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1. Introduction 
 

Generally, nanoplates are synthesized nano-objects 

whose two dimensions are considerably larger than another 

one. Scientists are still working on their usages in various 

branches of technology and industry. Several potential 

applications of nanoplates such as electrocatalyst (Chen, 

Lim et al. 2009, Lee, Chiou et al. 2011, Huang, Chen et al. 

2012), biosensor (Abouzar, Poghossian et al. 2011, Zhong, 

Gan et al. 2013, Fatemi, Khodadadi et al. 2012), corrosion 

and wear resistance soft magnets (Zhu, Zhao et al. 2012, 

Grzelczak, P𝑒rez-Juste et al. 2008, Huang and Wang 2011), 

recording heads and soft magnetic disk drive components 

subjected to wear (Clark, Wood et al. 1997) as well as 

computer hard drive platen (Sewell 2008) have been of 

concern of researchers during the recent years. For each 

application, the deformation regime of the nanoplate should 

be also rationally examined via appropriate models. For 

example, the later application of the nanoplates requires 

true understanding of their dynamic behavior as well as the 

mechanisms of wave propagation within them in the 

presence of a magnetic field. This matter motivated the 

author to study this problem for elastic nanoplates in the 

presence of an in-plane steady magnetic field.  

 When a conducting nanoplate is subjected to a magnetic 

field, a body force is exerted on each element of the 
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nanoplate, called Lorentz’s force. Such a force is calculated 

based on the Lorentz formula and Maxwell’s equations. 

Such a force is commonly expressed as a function of 

derivatives of deformation and it appears as a body force in 

the governing equations. Thereby, vibration behavior of 

conducting nanoplates is affected by the applied magnetic 

field. It is also indicated that the characteristics of the 

propagated waves within conducting nanostructures can be 

appropriately controlled by proper application of the 

magnetic field. For instance, it has been shown that the 

transverse stiffness of carbon nanotubes is enhanced by 

application of a longitudinal magnetic field (Kiani 2012a, 

Kiani 2014a, Murmu, McCarthy et al. 2012, 2013, Karlicic, 

Murmu et al. 2014).  

 The classical continuum theory (CCT) fails in 

predicting the true in-plane and out-of-plane vibrations of 

nanoplates since it does not take into account interatomic 

forces in its formulations. According to the CCT, the state 

of stress of each point of the continuum only depends on the 

state of strain of that point. This matter becomes a serious 

problem in capturing the characteristics of propagated 

sound waves when their wavelengths are comparable with 

the atomic bond length. To overcome such a malfunctioning 

of the classical continuum theory, some advanced elasticity 

theories have been developed during the past century such 

as couple stress theory by Cosserat and Cosserat (1909), 

generalized couple stress theory by Toupin (1964) and 

Mindlin (1964), nonlocal continuum theory by Eringen and 

Edelen (1972), Eringen (1972), Eringen (1983), and strain 

gradient theory of elasticity by Aifantis (1992). Among the 

above-mentioned advanced theories, the nonlocal 

continuum theory (NCT) of Eringen has gained much 

popularity in various scientific and technical communities. 
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This fact is mainly related to its effectiveness in predicting 

vibration behavior of nanoscale structures as well as its 

simplicity in application to the classical version of the 

equations of motion of the continuum under study. Simply, 

the NCT states that the stress of each point of the equivalent 

continuum structure pertinent to the nanostructure does not 

only rely on the stress of that point, but also to the stresses 

of its neighboring points. Thereby, it could be directly 

concluded that the discrepancies between the predicted 

results by the CCT and those of the NCT increase as the 

frequency of the propagated wave increases. 

 To date, vibrations of nanoplates have been investigated 

using nonlocal continuum theory of Eringen for a wide 

range of problems including free transverse vibration 

(Pradhan and Phadikar 2009, Malekzadeh and Setoodeh 

2011, Jomehzadeh and Saidi 2011, Asadi and Farshi 2010, 

Ansari, Rajabiehfard et al. 2010, Ansari, Arash et al. 2011, 

Ansari, Sahmani et al. 2010, Ansari, Shahabodini et al. 

