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1. Introduction 
 

The success of many applications of guided waves for 

nondestructive testing of polymer tubes, which are used in 

the infrastructure of many industries such as gas, oil, and 

water transport also depends on knowledge of the rules of 

the attenuation of these waves. Moreover, knowledge of the 

rules of the attenuation of guided waves in the elements of 

constructions made of viscoelastic materials can be used for 

weakening of the vibrations or waves propagating therein, 

which are caused by earthquakes and other sources of the 

waves. At the same time, the mentioned knowledge, as 

noted in the papers by Benjamin, David et al. (2016), Yasar, 

Royston et al. (2013a), Yasar, Klatt et al. (2013b), can be 

employed for the nondestructive monitoring the growth of 

an engineering tissue which can be used for corresponding 

medical goals. These and other type applications field 

require to the fundamental studies of the dynamical 

problems related element of constructions made of 

viscoelastic materials. These studies are also required for 

correct application of ultrasonic guided wave (UGW) defect 

detection methods, the present level of which is discussed in 

the papers by Lowe, Sanderson et al. (2015), Lowe, 

Sanderson et al. (2016) and in the thesis by Yucel (2015) 

and other ones listed therein.    

In the paper by Lowe, Sanderson et al. (2015) a high-

sensitivity focusing technique, i.e. , the hybrid active 

focusing technique was presented. This technique is based 
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on a combination of numerical simulations with active 

focusing and time reversal concept. It is shown that this 

method permits detection of defects the size of which <0.5λ,  

where λ is the length of the propagated waves. 

Investigations are made by employing the T(0,1) (torsional) 

and F(i,2) (i=1,2,…) (flexural) wave modes. 

The paper by Low, Sanderson et al. (2016) studies the 

potential of the fundamental mode of the axisymmetric 

longitudinal wave, i.e., the L(0,1) wave mode for UGW 

inspection of cylindrical structures. The studies are made 

experimentally and it is established that the flaw sensitivity 

of the L(0,1) wave mode can enhance the flaw sensitivity 

approximately 2.5 times compared to the T(0,1) wave mode 

and approximately 5 times compared to the L(0,2) wave 

mode. Note that in this paper, the experiments are made 

within the 20-100 kHz range, according to which, it is 

assumed that the wave attenuation is considerably low and 

the influence of this attenuation on the considered wave 

propagation is negligible.  

The advantages of the high sensitivities of the 

longitudinal ultrasonic guided waves under long range 

defect detection were also established and employed in the 

thesis by Yucel (2015). Moreover, in this work a detailed 

review of related investigations and employed experimental 

techniques are also discussed. 

As noted in the aforementioned works, the application 

of the UGW for defect inspection has high sensitivity in the 

cases where attenuation of the waves is very low. 

Consequently, the application of the URG for defect 

inspection requires theoretical knowledge of the influence 

of the material viscosity on the wave attenuation and 

dependence of this attenuation on the wave frequencies.  

This knowledge can be applied with the corresponding 

investigations on problems related to wave propagation in 
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structural elements made of viscoelastic materials. Note that 

the theoretical studies carried out in the present paper are 

also among these investigations. 

In connection with these, it can be noted that 

investigations of the rule of attenuation of the axisymmetric 

longitudinal waves propagating in the bi-layered circular 

hollow cylinder which is the subject of the study of the 

present paper, has not only theoretical, but also practical 

significance.  

Now we consider a brief review of related investigations 

and begin this review with the papers by Weiss (1959) and 

Tamm and Weiss (1961) which regard the Lamb wave 

propagation in an isotropic viscoelastic layer with stress-

free surfaces.  As noted above, in these papers it is assumed 

that the elastic constants are complex and frequency-

independent. Coquin (1964) proposed an approximate 

method for investigation of the Lamb wave propagation in a 

plate made from viscoelastic materials with small losses and 

frequency-dependent elastic moduli. The influence of low-

compressibility materials with real Poisson’s ratio and 

frequency dependent complex shear moduli on the 

propagation of Lamb waves was investigated by Chervinko 

and Shevchenkov (1986). Lamb wave propagation in elastic 

plates coated with viscoelastic materials was also studied in 

the paper by Simonetti (2004) and the results of this paper 

were also detailed in the monograph by Rose (2004).  

