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1. Introduction 
 

Due to the actual needs in mechanical aspects, an 

increasing number of researchers have been dedicated to 

developing some behaviors of complex dynamical systems, 

such as periodic solutions, stability analysis and bifurcation 

analysis. But it is an arduous task to receive exact solutions 

of the above systems. We can consider some simple cases as 

a foundation, from which we may get some useful 

inspiration. Thus, in this paper, we will consider such a 

nonlinear system as follows 
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where x1, ε1, Ω1 and x2, ε2, Ω2 are the displacement, 

damping coefficient and linear frequency of the van der Pol 

oscillator respectively. Moreover, k1 is nonlinear stiffness of 

the Duffing resonator, and kc is coupled linear stiffness 

between the two resonators. If kc is equal to zero, Eq. (1) is 

an uncoupled system. 

For this type of periodical system, the dynamics have 

been explored in the circumstance of 1:1 internal resonance 

and different coupling stiffness in the past few years by 

Wei, Randrianandrasana et al. (2011). Also, the angular 

frequency and steady state amplitude of the governing 

equation in this paper have been investigated by residue 

harmonic balance methods. But it is an almost impossible 
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task to gain the exact solutions. Therefore, a variety of 

methods are presented to obtain its analytical approximate 

solutions, such as matrix perturbation method by Lu, Feng 

et al. (1991), modified decomposition method by Ray et al. 

(2006), complex variable functions method by Lu, Feng et 

al. (2012), harmonic balance methods by Guo, Leung et al. 

(2011), residue harmonic balance methods by Leung and 

Guo (2010). The free vibration analysis of axially moving 

beams is investigated according to Reddy-Bickford beam 

theory (RBT) by using dynamic stiffness method (DSM) 

and differential transform method (DTM) by Bozyigit and 

Yesilce (2016). However, on account of the complexity of 

the process and operation, the analytical approximation 

solutions are difficult to be explored.  

Liao (1992)
 
put forward a general analytical technique 

for such a nonlinear problem, named homotopy analysis 

method (HAM), which is based on a notion of the 

homotopy in topology. Different from other perturbation 

methods, it does not depend on small parameter. Moreover, 

it provides a valid approach to control the convergence of 

series solutions. In the past two decades, a lot of attention 

has been paid to using the HAM to solve engineering and 

physics problems. Qian and Chen (2010) developed the 

multi-degree-of-freedom (MDOF) coupled van der Pol 

Duffing oscillators by HAM. Vishal, Kumar et al. (2011) 

used the HAM to deal with fractional Swift Hohenberg 

equation-Revisited. Tasbozan, Esen et al. (2015)
 
gained 

approximate analytical solution of fractional coupled mKdV 

equation by HAM. Hoshyar, Ganji et al. (2015) explored 

the analytical solutions of the flow of incompressible 

Newtonian fluid between two parallel plates by HAM. 

Handam, Freihat et al. (2015) studied the approximate 

analytical solutions of the HIV infection model of CD4+T 
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cells of fractional order by multi-step HAM. 

Along with the actual needs, the HAM was developed 

by some pathfinders. Zhang, Qian et al. (2012) utilized the 

extended homotopy analysis method (EHAM) to obtain the 

periodic solutions of MDOF strongly nonlinear coupled van 

der Pol-Duffing oscillators, successfully. Further more, the 

modified HAM by Xin, Kumar et al. (2015) is introduced 

to get the analytical solutions of wave-like fractional 

physical models. It can obtain perfect results by using 

Laplace transform and HAM. Hence, we can conclude that 

the EHAM is valid and acceptable. In particularly, the 

approach is suitable for solving MDOF strongly nonlinear 

problems. Certainly, the method is also quite effective for 

addressing the problem in this article. 

Currently, a variety of optimal methods have been put 

for HAM. In order to obtain the better analytical solutions, 

Qian, Ren et al. (2012) put forward a new idea, which 

defined a kind of relative error of Δm and provided a valid 

way to select optimal auxiliary parameters. Subsequently, 

Liao (2012) defined the square residual function instead of 

residual function to reduce the errors. So soon, Gepreel and 

Nofal (2015) disposed of the nonlinear partial fractional 

differential equation via the optimal homotopy analysis 

method (OHAM). With the purpose of further improve the 

accuracy of the analysis solutions, Yuan and Alam (2016) 

applied with particle swarm optimization to diminish the 

exact square residual error in optimal HAM. As matters 

stand, these methods have been widely applied to 

engineering and physics problems. 