2015), free in-plane vibration (Murmu and Pradhan 2009), 

forced transverse vibration (Aksencer and Aydogdu 2012, 

Malekzadeh and Farajpour 2012, Assadi 2013), and in-

plane and out-of-plane vibrations due to moving 

nanoparticles (Kiani 2011a, b). Concerning the influence of 

magnetic field on dynamic behavior of nanostructures, there 

are some works that explain the effect of magnetic fields on 

vibrations of- and wave propagation in carbon nanotubes 

(Wang, Dong et al. 2010, Wang, Shen et al. 2012, Xie, 

Wang et al. 2012, Narendar, Gupta et al. 2012, Kiani 

2014b, c) and nanowires (Kiani 2012b, c). In the first six 

works, the applied magnetic field is steady whereas in the 

latter two ones, the magnetic field is unsteady and 

considering the inertial effects of the nanostructure leads to 

a more rational dynamic response. Additionally, free 

transverse vibrations of magnetically affected graphene 

sheets via nonlocal Kirchhoff plate theory (Murmu, 

McCarthy et al. 2013, Kiani 2014d, Li , Cai et al. 2014, 

Mandal and Pradhan 2014, Ke, Wang et al. 2014) and 

vibration behavior of nanoplates via nonlocal shear 

deformable plate theories (Kiani 2014e, Ansari and 

Gholami 2016) have been investigated. In these studies, the 

nanoplates were subjected to unidirectional magnetic fields, 

their in-plane vibration was provoked, and the 

characteristics of elastic waves within magnetically affected 

nanoplates were not addressed. In order to bridge these 

scientific gaps, the authors were encouraged to revisit the 

problem in a more general context, namely in-plane and 

out-of-plane waves in nanoplates immersed in bidirectional 

in-plane magnetic fields.  

 In the present work, sound wave propagation within 

conducting nanoplates subjected to biaxially in-plane steady 

magnetic fields is of concern. By exploiting the nonlocal 

continuum theory of Eringen, the governing equations of 

the problem are constructed according to the Lorentz’s body 

force and Maxwell’s equations. For a harmonic wave with 

an arbitrarily propagated direction, the frequencies as well 

as phase and group velocities of both in-plane and out-of-

plane waves within an infinite conducting nanoplate are  
analytically calculated. The effects of the in-plane magnetic 
field strength, direction of wave propagation, and 
wavenumber on the characteristics of the propagated waves 
are addressed in some detail. 

 

Fig. 1 A continuum-based configuration of an infinite 

nanoplate immersed in a steady bidirectional in-plane 

magnetic field 

 

 

2. Basic assumptions and formulations 
 
2.1 Nonlocal equations of motion 
 

Consider an infinite homogeneous elastic nanoplate of 

thickness tp, density ρp, Poisson’s ratio vp, Elasticity 

modulus Ep as demonstrated in Fig. 1. The nanoplate is 

acted upon by a steady in-plane biaxially magnetic field 

represented by: 𝐇0 = 𝐻𝑥 �̂�𝑥 + 𝐻𝑦 �̂�𝑦 , where 𝐇0  is the 

magnetic field vector, and 𝐻𝑥 and 𝐻𝑦  represent components 

of the magnetic field along the 𝑥  and 𝑦  directions, 

respectively (see Fig. 1). According to the Kirchhoff plate 

theory, the displacement field vector of the nanoplate is 

stated by: 𝐮 = 𝑢𝑥�̂�𝑥 + 𝑢𝑦�̂�𝑦 + 𝑢𝑧�̂�𝑧  where 𝑢𝑥(𝑥, 𝑦, 𝑧, 𝑡) =

𝑢0(𝑥, 𝑦, 𝑡) − 𝑧 𝑤0,𝑥(𝑥, 𝑦, 𝑡) , 𝑢𝑦(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣0(𝑥, 𝑦, 𝑡) −

𝑧 𝑤0,𝑦(𝑥, 𝑦, 𝑡 , and 𝑢𝑧(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤0(𝑥, 𝑦, 𝑡).  In these 

relations, 𝑢𝑥 , 𝑢𝑦 , and 𝑢𝑧  in order are the displacement 

components pertinent to the 𝑥 , 𝑦 , and 𝑧  axes, and 𝑢0 , 𝑣0 

and 𝑤0 are their mid-plane displacements, respectively. For 

a conducting structure immersed in a steady magnetic field, 

using Maxwell’s electro-magnetic equations, the so-called 

Lorentz force of the nanoplate could be evaluated from 
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       =  (  (  (𝐮  𝐇0)))  𝐇0, (1) 

where   is the magnetic permeability of the nanoplate, 𝐮 is 

the displacement field vector. The generated forces and 

bending moments within the nanoplate due to the biaxially 

applied magnetic field are evaluated by: 𝐅 = ∫  
𝑡𝑝/2

−𝑡𝑝/2
  𝑑𝑧 

and 𝐌 = ∫  
𝑡𝑝/2

−𝑡𝑝/2
𝑧   𝑑𝑧.  