Barshinger and Rose (2004) investigated axisymmetric 

longitudinal guided wave dispersion and attenuation in a 

metal elastic hollow cylinder coated with a polymer 

viscoelastic layer. The viscoelasticity of the coated layer 

was taken into consideration through attenuation 

coefficients of the longitudinal and shear waves in the 

corresponding viscoelastic materials. These coefficients are 

determined experimentally for the frequencies in the order 

1-5 MHz and are used for determination of the 

corresponding complex moduli. Consequently, using these 

complex moduli, wave dispersion and attenuation 

dispersion in the bi-layered hollow cylinder were 

investigated. 

There are also investigations, such as Kirby, Zlatev et al. 

(2012, 2013), in which the influence of the viscoelasticity 

of the coatings of the pipes on the scattering of the 

longitudinal and torsional waves. Note that in these papers 

the viscoelasticity of the coating is modeled as in the paper 

by Barshinger and Rose (2004). 

The paper by Leonov, Michael et al. (2015) has 

experimental studies on the attenuation of the torsional and 

longitudinal wave propagation in pipes buried in sand and it 

is assumed that this attenuation appears as a result of the 

energy leakage into the embedding soil. Moreover, in the 

paper by Jiangong (2011), the dispersion of the viscoelastic 

SH waves in functionally graded material and laminated 

plates is studied within the scope of the Kelvin-Voigt model 

and it is established that the wave attenuation depends not 

only on the rheological parameters but also on the elastic 

constants. 
The Kelvin-Voigt model is also used in the papers by 

Manconi and Sorokin (2013), Bartoli, Marzani et al. (2006), 
Mace and Manconi (2008), Manconi and Mace (2009), 
Mazotti, Marzani et al. (2012), Hernando Quintanilla, Fan 
et al. (2015) for investigation of the wave propagation in  

plates and rods made of viscoelastic materials. Moreover, in 

these works the hysteretic model, i.e. the model based on 

the frequency independent complex potential is also 

examined. 

Attempts to use very real and complicated models under 

investigation of wave propagation and attenuation problems 

were made in the papers by Meral, Royston et al. (2009, 

2010). In these papers, the fractional order Voigt (or Kelvin-

Voigt) model is used for investigation of 2D dynamic 

problems for viscoelastic materials. Note that the fractional 

order Voigt is obtained from the classical Voigt model by 

replacing the ordinary derivative ∂/∂t, with respect to time, 

with the fractional order derivative ∂
α
/∂t

α
 in the Weyl sense. 

In this way, a new rheological parameter is introduced into 

the model through which the description of the 

experimental data is improved. At the same time, in the 

paper by Meral, Royston et al. (2010), with utilizing the 

fractional order Voigt model, Lamb wave propagation and 

attenuation were studied theoretically and verified 

experimentally for a tissue mimicking phantom material. 

Moreover, in this paper it was established that successful 

selection of the rheological parameter α allows for 

improvement in matching theory to experiment. 

This completes the review of the related works from 

which it follows that the investigations on the dispersion of 

guided waves in the plates or cylinders made from 

viscoelastic materials were carried out mainly in the 

following cases: i) the complex modulus of viscoelastic 

materials is taken as frequency independent (the hysteretic 

model); ii) the viscoelasticity of the materials is described 

by the simplest models such as the classical Kelvin-Voigt or 

simplest fractional Kelvin-Voigt models; and iii) the 

expression for the complex elasticity modulus is obtained 

experimentally for concrete polymer materials. 

Consequently, in the theoretical investigations reviewed 

above wave dispersion with given a priori non-dispersive or 

dispersive attenuation was made for the simplest 

viscoelastic models and the few numerical results obtained 

in these works cannot illustrate the character of the 

influence of the rheological parameters of the viscoelastic 

materials on the wave dispersion and wave attenuation.   

The first attempt on the application of a more real and 

complicated viscoelastic model, such as fractional 

exponential operator proposed by Rabotnov (1980), for 

investigation of wave dispersion was made by Akbarov and 

Kepceler (2015) in which the torsional wave dispersion also 

with given a priori attenuation in the sandwich hollow 

cylinder made from linear viscoelastic materials, was 

studied. Note that the mentioned fractional exponential 

operators allow us to describe, with the very high accuracy 

required, the initial parts of the experimentally constructed 

creep and relaxation graphs and their asymptotic values. 