In what follows, the paper introduces the optimal 

extended homotopy analysis method (OEHAM) in section 

2. Then a classical example is used to verify the accuracy 

of the method in section 3 and section 4. Finally, the 

article ends up with a conclusion in section 5. 

 

 

2. Basic approaches of the OEHAM 
 

Consider the MDOF dynamical system as follows 

          xxqxqFxqKxqGxqM ,,  , x . (2) 

where q is a n-dimensional unknown vector, a dot indicates 

the derivative with respect to x. M, G and K are n×n mass, 

damping and stiffness matrixes respectively. F is the vector 

function of q , q and x, and Ω shows the solution interval. 

If   0,, xqqF  , then Eq. (2) is an autonomous dynamical 

system. If   0,, xqqF  , a dynamical system likes Eq. (2) 

should be called as a non-autonomous system. From Eq. 

(2), we define a nonlinear differential operator as follows 
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where u(r,x) is an unknown vector function, r and x are 

spatial and time variables, respectively.  

In Eq. (3), the unknown vector functions of u(r,x), 

∂u(r,x)/∂x
 
and ∂

2
u(r,x)/∂x

2
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On the basis of the underlying principle of the EHAM, 

we construct the so-called zero-order deformation equation 

as follows 

            pxrNxHpxrupxrLp ;,,;,1 110  

 

    pxrxH ;,22  ,           (7) 

Where p∈[0,1] is an embedding parameter, u0 (r,x) is the 

solution of initial guess, L is an auxiliary linear operator, 

i  and Hi(x) are the convergence-control parameters and 

the functions, respectively (i=1,2). 

While the operator ∏[Φ(r,x;p)] has the following 

character 

      01;,0;,  xrxr .         (8) 

Clearly, for the zero-order deformation Eq. (7), we have 

the solution Φ(r,x;0)=u0(r,x), when p=0, and 

Φ(r,x;1)=u(r,x), when p=1. Thus, as p raises from 0 to 1, the 

solution Φ(r,x;p) changes from the initial guess solution 

u0(r,x) to the exact solution u(r,x). 
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 
 

0

;,

!

1
, 




 pm

m

m
p

pxr

m
xru ,         (9) 

and expanding Φ(r,x;p) with the Taylor series expansion 

about the embedding parameter p in the sight of the theorem 

of vector-valued function, we obtain 
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If the auxiliary linear operator, initial guess solution, 

convergence-control parameters 
1 ,

2  and auxiliary 

functions H1(x), H2(x) are becomingly selected, the series 

Eq. (9) converges at p=1, so we obtain the series solution as 

follow 
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m

m xruxruxru .         (11) 

For the purpose of simplicity, the vector of um is defined 

as 

      xruxruxru mm ,,,,,, 10 u .       (12) 

Differentiating the zero-order deformation Eq. (7) m 

times with respect to p, then dividing the equation by m! 

and setting p=0, we can get 
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The m-order deformation Eq. (13) is a linear equation, 

which can be lightly solved by the symbolic software such 

as Maple and Mathematica. 

In order to value the precision of the m-order 

approximation of u(r,x), the squared residual for the Eq. (2) 

is defined as follow 

  dxxruNE
m

mm

2

0

,1 , 













 .         (17) 

If Em is enough small, we can say that the m-order 

approximation of u(r,x) is more precision. Given the initial 

guess solution u0(r,x), auxiliary functions Hi(x) (i=1,2), and 

linear operator L, the squared residual Em is dependent on 

the convergence-control parameters 
i  (i=1,2). Hence, 

unlike other analytic methods, the OEHAM presents an 

artful method to dominate the convergence of series 

solutions. The proof of the convergence of OEHAM 

solutions for the MDOF nonlinear dynamical system (2) is 

presented in Appendix A. 

 

 

3. Application of the OEHAM 
 

In this section, we apply the OEHAM to analyze the 

following damped Duffing resonator driven by a van der 

Pol oscillator 
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Introducing τ=ωt
 
and substituting x1(t)=u1(τ), x2(t)=u2(τ) 

into Eq. (18), yield 
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(19) 

with the initial conditions 

  au 01
,   bu  01

,   cu 02
,   002 u ,    (20) 

where (') shows the derivative with respect to τ.  

Consequently, the solutions in Eq. (19) can be expressed 

by a set of base functions {cos(kτ), sin(kτ)|k=0,1,2,...}, as 

follows 
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With regard to the initial approximation, we suppose 
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with the character 
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 According Eq. (19), we define the nonlinear operator 

as follows 
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The zero-order deformation equation can be written as 

follows 
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with the initial conditions 
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With regard to q=0, the solutions of Eqs. (26)-(28) are 
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However, for q=1， the zero-order deformation Eqs. 