 By virtue of these relations through using Hamilton’s 

principle, the nonlocal equations of motion of the 

conducting nanoplate subjected to a biaxially in-plane 

magnetic field are obtained as 

 𝑥𝑥,𝑥
  + 𝑥𝑦,𝑦

  =  0 𝑢0,𝑡𝑡 −  𝑡 𝐻𝑦
2(𝑢0,𝑥𝑥 + 𝑢0,𝑦𝑦), (2a) 

 𝑥𝑦,𝑥
  +  𝑦𝑦,𝑦

  =  0 𝑣0,𝑡𝑡 −  𝑡 𝐻𝑥
2(𝑣0,𝑥𝑥 + 𝑣0,𝑦𝑦), (2b) 

 𝑥𝑥,𝑥𝑥
  +   𝑥𝑦,𝑥𝑦

  + 𝑦𝑦,𝑦𝑦
  =  0𝑤0,𝑡𝑡 

− 2(𝑤0,𝑥𝑥𝑡𝑡 + 𝑤0,𝑦𝑦𝑡𝑡) +
 𝑡 
3

  
 

(𝐻𝑦
2(𝑤0,𝑥𝑥𝑥𝑥 +𝑤0,𝑥𝑥𝑦𝑦) + 𝐻𝑥

2(𝑤0,𝑦𝑦𝑦𝑦 +𝑤0,𝑥𝑥𝑦𝑦)) 

− 𝑡 (𝐻𝑥
2 − 𝐻𝑦

2)(𝑤0,𝑥𝑥 − 𝑤0,𝑦𝑦), 

(2c) 

where   = ∫  
𝑡𝑝/2

−𝑡𝑝/2
  𝑧

 𝑑𝑧 ,  𝑥𝑥
   and  𝑦𝑦

   are the nonlocal 

axial force in the 𝑥 and 𝑦 directions,  𝑥𝑦
   is the nonlocal in-

plane shear force,  𝑥𝑥
   and  𝑦𝑦

   in order are the nonlocal 

bending moment about the 𝑥  and 𝑦  axes, and  𝑥𝑦
   is the 

nonlocal twisting moment. All of these nonlocal forces and 

moments are evaluated per unit length. Eqs. (2a) and (2b) 

denote the in-plane motions of the conducting nanoplate, 

whereas, Eq. (2c) describes the out-of-plane vibration of the 

nanoplate. The nonlocal forces in Eqs. (2a)-(2c) are related 

to the local ones as follows (Pradhan and Phadikar 2009, 

Arash, Wang et al. 2012, Arash and Wang 2012) 

 𝑥𝑥
  − (𝑒0 )

2 2 𝑥𝑥
  =  𝑥𝑥

 =  (𝑢0,𝑥 +   𝑣0,𝑦), (3a) 

 𝑦𝑦
  − (𝑒0 )

2 2 𝑦𝑦
  =  𝑦𝑦

 =  (𝑣0,𝑦 +   𝑢0,𝑥), (3b) 

 𝑥𝑦
  − (𝑒0 )

2 2 𝑥𝑦
  =  𝑥𝑦

 

=
 

 
( −   )(𝑢0,𝑦 + 𝑣0,𝑥), 

(3c) 

 𝑥𝑥
  − (𝑒0 )

2 2 𝑥𝑥
  =  𝑥𝑥

 

= − (𝑤0,𝑥𝑥 +   𝑤0,𝑦𝑦), 
(3d) 

 𝑦𝑦
  − (𝑒0 )

2 2 𝑦𝑦
  =  𝑦𝑦

 

= − (𝑤0,𝑦𝑦 +   𝑤0,𝑥𝑥), 
(3e) 

 𝑥𝑦
  − (𝑒0 )

2 2 𝑥𝑦
  =  𝑥𝑦

 = − ( −   )𝑤0,𝑥𝑦 . (3f) 

where 𝑒0  denotes the small-scale parameter,   and   in 

order are the in-plane and bending rigidity which are  

expressed by C=Eptp/(1− 3
pv ) and D=Ep 

3
pt /(12(1− 3

pv )). The  

small-scale parameter is commonly determined by 

comparing the predicted dispersions curves by the nonlocal 

model with those of another atmoistic-based methodology. 

By combining Eqs. (2a)-(2c) and Eqs. (3a)-(3f), through 

using the following dimensionless quantities and operators 

𝑢0 =
𝑢0
𝑡 
, 𝑣0 =

𝑣0
𝑡 
, 𝑤0 =

𝑤0
𝑡 
,  =

𝑥

𝑡 
,  =

𝑦

𝑡 
, 

𝑡 = 𝑡 
2√
 0
 
 ,  =

𝑒0 

𝑡 
,  =

 𝑡 
2

 
,  2 =

 2
 0𝑡 

2
, 

 [. ] = [. ] −  2([. ],  + [. ],  ), 

𝐻𝑥 = 𝐻𝑥√
 𝑡 
3

 
,𝐻𝑦 = 𝐻𝑦√

 𝑡 
3

 
, 

 
2
[. ] = [. ],  + [. ],  ,  

4
[. ] 

= [. ],    +  [. ],    + [. ],    , 

(4) 

the dimensionless nonlocal governing equations of the 

problem under study are derived 

 (𝑢0,  +
 −   

 
𝑢0,  +

 +   

 
𝑣0,  )

+ 𝐻𝑦
2
 {𝑢0,  + 𝑢0,  } =  {𝑢0,  } 

(5a) 

 (𝑣0,  +
 −   

 
𝑣0,  +

 +   

 
𝑢0,  )

+ 𝐻𝑥
2
 {𝑣0,  + 𝑣0,  } =  {𝑣0,  } 

(5b) 

 
4
𝑤0 +

 

  
 ,𝐻𝑦

2
 
2
𝑤0,  + 𝐻𝑥

2
 
2
𝑤0,  -− 

(𝐻𝑥
2
− 𝐻𝑦

2
)  {𝑤0,  − 𝑤0,  } = 

 {𝑤0,  −  2(𝑤0,    + 𝑤0,    )} 

(5c) 

where   and   represent the dimensionless time and small-

scale parameters, respectively. 