Moreover, these operators can be employed successfully to 

describe various polymer materials and epoxy-based 

composites with continuous fibers and layers. At the same 

time, these operators have many simple rules for  
complicated mathematical transformations, for example, the 
Fourier and Laplace transformations which were also used 
in the paper by Akbarov (2014), Akbarov and Kepceler 
(2015). The results obtained in these papers were also 
detailed in the monograph by Akbarov (2015). We note that  
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Fig. 1 The geometry of the bi-layered circular hollow 

cylinder 

 

 

in this paper the forced vibration of the system consisting of 

viscoelastic covering layer and viscoelastic half-space was 

investigated. 

Nevertheless, in the paper by Akbarov and Kepceler 

(2015), dispersion of torsional waves in the viscoelastic 

hollow sandwich cylinder is studied for the selected wave 

attenuation rule. However, up to now there has not been any 

investigations carried out utilizing the fractional exponential 

operators by Rabotnov (1980) nor has the dispersive 

attenuation of viscoelastic guided waves for the selected 

possible dispersion curves of the same viscoelastic waves, 

been studied. The subject of the present paper relates, 

namely, to this question.  More precisely, the main goal of 

the present paper is the theoretical investigation of the 

possible dispersive attenuation of the longitudinal 

axisymmetric guided waves propagating in the bi-layered 

circular hollow cylinder for the first fundamental mode, i.e., 

for the L(0,1) mode in the cases where the constitutive 

relations for the cylinders’ materials are described through 

the fractional exponential operator by Rabotnov (1980). 

Moreover, the investigations carried out in the present paper 

also contain a study of the influence of the rheological 

parameters of the cylinders' materials on these attenuations. 

It should be noted that the theoretical investigations carried 

out in the present paper are the first attempt in this field 

which is made by utilizing the fractional exponential 

operators by Rabotnov (1980). The application fields of the 

obtained theoretical results will be discussed below. 

 

 

2. Formulation of the problem 
 

Consider the bi-layered hollow circular cylinder (see 

Fig. 1) and assume that the radius of the outer circle of the 

inner hollow cylinder is R and the thickness of the inner and 

outer cylinders is h
(2)

 and h
(1)

, respectively. The values 

related to the inner and external hollow cylinders will be 

denoted by the upper indices (2) and (1), respectively.  

Assume that the materials of the constituents are 

isotropic, homogeneous and hereditary-viscoelastic. We use 

the cylindrical system of coordinates Orθz (Fig. 1) for 

determination of the position of the points of the system 

under consideration. Moreover, we assume that the 

cylinders have infinite length in the direction of the Oz axis.  

Let us investigate the axisymmetric longitudinal wave 

propagation along the Oz axis in the considered cylinder 

with the use of the following field equations and relations. 

First we write the equations of motion for the 

axisymmetric case with respect to the Oz axis (see, for 

instance Eringen and  Suhubi 1975) 

( ) ( ) 2 ( )
( )( ) ( )

2

1
( )

n n n
nn nrr rz r

rr

T T u
T T

r z r t
 

  
   
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 , 

 
( ) ( ) 2 ( )

( ) ( )

2

1
n n n

n nrz zz z
rz

T T u
T

r z r t


  
  

  
.              (1) 

In (1) the following notation is used: 
( )n

rrT , 
( )n

T  and 
( )n
zzT  are radial, circumferential and axial normal stresses, 

respectively, 
( )n

rzT  is the shear stress, and 
( )n
ru  and 

( )n
zu  are  

radial and axial components of the displacement vector in 

the n th  layer material. We recall that here and below, the 

case where n=1 (n=2) relates to the outer (inner) layer. This 

means that for the case where n=1 ((n=2) the equations in 

(1) are satisfied within the scope of the outer (inner) layer.  

Moreover, in (1) ρ
(n)

 denotes the density of the n-th layer 

material.  