(26)-(28) are equivalent to the primitive Eqs. (19)-(20), as 

follows 
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When the embedding parameter q increases from 0 to 1

，  Φi(τ,q)
 

changes from the initial guess xi,0(τ) to the 

unknown solution xi(τ) (i=1,2). Similarly, Ω(q) changes 

from the initial guess frequency ω0 to the physical 

frequency ω. 

Using the Taylor series expansion and Eq. (29), we can 
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Selecting appropriate 
1  and 

2 , then the power 

series solutions in Eq. (31) converge at q=1. From Eqs. 

(29)-(30), we know that the series solutions are given by 

     τττ
1

,10,11 

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m

muuu ,           (33a) 
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m

muuu ,          (33b) 
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For the goal of simplicity, we define the vectors as 
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(34) 

Differentiating the zero-order deformation Eq. (26) m 

times with respect to p, then the resulting equation is 

divided by m!. And setting p=0, the m-order deformation 

equation is expressed as follows 

   

   

 

 

 

 





















































mm

mm

mmm

mmm

mmm

mmm

S

S

R

R

uu

uu
L

ω

ω

ωu

ωu

,τ

,τ

,

,

τχτ

τχτ

,2

,1

2

11,2

11,1

1

1,2,2

1,1,1


 
   

   

 

 

 

 





















































mm

mm

mmm

mmm

mmm

mmm

S

S

R

R

uu

uu
L

ω

ω

ωu

ωu

,τ

,τ

,

,

τχτ

τχτ

,2

,1

2

11,2

11,1

1

1,2,2

1,1,1
 ,    (35) 

with the initial conditions 

  mm au 0,1
,   mm bu  0,1

,          (36a) 

  mm cu 0,2
,   00,2 

mu  1m ,      (36b) 

where 
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and 
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mm
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According to the rule of solution expression, the 

solutions that we obtain from Eq. (34) should not contain 

secular terms τsin τ and τcos τ, so the right hand side of Eq. 

(36) must not contain the terms sin τ and cos τ. 

Consequently, we obtain four algebraic equations 

 

 

 

Fig. 1 The curve of ω-  
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     0ττcos,,
π

1 π2

0
,1211,11   dSR mmmmm ωτωu  , 

(40a) 

     0ττsin,,
π

1 π2

0
,1211,11   dSR mmmmm ωτωu  ,(40b) 

     0ττcos,,
π

1 π2

0
,2211,21   dSR mmmmm ωτωu  , 

(40c) 

     0ττsin,,
π

1 π2

0
,2211,21   dSR mmmmm ωτωu 

.(40d) 

With regard to Eqs. (35)-(40), we can obtain the 

solutions of ωk, ak, bk, ck (k=0,1,2,...). To measure whether 

the solutions 
 

 









τ

τ

2

1

u

u
 are sufficiently approximate, we can 

use Mathematica to calculate the value of Em. If the value 

diminishes to zero quickly, it indicates that the convergence 

control parameters 
i  (i=1,2) is optimal. 

 

 

4. Numerical simulation and discussion 
 

In this section, numerical experiment is used to verify 

the precision of the present method. From the previous  

description, two auxiliary nonzero parameters 
1  

and 
2   

are used to guarantee the convergence of the series solution. 

Obviously, if the range of the convergence control 

parameters is confirmed, accurate solutions of the 

researched problem will be obtained. By depicting the  

21 --ω   surface, we survey that solutions of ω is 

converged in a certain range. Therefore, the optimal 
1  

and 
2  will be selected. 

 

 

Firstly, we consider ε1=0, ε2=0, Ω1=1, Ω2=2, k1=1, kc=1 

and the initial approximations of a, b, c, ω are a0=2, b0=0, 

c0=2, ω0=2. In addition, we note that there exists two 

auxiliary parameters 
1  and 

2 , which are used to ensure 

the convergence of series solutions.  

When 02  , we use the classical HAM , then the 

fifth-order approximation of 
1-ω   curve is given in Fig. 

1. Obviously, we observe that the series solution of ω  

converge at −0.5<
1 <0, so we select 1.01   

as well.  

Then the phase curves and the time history responses of the 

forth-order approximation are portrayed readily in Figs. 

2(a)-(b) and Figs. 3(a)-(d), respectively. 