 

2.2 Arbitrarily propagated in-plane and out-of-plane 
waves 

 
Let harmonic elastic waves propagate within the 

nanoplate along the 𝐫 direction of angle 𝜙 with respect to 

the 𝑥 axis as in the following form 

 𝑢0, 𝑣0, 𝑤0  =  0,  0, 0  𝑒
 ( .𝐫− 𝑡), (6) 

where  0,  0, and  0 are the amplitudes of the waves along 

the 𝑥 , 𝑦 , and 𝑧  axes, respectively, 𝑖 = √− ,  = 𝑘𝑥�̂�𝑥 +
𝑘𝑦�̂�𝑦  is the wave vector, 𝑘𝑥 = 𝑘 cos𝜙 and 𝑘𝑦 = 𝑘 sin𝜙, 𝑘 

is the wavenumber, 𝐫 = 𝑟�̂�𝑟 = 𝑥�̂�𝑥 + 𝑦�̂�𝑦  denotes the 

position vector, �̂�𝑥, �̂�𝑦, and �̂�𝑟 in order are the unit vectors 

pertinent to the 𝑥, 𝑦, and 𝐫 directions, and 𝜔 is the wave’s 

frequency. According to Eq. (4), Eq. (6) could be rewritten 

in the following dimensionless form as well 

 𝑢0, 𝑣0, 𝑤0  =  0,  0, 0  𝑒
 ( .𝐫−  ), (7) 

where the dimensionless quantities in Eq. (7) are as 

 0 =
 0
𝑡 
,  0 =

 0
𝑡 
,  0 =

 0
𝑡 
,  = 𝑘𝑥�̂�𝑥 + 𝑘𝑦�̂�𝑦, 𝑘𝑥 = 𝑡  𝑘𝑥 , (8) 
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𝑘𝑦 = 𝑡  𝑘𝑦 , 𝑘 = √𝑘𝑥
2
+ 𝑘𝑦

2
, 𝐫 =  �̂�𝑥 +  �̂�𝑦 ,  

= 𝜔𝑡 
2√
 0
 
. 

 
2.2.1 In-plane and out-of-plane frequencies 
By substituting Eq. (7) into Eqs. (5a)-(5c), one can 

arrive at the following set of algebraic equations 

(− 2  [
 0 0
0  0
0 0  

] + [

Γ1 Γ2 0
Γ2 Γ3 0
0 0 Γ4

]) {

 0

 0

 0

} = {
0
0
0
}, (9) 

where 

Γ1 =
  𝑘

2

 +  2𝑘
2  ((cos𝜙)

2 +
 −   

 
(sin𝜙)2)

+ (𝑘 𝐻𝑦)
2
, 

(10a) 

Γ2 =
( +   )  𝑘

2

4 ( +  2𝑘
2
)
sin( 𝜙), (10b) 

Γ3 =
  𝑘

2

 +  2𝑘
2  (
 −   

 
(cos𝜙)2 + (sin𝜙)2) + (𝑘 𝐻𝑥)

2
, (10c) 

Γ4 =
𝑘
4

 +  2𝑘
2 +

 

 +  2𝑘
2 

{
𝑘
4

  
*(𝐻𝑥sin𝜙)

2
+ (𝐻𝑦cos𝜙)

2
+ + 

𝑘
2
 *(𝐻𝑥

2
− 𝐻𝑦

2
) cos( 𝜙) +  𝐻𝑥𝐻𝑦sin( 𝜙)+-. 

(10d) 

By setting the determinant of the coefficient matrix in 

Eq. (9) equal to zero, a nontrivial solution to the set of 

equations could be obtained. As a result 

 𝑖 1 =
√Γ1 + Γ3 −√(Γ1 − Γ3)

2 + 4Γ2
2

 
, (11a) 

 𝑖 2 =
√Γ1 + Γ3 +√(Γ1 − Γ3)

2 + 4Γ2
2

 
, (11b) 

 𝑜𝑢𝑡 = √Γ4, (11c) 

where  𝑖 1  and  𝑖 2  are the dimensionless frequencies 

pertinent to the in-plane waves, called in-plane frequencies, 

and  𝑜𝑢𝑡  is the dimensionless frequency associated with the 

out-of-plane motion of the conducting nanoplate exposed to 

biaxially in-plane magnetic field. The latter one is also 

called flexural, transverse, or out-of-plane frequency. 