Consider the constitutive relations for the linear 

viscoelastic materials which, according to the Volterra 

principle (see, for instance, Christenson 2010, Fung 1965, 

Rabotnov 1980), are obtained from the elasticity relations 

(i.e., from Hook’s law) by replacing the elastic constants 

with the corresponding operators. As a result of this 

replacement, the following constitutive relations are 

obtained for the not aging viscoelastic material 

( ) ( )( )* ( ) ( )*
( ) ( )

2
n nn n n

ii ii
T      , ( ) , ,ii rr zz  , 

( ) ( )* ( )2n n n
rz rzT    ,

( )( ) ( ) ( )nn n n
rr zz      ,        (2) 

where 
( )*n and ( )*n are the following viscoelastic 

operators 

( ) ( )( )*
0 1

( ) ( )0( )*
0 1

( ) ( ) ( ) ( )

n nn
t

n nn
t t t d

 
     

 

         
       

         
  .   (3) 

In Eq. (3), ( )
0

n
  and ( )

0
n

  are the instantaneous values of 

Lame’s constants as t→0, and 
( )
1

( )
n

t  and 
( )
1

( )
n

t  are the  

corresponding kernel functions describing the hereditary 

properties of the materials of the constituents. Note that the 

form (3) for the operators in (2) is obtained from the 

Boltzmann superposition principle (see, for instance, 

Christenson (2010), Fung (1965) and others listed therein), 

according to which, the stress in the viscoelastic material is 

presented as a superposition of multiplying the relaxation 

function to deformation increments, i.e., if for simplicity we 

consider the one axial stress-strain state, then the 

Boltzmann   superposition   principle   means   that 

0
( , ) ( )

t
J t d     , where σ and ε are the axial stress and 

strain, respectively, and J is the relaxation function. If the 

relaxation function J is presented as J=J(t, τ), then the 

material is called an aging one, however, if the relaxation 
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function J is presented as J=J(τ−t), then the material is 

called a not aging one.  Consequently, for the not aging 

viscoelastic one, the Boltzmann superposition principle is 

expressed as 
0

( ) ( )
t
J t d      and employing the partial 

integration   procedure   to   this   integral   we   obtain 

0
( ) (0) ( ( ) ) ( )

t

t
t J dJ d d

 
      

 
    and introducing 

the notation  E=J(0) (where E is the modulus of elasticity) 

and ( ) ( ( ) )
t

K t dJ d
 

  
 

    we obtain the expression 

0
( ) ( ) ( )

t
t E K t d        , the form of which coincides 

with the form of the operators. So with the corresponding 

generalization of the expression 
0

( ) ( ) ( )
t

t E K t d        , 

the constitutive relations given in (2) and (3) are obtained.  

Note that the kernel function K(t) as well as the ( )
1

( )
n

t  and 
( )
1

( )
n

t   kernel  functions  in  (3)  are  determined  

experimentally and under this determination, various types 

of models are employed, such as the simplest Kelvin-Voigt, 

fractional Kelvin-Voigt and more complicated models, one 

of which is the fractional exponential operator by Rabotnov 

(1980) which will be discussed and used below.  

For completeness of the foregoing field equations, it is 

necessary to add to these equations the following strain-

displacement relations 

( )
( )

n
n r

rr

u

r



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
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( ) ( )
( ) 1

2

n n
n r z
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u u

z r


  
  
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 

, 

( )
( )

n
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( )
( )

n
n z
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u

z






,                                    (4) 

where ( )n
rr , ( )n

  and ( )n
zz  are radial, circumferential and axial 

normal deformations, respectively, and ( )n
rz  is the shear 

deformation.  

This completes the consideration of the complete system 

of field equation given in (1)-(4).  

Consider also formulation of the boundary and contact 

conditions. According to Fig. 1 we can write the boundary 

and contact conditions: 

(2)
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r r

r R r R
u u
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(2) (1)
z z

r R r R
u u

 
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(1)

(1)

(1 )
0rr

r R h R
T

 
 , 

(1)

(1)

(1 )
0rz

r R h R
T

 
 .        (5) 

This completes the formulation of the problem on the 

axisymmetric longitudinal wave dispersion in the bi-layered 

hollow  cylinder  made  of  viscoelastic  materials  with  

arbitrary kernel functions ( )
1

( )
n

t  and ( )
1

( )
n

t  which enter  

the constitutive relations (2) and (3). 

