 

Eq. (37) can be solved by means of multiple scale 

method of perturbation theory assuming that the non-linear 

terms have lower orders in comparison with the linear ones.  
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Where 𝑇0 = 𝑡 , 𝑇1 = 𝜀𝑡 , and 𝑇2 = 𝜀2𝑡  are the time 

scales, and 𝜀  is the Bookkeeping parameter which 

demonstrates the order of the expressions. Computing the 

function derivatives with the assistance of the chain rule 

will result in 
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Where 𝐷𝑛 is 
𝜕

𝜕𝑇𝑛
; 𝑛 = 0,1,2. 

The orders of the viscoelastic damping and the AC 

actuation are viewed 𝜀2  and 𝜀3  respectively so as to 

strike a balance between nonlinear terms, damping, and 

excitation. Furthermore, considering the orders as 𝜀2 and 

𝜀3 accounts for all the existing terms in the equation and 

makes the problem solvable. 

Order (𝜀1) 
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Order (𝜀2) 
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(41) 

Order (𝜀3) 
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(42) 

Eq. (40) can be solved as follows, assuming that 

𝜔 = √
𝑘𝑙,0
𝐸 +𝑘𝑙

𝐺

𝑘𝑙
𝐼 . 

  1 0 1 2 1 2 1 2(T ,T ,T ) (T ,T )e (T ,T )ei t i tP A A    (43) 

It should be noted that 𝐴(𝑇1, 𝑇2) is a complex function 

which is obtained by the solvability conditions. The 

insertion of Eq. (43) in Eq. (41) will lead to 
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𝑒𝑖𝜔𝑇0 Coefficient has to be equaled to zero in order to 

omit the secular term from Eq. (44).   
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It is implied from Eq. (45) that 𝐴 has to be merely a 

function of 𝑇2. The particular response of the Eq. (44) will 

be as follows 
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Inserting 𝑃1  and 𝑃2  in Eq. (42), keeping the terms 

which result in secular expression, and with the 

consideration of natural frequency vibration as Ω = 𝜔 +
𝜀2𝜎 will be arrived in 
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(47) 

Where 𝜎 is the Detuning parameter, 𝑁𝑆𝑇 stands for 

non-secular terms, and 𝐶𝐶 is the complex conjugate.   

By inserting the polar form of the 𝐴  (𝐴(𝑇2) =
1

2
𝑎(𝑇2)𝑒

𝑖𝛽(𝑇2))  in the secular term of the Eq. (47) the 

following result will be acquired 
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Whereas 
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(49) 

Eq. (48) can be written as follows if 𝛾(𝑇2)  is 

considered as 𝛾(𝑇2) = 𝜎𝑇2 − 𝛽(𝑇2) 
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By setting 
𝑑𝑎

𝑑𝑇2
 and 

𝑑𝛾

𝑑𝑇2
  zero in Eq. (50), the governing 

equation of the equilibrium points (𝑎0, 𝛾0) can be written 

as follows 
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According to Eq. (51), the maximum amplitude (𝑎0) is 

reached when the expression inside the second parenthesis 

equals to zero.  
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The nonlinear resonance frequency is obtained by 

inserting Ω = 𝜔 + 𝜀2𝜎 in Eq. (52), as follows 
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6. Stability and instability analysis 
 

Stable stationary resolution is obtained by means of 

Jacobian matrix, which can be calculated by employing Eq. 

(50). 
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Let us perceive coefficient matrix as B, then the 

characteristic matrix of the system can be calculated when 

the determinant of the matrix (B−λI) is equal to zero. It 

should be noted that I is the unit matrix and λ is the 

characteristic equation root. By substituting the achieved 

equation into Eq. (50) the following result is gained. 
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(55) 

Hence, the characteristic equation root can be 

demonstrated as 
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The instability happens when each of the eigenvalues is 

positive and when one of the mentioned eigenvalues 

becomes zero the bifurcation point occurs.     