 
2.2.2 In-plane and out-of-plane phase velocities 

The phase velocity vector, 𝐂 , is defined as 

𝐂 =   �̂�𝑟;   =
𝜔

𝑘
=
 

𝑡 𝑘
 √
 

 0
, (12) 

where    is the phase velocity (magnitude) pertinent to the 

frequency 𝜔. By introducing Eqs. (11a)-(11c) to Eq. (12), 

the phase velocities of the in-plane and out-of-plane waves 

are obtained. 

 
2.2.3 In-plane and out-of-plane group velocities 
The group velocity vector of the propagated waves 

within the nanoplate is given by 

𝐂𝑔 =
∂𝜔

∂𝑘
 �̂�𝑟 +

 

𝑘

∂𝜔

∂𝜙
�̂�𝜙 =

 

𝑡 
√
 

 0
(
∂ 

∂𝑘
 �̂�𝑟 +

 

𝑘

∂ 

∂𝜙
 �̂�𝜙), (13) 

and the magnitude of the group velocity is determined by 

 𝑔 =
 

𝑡 
√
 

 0
√(
∂ 

∂𝑘
)
2

+ (
 

𝑘

∂ 

∂𝜙
)
2

, (14) 

in which the first derivative of   with respect to 𝜙 and 𝑘 

could be readily calculated by using Eqs. (11a)-(11c) and 

Eqs. (10a)-(10d). 

 

 

3. Results and discussion 
 

To investigate the characteristics of the propagated in-

plane and out-of-plane waves within conducting nanoplates 

subjected to biaxially in-plane magnetic field, a fairly 

comprehensive parametric study is performed. To this end, 

a nanoplate is considered with the following geometry and 

mechanical data: 𝑡 =   nm, 𝑒0 =   nm,   =  300 

kg/m 3 , 𝐸 =   TPa, and   = 0. 5. In the following, the 

effects of wavenumber and direction of the propagated 

waves as well as strength of the applied magnetic fields on 

the in-plane and out-of-plane frequencies as well as phase 

and group velocities are studied.  

 The cut-off frequencies pertinent to both in-plane and 

out-of-plane waves have not been discussed. These 

frequencies are evaluated from the general formulations of 

in-plane and out-of-plane frequencies, namely Eqs. (11a)-

(11c), as the wavenumber approaches zero. It could be 

readily proved that all cut-off frequencies are equal to zero 

since the nanoplate has not been constrained elastically 

against in-plane and out-of-plane motions. 

 

3.1 Several verifications 
 
In the first comparison study, the predicted out-of-plane 

frequencies of the magnetically affected nanoplate are 

checked with those of suggested model by Narendar and 

Gopalakrishnan (2012) in a special case. They studied 

characteristics of flexural waves in thin nanoplates under 

thermal effect using nonlocal Kirchhoff plate theory. In the 

absence of the magnetic field (i.e., 𝐻𝑥 = 𝐻𝑦 =0), the 

dimensionless flexural frequency is calculated using Eq. (11c): 
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  𝑜𝑢𝑡 = 𝑘
2
/√ + ( 𝑘)2. It can be also stated in terms of 

dimensional parameters of the nanoplate, wavenumbers, 

and small-scale parameter as follows 

𝜔𝑜𝑢𝑡 = √
 

 0
 

𝑘𝑥
2 + 𝑘𝑦

2

√ + (𝑒0 )
2(𝑘𝑥

2 + 𝑘𝑦
2)

.
 (15) 

In the case of only wave propagation along the 𝑦 

direction (i.e., 𝑘𝑥=0), the given expression in Eq. (15) is 

identical to that predicted by the model of Narendar and 

Gopalakrishnan (2012) when the thermal effect is 

neglected.  

 In another verification study, we check the obtained in-

plane frequencies with those of Wang, Dong et al. (2010) 

for a particular case. Using a nonlocal elasticity model, they 

investigated characteristics of longitudinal waves in elastic 

nanoplates. Herein, the strength of in-plane magnetic field 

is set equal to zero. In view of Eqs. (11a) and (11b), the 

frequencies of the general in-plane waves are expressed by 

𝜔𝑖 1 = √
𝐸 

 ( +   )
 

√𝑘𝑥
2 + 𝑘𝑦

2

√ + (𝑒0 )
2(𝑘𝑥

2 + 𝑘𝑦
2)
, (16a) 

𝜔𝑖 2 = √
𝐸 

 −   
2
 

√𝑘𝑥
2 + 𝑘𝑦

2

√ + (𝑒0 )
2(𝑘𝑥

2 + 𝑘𝑦
2)
.
 (16b) 

In a special case that the in-plane waves propagate along 

the 𝑥 direction (i.e., 𝑘𝑦=0), the in-plane displacements are 

not coupled. In such a case, the largest frequency resulted 

from Eqs. (16a) and (16b) represents the frequency of the 

 

 

longitudinal wave and it is provided by 

𝜔𝑖 = √
𝐸 

 −   
2
 

𝑘𝑥

√ + (𝑒0 )
2 𝑘𝑥

2
. (17) 

The obtained frequency in Eq. (17) is the same as that 

predicted by the model of Wang et al. (2010). 