 3. Method of solution 
 

As we consider the time-harmonic wave propagation in 

the Oz axis direction, we can represent all the sought values 

as follows 

( ) ( ) ( )( )n n i kz t
r ru v r e  , ( ) ( ) ( )( )n n i kz t

z zu v r e  , 

( ) ( ) ( )( )n n i kz tr e    , 
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( ) ( )
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ii ii
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( ) ; ; ;ii rr zz rz                               (6) 

where k is the wave number and ω is the circular frequency, 

and  

( )
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   , 

( )
( ) ( )n
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Using the relation 

1 2 1 20
( ) ( ) ( ) ( )

t t
f t f d f t f d     


    ,         (8) 

and taking the relations (6)-(8) into account in Eqs. (2) and 

(3), we can write the following relations: 

( ) ( ) ( )( ) ( ) ( )
0 1( )
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Employing the transformation t−τ=s, the following 

manipulations can be made for the integrals which enter 

into Eq. (9) 
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Thus, according to (8)-(11), we can write the following 

expressions for the stresses 

( ) ( ) ( ) ( )
( )
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n n n i kz t

ii
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( ) ( )( ) ( ) ( )
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where  

( ) ( ) ( )( )
0 1 1
n n nn

c s
i       , 

( ) ( ) ( )( )
0 1 1
n n nn

c s
i      . 

(13) 

It follows from the Eqs. (12) and (13) that the complete 

system of field Eqs. (1), (2), (4), (12) and (13) for the 

viscoelastic system can also be obtained for the purely  

elastic system by replacing the elastic constants 
( )
0

n
 and 

( )
0
n

  with the complex constants Λ
(n)

 and M
(n)

. In other  

words, the foregoing mathematical calculations confirm the 

dynamic correspondence principle (see Fung 1965) for the 

problem under consideration and the solution method used 

here coincides with this principle.  

Thus, substituting the expression (12) into the equation 

of motion (1) and taking the relation (6) into consideration, 

we obtain the following equations of motion in terms of the 

displacement amplitudes 

2 ( ) ( ) ( )
( ) ( ) ( ) ( )
1 2 2 32

( )
( ) ( )( )

n n n
n n n nr r zd v v dvd

m m i m m
d kr kr d krd kr

 
    
 
 

 

( ) ( )
( ) ( ) ( ) ( ) ( )( )
3 1 2 2 1 2

1
( ) ( )

( )

n n
n n n n nn r r

r

dv v
m v m m m m

kr dr kr
    

 

2
( ) ( )

2

n n
rv

k


  , 

( ) 2 ( ) ( )
( ) ( ) ( ) ( )( )
3 3 3 32

1 1

( ) ( )( )

n n n
n n n nnr z z

r

dv d v dv
im m i m v m

d kr kr kr d krd kr
     

( ) ( ) 2
( ) ( ) ( ) ( ) ( ) ( )
2 2 1 2( )

n n
n n n n n nr r

z z

dv v
ikm im m v v

d kr kr k


     ,  (14) 

where 

( ) ( ) ( )
1

2
n n nm M   , 

( ) ( )
2
n nm  , 

( ) ( )
3
n nm M .   (15) 

According to the foregoing transformations and 

expressions in (6) and (12), the boundary and contact 

conditions in (5) can be rewritten as follows 

(2)

(2)

(1 )
0rr

r R h R


 
 , 

(2)

(2)

(1 )
0rz

r R h R


 
  , 

(2) (1)
rr rr

r R r R
 

 
 , (2) (1)

rz rz
r R r R

 
 

 , 

(2) (1)
r r

r R r R
v v

 
 , (2) (1)

z z
r R r R

v v
 

 , 

(1)

(1)

(1 )
0rr

r R h R


 
 , 

(1)

(1)

(1 )
0rz

r R h R


 
 .     (16) 

For the solution to Eqs. (14), (6), (7) and (12), with the 

boundary and contact conditions in (16), according to Guz 

(2004), we employ the following representation for the 

displacement amplitudes 

( ) ( )n n
rv ik

r



 


, 

 ( ) ( )( ) 2 2 ( ) ( )
11 3( ) ( )