Usually in this case, we acquire the numerical 

integration solution via the standard Runge-Kutta method, 

and the initial conditions of the numerical integration are 

based on x1(0)=2.000043,   0.2563770 01 x , 

x2(0)=2.000729,   0 02 x . In addition, the analytical 

approximation solutions for x1(t), x2(t) and ω of the 

second-order are expressed by 

 1 1.95930054cosω 0.04042969cos3ω 0.00031250cos5ωx t t t t   
 

 1 1.95930054cosω 0.04042969cos3ω 0.00031250cos5ωx t t t t     

   0.23762696sinω 0.00625000sin3ω 0.00156250sin5ωt t t  

0.23762696sinω 0.00625000sin3ω 0.00156250sin5ωt t t  , 
(41a) 

 2 1.99562500cosω 0.00718750cos3ω 0.00208333cos5ωx t t t t    

  2 1.99562500cosω 0.00718750cos3ω 0.00208333cos5ωx t t t t     

   0.24114257sinω 0.08038086sin3ω 0.01041667sin5ωt t t  

0.24114257sinω 0.08038086sin3ω 0.01041667sin5ωt t t  , 

(41b) 

   98448254.1ω  . (41c) 

From above pictures, it is clear that the current 

approximation solutions match the numerical integration 

solutions well.  

However, in recently, a series of optimal HAM methods 

 

  

 

 

Fig. 2 Comparison the 4th-order phase diagram of HAM and Runge-Kutta method 

--------- approximation solution _______ numerical integral solution 
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Fig. 4 The curve of m  

 

 

have been developed, which allow us to obtain faster 

convergent region of the analytical solutions. For the 

example in this article, we note that frequency and 

amplitudes of vibration are the most symbolic parameters in 

the analysis. Therefore, we can define the exact residual 

error of the m-order approximation as follows 
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,    (42) 

where ω, a and c denote respectively the physical frequency 

and amplitude of 
 

 









tx

tx

2

1  in Eq. (18). From Fig. 4 we 

observe that Δm decreases quickly to zero. Obvious, the 

convergence speed of the optimal homotopy series solutions 

 

 
Fig. 5 The surface of 

21 --ω   

 

 

are faster than before in this area. In other words, by 

reducing the relative error, we can depict 
1-m  curve to  

acquire a better convergence control parameter, which can 

ensure the m-order series convergence faster in a large  

range. So the optimal 
1  is obtained by the above 

approach. Obviously, by choosing 265.01  , we can  

acquire more excellent solutions. However, the above 

situation is so peculiar that do not have strong stringency. 

So the second case (ε1≠0) was discussed as follows. 

Secondly, we consider the case of ε1=0.025, ε2=0.25, 

Ω1=1, Ω2=2, k1=1, kc=1. In order to obtain a better solution,  

the EHAM  02   was used to solve the problem.  

Similarly, showing the surface in Fig. 5 and selecting the  

effective domain of 
21 --ω  . Obviously, the series of ω  

0.280 0.275 0.270 0.265 0.260

0.0714331

0.0714332

0.0714333
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0.0714335
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(a)                                           (b) 

 
(c)                                        (d) 

 

Fig. 3 Comparison the 4th-order time history diagram of HAM and Runge-Kutta method 

--------- approximation solution 
_______ 

numerical integral solution 
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convergence at 05.0 1   , 200400 2   , so set 

1.01  , 3002  , a0=2, b0=0, c0=2, ω0=2. The phase  

portraits and time history responses of the second-order 

approximation are portrayed respectively in Figs. 6(a)-(b) 

and Figs. 7(a)-(d). Apparently, we can conclude that the 

analytical approximation solutions and numerical solutions 

agree well with each other.  

The numerical solutions are obtained by the standard 

Runge Kutta method, the addition conditions are based on 

x1(0)=1.99938,   0.00064 01 x , x
2
(0)=1.99999,   0 02 x . 

By the EHAM method, the analytical approximation 

solutions of the second-order are shown as follows 

 

 

 
Fig. 8 The surface of 

21 --ω   

 

  

 

 

Fig. 6 Comparison the 2th-order phase diagram of HAM and Runge-Kutta method 

 

 

 

Fig. 7 Comparison the 2th-order time history diagram of HAM and Runge-Kutta method 

--------- approximation solution 
_______ 

numerical integral solution 

 --------- approximation solution 
_______ 

numerical integral solution 
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, 

(43a) 

 

 

 

(43b) 

. (43c) 

 

 

 

But there exist a little deviation when damping and 

coupling stiffness are powerful, which can be observed 

from Figs. 6-7. 