 

3.2 Effect of the magnetic field strength on the 
frequencies of in-plane and out-of-plane waves 

 
In Fig. 2, the frequencies of the in-plane and out-of-

plane propagated waves within the conducting nanoplate 

are demonstrated as a function of the strength of biaxially 

magnetic field. These plots are provided for the case of 

𝜙 = 0 and 𝑘 =
𝜋

10
. As it is seen, both in-plane frequencies 

magnify with the strength of the in-plane magnetic field in 

each direction. For 𝐻𝑥   .5, the variation of the magnetic 

field strength in the 𝑦 (𝑥) direction has a trivial effect on the 

variation of the lower (higher) in-plane frequency. 

However, for 𝐻𝑥   .5, the variation of 𝐻𝑦  (𝐻𝑥) is more 

influential on the variation of the lower (higher) in-plane 

frequency. According to the plotted results in Fig. 2, the 

flexural frequency increases with the strength of the 

magnetic field along the direction of wave propagation, 

however, the application of the perpendicular magnetic field 

would result in a decrease in the flexural frequency. As it is 

observed, for 𝐻𝑦 ≈ 𝐻𝑥, the flexural frequency vanishes, and 

for 𝐻𝑦  𝐻𝑥 , the real part of the flexural frequency 

becomes zero whereas the imaginary part is positive. In 

such a condition, the flexural wave would not be 

propagated through the conducting nanoplate since its 

amplitudes would decay with the time. Such a fact guides  

 

Fig. 2 The frequencies of the waves propagate within the conducting nanoplate along the 𝑥 axis (i.e., 𝜙 = 0) in terms of 

the strength of the biaxially magnetic field (𝑘 =
𝜋

10
) 
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us to determine the conditions in which the magnetically 

exposed nanoplate would not be a suitable nano-device for 

appropriate transmission of the flexural waves. 

 

3.3 The conditions that the waves could not be 
transmitted 

 
In this part, we are interested in finding circumferences 

where the sound waves would not be appropriately 

propagated within the magnetically exposed nanoplate. 

Regarding the in-plane waves, a close scrutiny reveals that 

the expressions under the radical in Eqs. (11a) and (11b) are 

always positive. Thereby, the in-plane waves are expected 

to be transmitted through the nanoplate for all levels of the 

wavenumber and the strength of the in-plane magnetic field. 

Moreover, their frequencies could be efficiently controlled 

by application of appropriate in-plane magnetic field as 

discussed in the previous part. Concerning the out-of-plane 

waves, a detailed investigation shows that their frequencies 

would become zero under special circumferences. Such a 

scrutiny guides us to the condition guarantees propagation 

of the flexural waves, namely Γ4  0. Hence 

.
𝐻𝑥

𝐻𝑦
/

2

(
𝑘
2

  
(sin𝜙)2 + cos( 𝜙)) +  .

𝐻𝑥

𝐻𝑦
/ sin( 𝜙) + 

(
𝑘
2

  
(𝑐𝑜𝑠𝜙)2 − cos( 𝜙) +

𝑘
2

( +  2𝑘
2
)𝐻𝑦

2)  0, 

(18) 

Eq. (18) explains that the magnitudes of the components 

of the in-plane magnetic field, thickness of the nanoplate, 

wavenumber, and the direction of the wave are among the 

influential factors control propagation of the flexural waves 

within the conducting nanoplate. In Fig. 3, the areas with 

color and without color, respectively, denote the zones that  

 

 

the propagation of flexural waves would be possible and 

impossible. For the conducting nanoplate under study, the 

interfaces of such zones could be clearly specified via Eq. 

(18). In the case of 𝐻𝑦 =  0, the interfaces presented by the 

dotted, dashed, and solid lines in order are pertinent to 

𝑘 =
𝜋

10
,
𝜋

2
,  𝑛𝑑𝜋. As it is observed in Fig. 3, the range of the 

magnetic field along the 𝑥 direction which is of interest for 

propagating the flexural waves generally magnifies with the 

angle of the wave direction with respect to the 𝑥  axis as 

well as the wavenumber. 

 

3.4 Effect of the wavenumber on characteristics of in-
plane and out-of-plane waves 

 
In Fig. 4, the in-plane and out-of-plane frequencies as 

well as their corresponding phase and group velocities as a 

function of dimensionless wavenumber are provided for 

different levels of the strength of the in-plane magnetic 

field. The results are plotted in the case of propagation of 

the wave along the diagonal of the square nanoplate. In the 

absence of the magnetic field, both in-plane frequencies 

converge to specific values as the wavenumber increases. 