2 3

1 n nn n n
z n n

v m k m
m m

     


, 

2

1 2

1d d

r drdr
    ,            (17) 

where X
(n)

 satisfies the equation 

   ( ) ( )2 2 2 2 ( )
1 12 3

) ) 0
n n nk k         

  
.      (18) 

In (18) ( )
2

n
  and ( )

3
n

  are determined from the 

following equations 


4)()()()(  ) 2( nnnn MM   































 )2()2(  )()(

2

)()()(   )(2 2 nnnnnn M
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





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




















 2)()()(

2

)()(   nnnmn MM
k

M


  

,0)2(  )(

2

)()()(

2

)(4 












































 nnnnn M
k

M
k

k





  

(19) 

where ω/k is the complex phase velocity of the wave 

propagation.  

Thus, we determine the following expression for the 

function X
(n)

 from Eqs. (18) and (19). 

( ) ( ) ( )( )
1 0 2 0 1 02 3 2

( ) ( ) ( )
n n nn n n nA J kr A J kr B Y kr      

 

( )
2 0 3

( )
nnB Y kr                               (20) 

where J0(x) and Y0(x) are Bessel functions of the first and 

second kinds with zeroth order, respectively.  

Using the expression (20) and Eqs. (17), (13), (6) and 

(7), we obtain the following dispersion equation from the 

conditions in (16) 

det 0nm   , ; 1, 2, ...,8n m  ,                 (21) 

The explicit expressions of the components of the 

matrix (βnm) are given in Appendix A through the 

expressions (A1) and (A2). 

Thus, the dispersion equations obtained for the 

considered wave propagation problems have been derived 

in the form (21), (A1) and (A2). In the case where  
( ) ( ) ( ) ( )
1 1 1 1

0
n n n n
c s c s

        in (13), i.e., in the case where 
( )( )
0
nn   and ( )( )

0
nn 

 
 the  foregoing  dispersion  

equation transforms into the corresponding one obtained for 

the wave dispersion in the purely elastic case which is 

detailed for instance in the papers by Akbarov and Guliev 

(2009), Akbarov and Ipek (2010, 2012), Ipek (2015) and in 

the monograph by Akbarov (2015) which also contains 

results related to the dynamics of the complicated medium 

discussed, for instance, in the paper by Ilhan and Koc 

(2015).   
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4. Numerical results and discussions 
 

4.1 Selection of the operators in (3) and 
dimensionless rheological parameters  

 

According to the well-known physico-mechanical 

considerations, under time harmonic wave propagation in a 

viscoelastic material, it is necessary to assume that the wave 

number k is a complex one and can be presented as follows 

1 2 1(1 )k k ik k i    , 2

1

k

k
  ,                 (22) 

where k2 (or parameter β in (22)), i.e., the imaginary part of 

the wave number k, defines the attenuation of the wave 

amplitude under consideration and β is called the coefficient 

of the attenuation.    

We determine the phase velocity of the studied waves 

through the expression 

1

c
k


                                      (23) 

and introduce the notation ( ) ( ) ( )
20 0

/
n n nc   . 

We use below the arguments  

(2)
20

c

c
 , 1k R , 

(1)h

R
 and 

(2)h

R
.                      (24) 

To solve the dispersion Eq. (21) it is necessary to give  

the explicit expressions for the functions ( )
1

( )
n

t  and 
( )
1

( )
n

t  which enter into the operators in order to determine 

the quantities ( )
1

n
c

 , ( )
1

n
s

 , ( )
1

n
c

  and ( )
1

n
s

  through the  

expressions in (11). For this purpose, as in the papers by 

Akbarov (2014) and Akbarov and Kepceler (2015), here we 

also assume that the viscoelasticity of the materials of the 

cylinder’s layers is described by Rabotnov’s (1980) 

fractional exponential operator, i.e., we assume that   

( )

( ) ( )
( ) ( )*( )* 0 0 ( )
0 ( ) ( )

0 0

3 3
( ) ( ) ( )

2(1 ) 2(1 )
n

n n
n nn n

n n
t t t



 
      

 


  
     
     

, 

( )

( ) ( )
( ) ( )*( )* 0 0 ( )
0 ( ) ( )