Eq. (55) results in 
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7. Results and discussion 
 

The succeeding results have been obtained for a micro 

resonator (Nayfeh and Pai) with the geometrical and 

mechanical properties according to Table 1. It should be 

noted that the other parameters of the system are stated in 

the legends and captions of figures.   

 

 

Table 1 Geometrical and mechanical properties of the 

considered configuration 

               

510    100    1 5    169     2330
  

 3 

   0          

1 18    8 854  12 2230
  

 3 100    105 9    

 

 

Considering Eqs. (51)-(53), the nonlinear vibration 

amplitude and nonlinear shift of resonance frequency are 

primarily influenced by electrostatic excitation, bending 

curvature, inertia, natural frequency, electrostatic force, and 

viscoelastic damping. It is worth reminding that softening 

effect arises from nonlinear electrostatic excitation and 

nonlinear inertia while the hardening effect is due to the 

nonlinear bending curvature.  

It demonstrates that the nonlinear behavior of the 

system, under the electrostatic excitation, follows hardening 

phenomenon when 𝐹 ≠ 0 and 𝑆 > 0, which means 
Ω

𝜔
>

1. On the contrary, when 𝐹 ≠ 0  and 𝑆 < 0, the nonlinear 

behavior of the system denotes a softening phenomenon, 

which means 
Ω

𝜔
< 1 . The variations of nonlinear 

coefficients, S  with respect to the variations of DC 

electrostatic voltage is presented in Fig. 3.  

As is seen in Fig. 3, as 𝛼3𝑉𝑑𝑐
2  increases the value of 𝑆 

starts from zero and tends to the large negative values. This 

decrease is the result of variation in the sum of 

the 𝐾𝑞,0
𝐸 , 𝐾𝑐,0

𝐸 , 𝐾𝑞
𝐺 , 𝐾𝑐

𝐺 , 𝐾𝑞
𝐼  and 𝐾𝑐

𝐼  coefficients. Fig. 3  
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Fig. 3 Nonlinear coefficient alteration with respect to 

𝛼3𝑉𝑑𝑐
2  where 𝛼1 = 0 2 ,        ,         m 

 

 

indicates that the rise in the value of 𝛼3𝑉𝑑𝑐
2  results in the 

decrease of the second and third -order nonlinear 

coefficients (𝐾𝑞,0
𝐸 , 𝐾𝑐,0

𝐸 ), which are the softening factors and 

arisen from the second and third -order terms of 

electrostatics excitation, from zero to negative values with a 

rapid rate. The value of 𝐾𝑞
𝐺, which is a hardening factor 

and due to the second-order geometrical nonlinear terms, 

changes from zero to the positive quantities with a slow 

rate. 𝐾𝑐
𝐺 , which is a hardening factor and due to the third-

order geometrical nonlinear terms, indicates a positive value 

and it slightly alters by increase of 𝛼3𝑉𝑑𝑐
2 . Regarding 𝐾𝑞

𝐼   

and 𝐾𝑐
𝐼, which fit into the softening factors arising from 

second and third-order inertial terms, both value and trend 

are moderate. It can be implied from Fig. 3 that hardening 

terms are dominant for very low electrostatic voltage. 

However, a slight increase in the electrostatic voltage 

makes  𝐾𝑞,0
𝐸   and 𝐾𝑐,0

𝐸  terms dominant. It means that by 

an increase on the value of electrostatic actuation the 

softening behavior increases. This obtained outcome 

verifies the results of previous works by Nayfeh et al. 

(2007), Younis and Nayfeh (2003) and Chaterjee and Pohit 

(2009), in which the effect of electrostatic actuation was 

considered. The results of this paper can be verified 

quantitatively by comparing analytical perturbation solution 

and numerical solution. The numerical solution is obtained 

using Maple17 software based on Runge Kutta Fehlberg 

Method algorithm. This algorithm which is called RKF45 

finds a numerical solution using both of fifth and fourth 

order Runge Kutta.  For solving the equation, first of all, the 

initial condition is considered equal to zero, and the 

excitation frequency is considered less than the obtained 

frequency from the perturbation solution for maximum 

amplitude. Then the amplitude of the steady state solution is 

called from the time history of numerical solution. 