However, in the presence of the in-plane magnetic field, 

due to the appearance of terms (𝑘 𝐻𝑥)
2 and (𝑘 𝐻𝑦)

2 in the 

expressions of Γ1  and Γ3 , the in-plane frequencies 

commonly magnify with the wavenumber. The flexural 

frequency commonly magnifies with the wavenumber. The 

variation rate of the flexural frequency in terms of the 

wavenumber is more obvious for higher levels of the 

strength of in-plane magnetic field. Generally, for lower 

levels of the in-plane magnetic field, the rate of variation of 

the phase velocities as a function of the wavenumber is 

more apparent. In other words, for higher levels of the 

applied magnetic field in both directions, variation of the  

 

Fig. 3 Transmissibility zones of the plane 
  

  
-𝜙 for three levels of the wavenumber of the transverse waves; (The colorful 

area and that without color show the regions where the propagation of the flexural waves would be possible and 

impossible, respectively. The interfaces of each two specified zones are demonstrated by dotted, dashed, and solid lines for 

the cases 𝑘 =
𝜋

10
,
𝜋

2
,  n  𝜋, respectively; 𝐻𝑦 =  0) 
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wavenumber has a lower influence on the variation of both 

in-plane and out-of-plane phase velocities. 

 
3.5 Effect of the wave direction on its characteristics 
 
Herein, we are interested in the role of the wave 

direction on the characteristics of the in-plane and out-of-
plane waves. In the case of 𝑘 = 𝜋 , the plots of the 
frequencies as well as their corresponding phase and group 
velocities as a function of the angle of wave direction are 
provided in Fig. 5. In the absence of the in-plane magnetic 

 

 

field, the characteristics of both in-plane and out-of-plane 

waves are independent from the wave direction. According 

to the plotted results in Fig. 5, in the presence of the in-

plane magnetic field, the characteristics of the in-plane 

waves would not rely on 𝜙 if and only if identical magnetic 

fields are applied in both 𝑥 and 𝑦 directions (i.e., 𝐻𝑥 = 𝐻𝑦). 

Further, the predicted in-plane frequencies as well as their 

corresponding phase velocities of the symmetrically 

propagated waves with respect to the 𝑥 axis are symmetric. 

However, this fact is not commonly true for the out-of-

plane waves, except in the case of 𝐻𝑦 = 0. 

 
Fig. 4 Plots of frequencies, phase velocities, and group velocities of the in-plane and out-of-plane waves propagate along 

the diagonal of the conducting nanoplate (i.e., 𝜙 =
𝜋

4
) in terms of the wavenumber for various levels of the magnetic field 

strength: ((. ..) 𝐻𝑥 = 0, (−− −) 𝐻𝑥 =  , (—) 𝐻𝑥 = 5; ( ) 𝐻𝑦 = 0, ( ) 𝐻𝑦 = 4, () 𝐻𝑦 = 6) 
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3.6 Effect of the small-scale parameter on 

characteristics of in-plane and out-of-plane waves 
 
Fig. 6 shows variation of the in-plane frequencies and 

flexural frequency as a function of the small-scale 

parameter for various levels of the components of magnetic 

field. The considered wave propagates along the 𝑥 axis with 

𝑘 = 𝜋 . Concerning in-plane waves, their corresponding 

frequencies, phase velocities, and group velocities would 

reduce by an increase of the small-scale parameter. In fact,  

 

 
the predicted characteristics of the in-plane waves based on 
the NCT are overestimated by the CCT. Additionally, the 
influence of the small-scale parameter on the second in- 
plane frequencies is more obvious. A close survey of the  

obtained results reveals that the role of the small-scale  
parameter on the characteristics of the in-plane waves 
propagated in the 𝑥 direction are enhanced by increasing of 
the components of the magnetic field. Regarding the out-of-
plane waves, both flexural frequency and phase velocity 
would lessen as the effect of the small-scale parameter 
becomes more pronounce. 

 

Fig. 5 Plots of frequencies, phase velocities, and group velocities of the in-plane and out-of-plane waves with 𝑘 =
𝜋

10
 in 

terms of the angle of direction of waves for various levels of the magnetic field strength: (( . ..) 𝐻𝑥 = 0, (− − −) 𝐻𝑥 =  , 

(—) 𝐻𝑥 =  ; ( ) 𝐻𝑦 = 0, ( ) 𝐻𝑦 =  , () 𝐻𝑦 =  ) 
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However, the group velocity of such waves would generally 

reduce with the small-scale parameter up to a particular 

value of the small-scale parameter. For small-scale 

parameters greater than these values, the group velocity 

would increase by an increase of the small-scale parameter. 

By increasing the strength of the magnetic field along the 𝑦 

direction, both flexural frequency and its phase velocity 

would decrease; however, these values would grow by an 

increase of the 𝑥 component of the magnetic field. As it is 

seen, the CCT overestimates the flexural frequency and its 

corresponding phase velocity based on the NCT. As the 

strength of the magnetic field along the 𝑦  direction 

 

 

increases and that of the 𝑥 direction lessens, the influence 

of the small-scale parameter on the out-of-plane frequencies 

and their corresponding phase velocities becomes more 

apparent. In such conditions, the discrepancies between the 

predicted results by the NCT and those of the CCT are more 

obvious. 