0 0

3
( ) ( ) ( )

(1 ) 2(1 )
n

n n
n nn n

n n
t t t



 
      

 


  
     
     

, 

 ( )

( ) ( ) ( )* ( )( )* ( )
0 0 0

( ) ( ) ( )
n

n n n nn nE t E t t


      
    
  

, 

 ( )

( )
( ) ( ) ( )* ( )( )* 0 ( )
0 0 0( )

0

1 2
( ) ( ) ( )

2
n

n
n n n nn n

n
t t t




        




 
    
 
 

, (25) 

where 

( ) ( )

( )* ( )( ) ( )

0
( ) ( ) ( , ) ( )

n n

n nn nx t x t d
 

      


  , 

( )
( )

( )

( ) (1 ))
( ) ( )

( )
0

( )
( , )

)(1 ))

n
n

n

n p p
n n

n
p

x t
x t t

n







 







 

 , 
( )0 1n  .(26) 

In (26) Γ(x) is the gamma function. Moreover, the 

constants 
( )n , 

( )
0

n
  and ( )n  in (25) and (26) are the 

rheological parameters of the n-th layer’s material. 

As in the papers by Akbarov (2014) and Akbarov and 

Kepceler (2015), we introduce the parameters  

( )
( )

( )
0

n
n

n
d





  and 

( )

( )
( ) 20

1

( ) ( ) 1
01

( )
n

n
n

n n

c
Q

R   






,     (27) 

and the long-term values of the elastic constants and 

characteristic creep time can be estimated, respectively for 

the n-th material. In this case, the values of the long-term 

elastic constants and the quantities of 
( )
1

n
c

  and 
( )
1

n
s

  are 

determined through the expressions (28) and (29) 

respectively, as given below 

( )( ) ( )*
0 ( )

1
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where  
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( ) 0
01 ( )
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3
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n
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
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
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( )
( )

( ) ( ) ( )
101 ( )
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2( , )
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2

n

n
n

n n n
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n n

k Rc





  


 

  

 

, 

( )( ) ( ) 1(
nn nQ     , 1 (2)

20

c
k R

c
  .               (30) 

It follows from the foregoing expressions (29) and (30) 

and from the numerical analyses made in the papers by 

Akbarov (2014), Akbarov and Kepceler (2015) that 
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( )( )
0

0
nn

s    as ξ
(n)

→0 or as ξ
(n)

→∞, but the absolute 

values of ( )n
c ( )

( )
( )

n

n

c
  decrease (increase) monotonically 

with ξ
(n)

 and 
( )( )
0

1
nn

c    (
( )( )
0
nn

c  
( )( )
0
nn  ) 

as ξ
(n)

→0 (ξ
(n)

→∞). Moreover, according to the expressions 

(28)-(30), we can write the following limit cases 

( )( )
0
nn    , ( ) 0n

s    as 
( )nd  , 

( )n  ; 
( )

( ) ( ) ( )
11

( , ) 1
n

n n n

c
k Rc


     ; 

( )

( ) ( ) ( )
11

( , ) 0
n

n n n

s
k Rc


    

              
(31) 

as 

( )( nQ   or as 1 0k R  , 

( ) 0n  ; 
( )

( ) ( ) ( )
11

( , ) 0
n

n n n

c
k Rc


     ; 

 
( )

( ) ( ) ( )
11

( , ) 0
n

n n n

s
k Rc


    

               
(32) 

as 

 ( )( nQ   or as 1k R  .                 (33) 

It follows from the relation (32) that in the cases where 

(Q
(n)

 Ω)<<1, the behavior of the viscoelastic system must be 

very close to the corresponding purely elastic system with 

long-term values of the elastic constants. As well, it follows 

from the relation (33) that in the cases where (Q
(n)

 Ω)>>1, 

the behavior of the viscoelastic system must be very close 

to that of the corresponding purely elastic system with 

instantaneous values of the elastic constants at t=0.   