Afterwards the excitation frequency is a little bit increased 

and the steady state of previous step is considered as the 

initial condition of the next step. In all of the steps the 

velocity initial condition is considered equal to zero. Fig. 4 

 
Fig. 4 Runge-Kutta method and multiple scale perturbation 

theory comparison where l1=0.25lb, l2=0.75lb, α2=0.015,  

α    
     ,            

 

 

Fig. 5 Viscoelastic layer resonance shift diagram in three 

different locations l1=0.5lb, tv=0.5  m, C=260000 Pa.s, 

vac=0.0005 

 

 

proves the effectiveness of the perturbation theory for 

solving the problem.  

Now the effect of viscoelastic layer position is studied 

on the frequency response function of system where the 

viscoelastic layer is deposited on the half of micro beam 

length. As observed in Fig. 5, as the viscoelastic patch gets 

closer to the free end of the micro beam, the nonlinear 

resonance shifts and also the steady state amplitude at 

resonance frequency increases. It shows that the optimum 

case occurs when the viscoelastic layer is deposited on the 

middle part of micro beam length since it has enough 

amplitude and has no effective nonlinear shift of resonance 

frequency. It is observed that when one end of viscoelastic 

layer is at the free side of micro beam a large nonlinear shift 

of resonance frequency, which is undesirable for sensor 

application, is presented. It must be noted that if the amount 

of viscoelastic damping decreases then considering Eq. (53) 
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the steady state amplitude in resonance frequency increases. 

So for small value of viscoelastic layer, the case that its left 

end of viscoelastic layer is constrained at the clamped side 

would be the desirable configuration. 

The demonstrated behavior in Fig. 5 can be explained 

by Eqs. (49)-(52). It can be claimed from the mentioned 

equations that the stable amplitude is directly proportional 

to excitation force coefficients (𝐾0,1
𝐸 ) and linear term due to 

inertia (𝐾𝑙
𝐼) and they are inversely proportional to natural 

frequency (𝜔) and linear coefficient arisen from viscoelastic 

damping (𝐾𝑙
𝑣 ). It is transparent that flexural stiffness 

diminishes as the second layer moves towards micro-beam 

from the clamp side. The decrease of flexural stiffness 

causes an increase in the static deformation. On the other 

hand, as is seen in equation appendix A, 𝐾0,1
𝐸  is due to the 

stimulation in the denominator containing (𝑊𝑠 − 1)2  and 

as a result its value rises, obeying nonlinear behavior. With 

respect to the linear terms of Eq. (37), 𝐾𝑙
𝐼𝑃̈ + 𝐾𝑙

𝑣𝑃̇ +
(𝐾𝑙,1

𝐸 + 𝐾𝑙
𝐺)𝑃, natural frequency is directly proportional to 

linear electrostatic force (𝐾𝑙,0
𝐸 ). With regard to appendix A, 

for calculating 𝐾𝑙,0
𝐸 , the term (𝑊𝑠 − 1)3 is located in the 

denominator of the integral. Therefore, natural frequency is 

also decreased in a nonlinear manner by the movement of 

the second layer from the clamp side towards the free side 

of the micro-beam. The result of these variations, with 

respect to Eqs. (49)-(52), leads to the increase of amplitude 

in a resonance with the movement of viscoelastic layer from 

the clamp side towards the free side. It should be noted that 

the variations of the other terms like 𝐾𝑙
𝐼  and 𝐾𝑙

𝑣  are 

negligible in comparison. As is observed in Fig. 3, when 

electrostatic voltage is 𝑉𝑑𝑐 > 0 3, electrostatic nonlinear 

coefficients are much more noticeable than inertial and 

geometrical nonlinear coefficients. Hence, the major 

nonlinear behavior should be sought in 𝐾𝑞,0
𝐸  and 𝐾𝑐,0

𝐸 . 