Next, we will consider the weak situation. Set ε1=0.001, 

ε2=0.125, Ω1=1, Ω2=2, k1=1, kc=0.5 and regard a0=2, b0=0, 

c0=2, ω0=2
 
as the initial approximation solution of a, b, c,  

ω. As before, the 
21 --ω   curve is given in Fig. 8. 

Evidently, 01 1   , 300500 2   , the series 

solution of ω  is convergence. Thus, select 2.01  , 

4002  . In addition, the initial approximation solution  

 1 1.95876780cosω 0.04030000cos3ω 0.00031250cos5ω -x t t t t  

 1 1.95876780cosω 0.04030000cos3ω 0.00031250cos5ω -x t t t t  

0.00107267sinω 0.00014375sin3ωt t

 2 2.00019593cosω -0.00007812cos3ω 0.00013021cos5ω -x t t t t 

 2 2.00019593cosω -0.00007812cos3ω 0.00013021cos5ω -x t t t t 

0.06047031sinω 0.02015677sin3ωt t

2.00016351 ω 

 

  

 

 

Fig. 9 Comparison the 2th-order phase diagram of HAM and Runge-Kutta method 

 

 

 
Fig. 10 Comparison the 2th-order time history diagram of HAM and Runge-Kutta method

 

--------- approximation solution 
_______ 

numerical integral solution 

--------- approximation solution 
_______ 

numerical integral solution 
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of a, b, c, ω are a0=2, b0=0, c0=2, ω0=2, and the phase 

diagram and the time history responses of the second-order 

approximation are plotted respectively in Figs. 9(a)-(b) and 

Figs. 10(a)-(d). We notice that the solutions of analytical 

approximation and numerical solutions fit well.  

Similarly, we utilize the standard Runge-Kutta method 

to gain the numerical solution, with x1(0)=1.99959802,

  0.00048111 01 x , x2(0)=1.99998456, and   0 02 x . 

More over, the analytical approximation solutions for x1(t), 

x2(t) and ω  of the second-order are expressed by 

 1 1.93774176cosω 0.06060625cos3ω 0.00125000cos5ωx t t t t    

 1 1.93774176cosω 0.06060625cos3ω 0.00125000cos5ωx t t t t     

0.00089316sinω +0.00013750sin3ωt t ,    (44a) 

 2x =2.00050539cosω -0.00039061cos3ω -0.00013021cos5ω +t t t t 

 2x =2.00050539cosω -0.00039061cos3ω -0.00013021cos5ω +t t t t  

0.04546992sinω 0.01515664sin3ωt t ,   (44b) 

2.00012264 ω  .             (44c) 

From the above mentioned examples, we note that the 

EHAM is appropriate for the system of the damped Duffing 

resonator driven by a van der Pol oscillator with weak 

damping and coupling stiffness.  

However, in recent years, a variety of optimal methods 

have been studied. In this article, we introduce an ingenious  

 

 

 

 

mean to optimize the convergence domain of 
21 --ω   

surface. It is defined in Eq. (17), which denotes relative 

error of analytical approximation solutions. From Figs. 

11(a)-(b), we can clearly observe that Em reduce rapidly to 

zero in a certain area. It indicates that the series solution 

accelerate convergence in this region. Consequently, we can  

pick most appropriate 
1  and 

2 to obtain better 

analytical approximation solutions. It is clear that we can 

choose 25.01  , 5002  . 

To illustrate the correctness and accuracy of the optimal 

extend homotopy analysis method, the error estimation is 

presented as follows: 

From Table1 and Table 2, we note that the error of 

optimal approximate frequencies are small than the non 

optimal approximate frequencies. The exact frequency is 

computed using the numerical integration technique. 

Now, we discuss the physical nature of the obtained 

solutions. Figs. 2 and 3 showed the phase curve and time-

history response for the same set of initial conditions and 

governing parameters. In Fig. 2, curves for the approximate 

and numerical solutions are not closed to each other, but 

both solutions are very good as shown in Fig. 3. What is the 

reason why the difference between the approximate and 

numerical solutions in the phase curve is quite obvious, but 

not in the time-history response? Here, we would like to 

make a description: the time-history response just show 

 
(a)                                          (b) 

Fig. 11 The surface of 21  mE  

Table 1 Comparison with the exact frequencies ωe 
and approximate frequencies ωH, based on the non optimal 

1  and 
2

 