 
3.7 Effect of the thickness on characteristics of the in-

plane and out-of-plane waves 
 
The most important geometrical feature of the nanoplate 

is its thickness. Herein we are interested in exploring the 

 
Fig. 6 Plots of frequencies, phase velocities, and group velocities of the in-plane and out-of-plane waves propagate along the 

𝑥 axis of the conducting nanoplate (i.e., 𝜙 = 0) in terms of the small-scale parameter for various levels of the magnetic field 

strength: ((. ..) 𝐻𝑥 =  , (− − −) 𝐻𝑥 =  , (—) 𝐻𝑥 = 4; ( ) 𝐻𝑦 =  , ( ) 𝐻𝑦 =  , () 𝐻𝑦 = 4) 
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role of the nanoplate’s thickness on the characteristics of 

both in-plane and out-of-plane waves. In Fig. 7, the plots of 

the frequencies and their corresponding phase and group 

velocities as a function of thickness have been plotted for 

different levels of strength of the magnetic field along the 𝑥 

and 𝑦 axis. The plotted results are provided in the case of 

𝜙=0, and 𝑘 = 𝑘0 𝑡 /𝑡 0  where 𝑡 0 =1.02 nm and 𝑘0 =𝜋 . 

According to the obtained results, variation of the thickness 

has no influence on the variations of the in-plane 

frequencies and their corresponding phase velocities. 

 

 

However, these factors are affected by the strength of the 

magnetic field in both directions. In fact, the in-plane 

frequencies would magnify as the strength of the magnetic 

field in both directions grows. It implies that the strength of 

the magnetic field is the dominant factor in controlling the 

in-plane vibration of conducting nanoplates. Additionally, 

the group velocity of in-plane waves would generally 

magnify by increasing of the nanoplate’s thickness. 

Concerning the out-of-plane vibration of the conducting 

nanoplate, the trends of the characteristics of the out-of-

 
Fig. 7 Plots of frequencies, phase velocities, and group velocities of the in-plane and out-of-plane waves propagate along 

the 𝑥 axis of the conducting nanoplate (i.e., 𝜙 = 0) in terms of the nanoplate's thickness for various levels of the magnetic 

field strength: ((. ..) 𝐻𝑥 =  , (− − −) 𝐻𝑥 =  , (—) 𝐻𝑥 = 4; ( ) 𝐻𝑦 =  , ( ) 𝐻𝑦 =  , () 𝐻𝑦 = 4) 
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plane waves highly rely on the strength of the applied 

magnetic field. For example, in the case of 𝐻𝑥 =𝐻𝑦 =4, 

flexural frequencies as well as phase and group velocities 

would grow by an increase of the nanoplate’s thickness; 

nevertheless, in the cases of 𝐻𝑥=4 and 𝐻𝑦=1 and 2, flexural 

frequency and phase velocity would reduce by increasing of 

the nanoplate’s thickness. Further, in the cases of 

(𝐻𝑥,𝐻𝑦)=(1,2), (1,4), and (2,4), the real part of the flexural 

frequency becomes zero for values of thickness lower than 

certain values. It indicates that the out-of-plane waves are 

damped for such a range of the nanoplate’s thickness. For 

values of thickness greater than this particular value, both 

flexural frequency and phase velocity would grow by an 

increase of the thickness. Irrespective of the magnitudes of 

the exerted in-plane magnetic fields, the group velocities of 

out-of-plane waves would commonly grow as the thickness 

increases. 

 

 

4. Conclusions 
 
Using nonlocal continuum theory of Eringen, wave 

propagation within conducting nanoplates immersed in 

biaxially in-plane magnetic fields are examined. By 

employing Maxwell’s electro-magnetic equations as well as 

Lorentz’s force, the nonlocal equations of motion of the 

conducting nanoplate in which describe its in-plane and out-

of-plane motions are obtained. Assuming a harmonic form 

for the propagated waves, the in-plane and out-of-plane 

frequencies as well as their corresponding phase and group 

velocities are derived. The influences of the wavenumber, 

direction of the wave propagation, strength of the in-plane 

magnetic field, small-scale parameter, and thickness on the 

above-mentioned characteristics of the waves are explained. 

The capabilities of the conducting nanoplate in transferring 

the in-plane and out-of-plane waves are also investigated in 

some detail. The results reveal that the in-plane frequencies 

are commonly enhanced by application of the in-plane 

magnetic field. However, the transmissibility of the out-of-

plane wave robustly relies on the strength of the in-plane 

magnetic field, direction of the propagated transverse wave, 

small-scale parameter, and thickness of the nanoplate. The 

criterion for safe propagation of the out-of-plane waves 

within the conducting nanoplate exposed to a biaxially 

magnetic field is also extracted. 
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