With respect to Appendix A, the rise in the static 

deformation due to the viscoelastic layer movement leads to 

nonlinear growth of 𝐾𝑞,0
𝐸  and 𝐾𝑐,0

𝐸  since the terms 

(𝑊𝑠 − 1)4 and (𝑊𝑠 − 1)5 are situated in the denominators 

of these expressions.  The increase of S due to the 

softening phenomenon slows the growth rate of 𝐾0,1
𝐸  and, 

on the other hand, the decrease of 𝜔 results in the shift of 

linear resonance with respect to the viscoelastic layer 

movement.   

In follow, the viscoelastic layer volume is assumed as 

constant and its length and thickness are simultaneously 

changed in order to obtain the optimized thickness, length, 

and position. The value of the volume is considered equal to 

12750𝜇𝑚 which is equivalent to a layer with thickness of 

𝑡𝑣 = 0 25𝜇𝑚 deposited on the entire length of micro beam. 

Subsequently, the viscoelastic layer length is decreased and 

its thickness is increased in three different cases as shown in 

Fig. 6. In any case, it is assumed that the viscoelastic layer 

is initially deposited on the entire length of micro beam.  

In the first case, one end of the coated layer is considered 

fixed at the clamped side of the micro cantilever, and then 

its length is decreased from the other side, where its 

thickness is increased (Fig. 6(a)). In the second case, one 

end of the coated layer is constrained at the free side of 

micro cantilever, and then its length is decreased from the 

 

Fig. 6 The viscoelastic layer with a constant volume in 

three different cases 

 

 
Fig. 7 The steady state amplitude alterations with respect 

to 𝜎 for different viscoelastic layer thicknesses in the 

first case where 𝐶 = 32000𝑃𝑎 𝑠, and 𝑣𝑎𝑐 = 0 001 

  

 

other side, where its thickness is increased (Fig. 6(b)). In 

the third case, the length of viscoelastic layer is decreased 

from both left and right ends, where its thickness is 

expanded (Fig. 6(c)). 

Since the volume is considered as constant in this 

section, the length of the viscoelastic layer is merely 

specified in the following figures.   

Fig. 7 indicates that by simultaneous change of 

thickness and length of viscoelastic layer according to the 

case (a) of Fig. 6 from  𝑡𝑣 = 0 25𝜇  and 𝑙𝑣 = 𝑙𝑏  to a 

specific value, here, 𝑡𝑣 = 0 6𝜇  and 𝑙𝑣 = 0 416667𝑙𝑏  ,  

the nonlinear shift of resonance frequency increases and 

after that it shows a reverse trend. It can be observed from 

Fig. 7 that the steady state amplitude at resonance frequency 

has a downward trend within a specific range and it then 

shows an upward trend.  

As shown in Fig. 7, the most optimum state of a 

resonator sensor can be seen when the viscoelastic layer is 

deposited on approximately less than half length of micro 

beam and more than a quarter of micro beam length for 

example in 𝑡𝑣 = 0 6 𝜇 . Under this condition, the system 
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Fig. 8 The steady state amplitude alterations with respect 

to 𝜎 for different viscoelastic layer thicknesses in the 

second case where C=148000 Pa.s, and vac=0.0003 

 

 

follows a small nonlinear shift of resonance frequency, the 

viscoelastic layer covers enough length of the micro beam, 

and the steady state amplitude at resonance frequency is 

large enough.  

Fig. 8 represents that by simultaneous change of 

thickness and length of viscoelastic layer according to case 

(b) of Fig. 6, the nonlinear shift of resonance frequency and 

also steady state amplitude at resonance frequency increase. 

It demonstrates that the optimum state is when the 

viscoelastic layer is deposited on approximately more than 

0.75 of the micro beam length. The coated length less than 

this value causes a large nonlinear shift of resonance 

frequency.  

Fig. 9 gives an indication of the frequency response 

function by simultaneous change of thickness and length of 

viscoelastic layer according to case (c) of Fig. 6. It 

demonstrates that the optimum state is when the viscoelastic 

layer is deposited on approximately more than half of the 

micro beam length.  