Ω1 
Ω2 

k1 
e1 

e2 
kc 1  2  ωe 

ωH 

ω ω

ω

e H

e


 

1 4 1 0 1 1 -0.1 0 1.97581 1.97913 0.00168032 

1 4 1 0.0025 0.25 1 -0.1 -300 1.98208 2.00047 0.00927813 

1 4 1 0.001 0.125 0.5 -0.2 -400 1.98835 2.00032 0.00602007 

Table 2 Comparison with the exact frequencies ωe and approximate frequencies ωH, based on  the optimal 
1  and 

2

 

Ω1 
Ω2 

k1 
e1 

e2 
kc 1  2  ωe 

ωH 

ω ω

ω

e H

e


 

1 4 1 0 1 1 -0.265 0 1.97581 1.97647 0.00033404 

1 4 1 0.0025 0.25 1 -0.25 -500 1.98208 2.00046 0.00927309 

1 4 1 0.001 0.125 0.5 -0.25 -500 1.98835 2.00024 0.00597983 
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that, even if the time variable t progresses to a 

comparatively large domain, the results (i.e., phase curves 

and period solutions) obtained by the OEHAM will also be 

in good agreement with the numerical integration solution. 

In another word, the very good results in Fig.3 just 

guarantee the accuracy and validity of the results by Fig.2. 

If we get curves for the approximate and numerical 

solutions are closed to each other, but not good in time-

history response or just good in short time, then we can say 

the approach is fail to solve the problem. 

 

 

5. Conclusions 
 

In this paper, the OEHAM is introduced to address a 

type of complex MDOF nonlinear systems. In particular, 

the damped Duffing resonator driven by a van der Pol 

oscillator is used to discuss as an example. To verify the 

correctness and accuracy of the method in the paper, some 

comparison between analytical approximation solutions and 

numerical integration solutions are studied. It is obvious 

that the analytical approximation solutions are in excellent 

agreement with the numerical integration solutions, under 

the condition of weak damping and coupling stiffness. 

Generally, it has a greater influence with the strong 

damping and coupling stiffness than weak damping and 

coupling stiffness, for the system of Duffing resonator 

driven by a van der Pol oscillator. 

With the help of OEHAM, two cases are considered in 

this article, from which we can conclude that the OEHAM 

is more valid and available. On the one hand, it over comes 

the inconvenience of other analytical methods in dealing 

with complex MDOF nonlinear systems. On the other hand, 

it provides a valid way to choose auxiliary parameters. 

Moreover, a variety of optimal methods have sprung up 

in recent years. For the example in the paper, we select 

squared residual to optimize the auxiliary parameters 
1  

and 
2 . Obviously, the optimal analysis approximation 

solutions are coincidence with numerical solutions almost 

everywhere in convergence region. In brief, the above 

mentioned examples show that the actual method is 

appropriate for complex MDOF nonlinear systems. It is 

believed that the OEHAM can be further popularized for 

more complex nonlinear dynamic system. 
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Appendix A: Convergence theorem 
 

In this section, the proof of the convergence of OEHAM 

solutions for the MDOF nonlinear dynamical system (2) is 

given as follows (Odibat 2010). 

Theorem 1. If the Eq. (11) of the paper converges at 

p=1, and satisfies high-order deformation equation (13), 

(14), (15) and (16). Then Eq. (11) must be the solution of 

Eq. (2).  

Proof. Due to the series      





1

0 ,,,
m

m xruxruxru  is 

convergent, let  

   
0

, xm

m

Q x u r



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m

u r x


 .    (A1) 

Then  
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
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             
11 2 1 3 2, , , , , ... , ,
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
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

         
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So 

     1
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
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However, operator L is linear, we can obtain that 

       1 1

1 1
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From Eq. (13) and Eq. (A4), we know that  
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Because of 
21, , H1, H2 can be chosen freely, the 

above equation could become a generalized equation as 

follows 

        1 1 2

1 1

σ , , σ , 0m m m

m m
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Where σt (t)≠0 (i=1,2). 

From Eq. (15) and Eq. (16), we can obtain that  
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that is   
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Let  
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and represents the residual error of Eq. (2). In order to 

prove Eq. (11) is the  exact solution of Eq. (2), we need to 

prove τ(r,x; p)=0. 

From Eq. (A9), we can obtain the Maclaurin series of 

τ(r,x; p) on embedded variable p. 
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So 
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From Eq. (8) and Eq. (A8), we know that  
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Thus, if Eq. (11) is convergent, it must be a solution of 

Eq. (2). 
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