Comparing Figs. 7, 8 and 9 demonstrate that if the value 

of viscoelastic damping is small enough in order to have a 

steady state amplitude at resonance frequency which is 

large enough, then the best configuration is the case that 

viscoelastic layer is deposited from fixed side to the middle 

part of micro beam. It is observed that the best 

configuration for large value of viscoelastic damping is 

depositing viscoelastic layer on the middle part of micro 

beam with a length approximately equal to the half-length 

of micro beam.  

As is presented in Fig. 6, in case (a), as the length of the 

viscoelastic layer decreases, firstly, flexural stiffness 

increases, because of thickness growth in the clamp side, 

then when the length decrease reaches a specific amount, 

flexural stiffness decreases since the micro beam behaves 

like a single layer beam which is located in the end of the 

second layer. In case (b), flexural stiffness has a decreasing 

rate owing to the length decline in the clamp side of the 

micro-beam. Case (c) is almost similar to case (b) but its 

 
Fig. 9 The steady state amplitude alterations with respect 

to 𝜎 for different viscoelastic layer thicknesses in the 

third case where when C=260000 Pa.s, and vac=0.0005 

 

 

variation rate is slower since the thickness of the free side 

declines and the thickness of the middle part, which has 

more deflection than the end part, grows. Flexural stiffness 

alteration leads to the static deformation as well as the 

frequency response change.  

 
 
8. Conclusions 
 

The vibration of an electrostatically excited micro 

cantilever beam is studied in this work. The micro 

cantilever beam is patched by a viscoelastic layer and the 

inertia, curvature, and electrostatic actuation nonlinearities 

are taken into consideration. The nonlinear motion equation 

is extracted by means of Hamilton principle, considering 

nonlinear shortening effect for Euler-Bernoulli beam. The 

viscoelastic model is considered as Kelvin-Voigt. In order 

to discretize the governing equation of motion, the Galerkin 

method is used with the employment of non-uniform micro 

cantilever beam linear free vibration mode shapes as 

comparison function. The multiple scale perturbation 

approach is applied for solving the equation of motion. The 

solution is verified by comparing perturbation analytical 

solution with Runge-Kutta numerical solution. The acquired 

results prove that the nonlinear vibration amplitude and 

resonance shift are primarily influenced by electrostatic 

excitation, nonlinear curvature, inertia, natural frequency, 

electrostatic force, and viscoelastic damping, where It is 

worth reminding that softening effect arises from 

electrostatic excitation and nonlinear inertia while the 

hardening effect is due to the nonlinear bending curvature. 

It is observed that stable amplitude declines as a result of 

the viscoelastic movement from the free side towards the 

clamp side of the micro-beam and nonlinear frequency gets 

closer to the natural frequency which means the softening 

behavior of the system decreases. Afterwards a viscoelastic 

layer, which covers the whole micro-beam length, is taken 

into account. It is seen that, by the assumption of constant 

204



 

Nonlinear vibration analysis of an electrostatically excited micro cantilever beam coated by viscoelastic layer… 

volume, as the length of this layer reduces towards the 

clamp side, initially the system softening reduces and after a 

specific length it goes up. It should be noted that as the 

length of this layer reduces towards the free side, the system 

softening increases. Another point which needs to be 

highlighted is that the decrease of the viscoelastic layer 

length towards the middle of the micro-beam, the softening 

phenomenon grows with a lower rate in comparison with 

the mentioned state.  

It has been observed that when the coefficient of 

viscoelastic damping is small, then the best configuration 

for microsenser based on the shift of resonance frequency is 

the case that viscoelastic layer is deposited from fixed side 

to the middle part of micro beam. It is observed that when 

the coefficient of viscoelastic damping is larger, then the 

best configuration is depositing viscoelastic layer on the 

middle part of micro beam with a length approximately 

equal to the half-length of micro beam. It demonstrates that 

the worst condition is when it is deposited with an end at 

the free side and a length smaller than half length of micro 

beam. 
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