Thus, according to the foregoing discussions, we can 

conclude that the influence of the viscosity of the 

viscoelastic materials under consideration on the wave 

propagation velocity dispersion (i.e., on the dependence 

between 
(2)
20

c c  and k1R) and on the wave attenuation 

dispersion (i.e., on the dependence between the attenuation 

coefficient β (22) and k1R) can be characterized through the 

parameters Q
(n)

 and d
(n)

. It must be taken into account that 

an increase in the values of the parameters Q
(n)

 and d
(n)

 will 

correspond to a decrease in the viscous part of all the 

viscoelastic deformations of the constituents. Note that the 

influence of the other rheological parameter α
(n)

 on the 

viscous part of the viscoelastic deformations can be taken 

into account through the parameter Q
(n)

 (27). 

Note that the fractional exponential operator given 

through the expressions in (25) and (26) was proposed for 

the first time by Rabotnov (1948). This operator has 

developed since the 1950’s and has numerous applications 

under corresponding theoretical and experimental 

investigations, a review of which is given in the monograph 

by Rabotnov (1980) and in the papers by Rossikhin (2010), 

Bosiakov (2014), Rossikhin and Shitikova (2014) and other 

ones listed therein. The main advantages of this operator are 

that it not only allows description, with the very high 

accuracy required, of the initial parts of the experimentally 

constructed creep and relaxation graphs and their 

asymptotic values, but it is also a resolvent one. This means 

that this operator allows creep experiments to be carried 

out.  It also allows for determination of the rheological 

constants involving not only the strain-stress relation, but 

also to simultaneously determine the corresponding 

constants involving the same stress-strain relation. 

However, under application of the operators which are not 

resolvent for construction of the stress-strain relation using 

the strain-stress relation it is necessary to solve the 

corresponding integral equations. A more detailed 

discussion of the properties and advantages of the resolvent 

operators are given in the monograph by Rabotnov (1980). 

At the same time, it should be noted that in the related 

literature the application of other types of fractional order 

operators (see, for instance, Adolfson, Enelund et al. (2005, 

Sawicki and Padovan 1999 and others listed therein) can 

also be found. 

Up to now, many investigations (see, Rabotnov 1980, 

Kaminskii and Selivanov 2005, Golub, Fernati et al. 2008 

and others listed therein) have been made on the 

experimental validation of the fractional exponential 

operators in (25) and on determination of the rheological 

parameters α, β∞ and β0 which enter into these operators. 

For instance, in the paper by Golub, Fernati et al. (2008), it 

was experimentally established that for Polymer concrete, 

these rheological parameters have the following values: 

α=0.723778, β0+β∞=0.18875h
α-1

 and β0=0.02598h
α-1

. 

Another example on the experimental determination of the 

values of these parameters for polymethylmethacrylate is 

given in the paper by Kaminskii and Selivanov (2005) and 

these values are: α=0.53, β0+β∞=49day
1-α

 and β0=0.98day
1-α

. 

Thus, through these operators, the constitutive relations can 

be described for a very wide range of linear viscoelastic 

materials with the corresponding values of the rheological 

parameters α, β∞ and β0.    

Numerical results, which will be discussed below, are 

obtained for selected values of the dimensionless 

parameters d
(n)

 and Q
(n)

, the values of which are determined 

through the rheological parameters α
(n)

, ( )n  and ( )
0

n
 . 

According to the foregoing discussions, the proposed 

investigation approach and obtained concrete numerical 

results can be employed for each really determined value of 

these rheological parameters which correspond to the 

concrete values of the dimensionless rheological parameters 

d
(n)

 and Q
(n)

.  

Moreover, the results which will be discussed in the 

present paper can be used mainly in the theoretical - 

orientational sense. For instance, using these results it can 

be predicted how the increase or decrease of the rheological 

parameters such as creep time and long-term values of the 

mechanical properties of some polymer-viscoelastic 

materials can act (in the qualitative sense) on wave 

dispersion in the elements of construction made of these 

materials. Moreover, using these results it can be predicted 

how the change of the sizes of the elements of construction 

can act on the influence of the material viscosity on the 

wave dispersion. At the same time, the results obtained in 

the present paper allow us to understand the nature of the 

wave propagation and dispersion processes in the elements 
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of construction made of viscoelastic materials and to control 

these processes. 

This completes consideration of the selection of the 

dimensionless rheological parameters through which we 

will study the influence of the viscoelasticity properties of 

the layers’ materials on the axisymmetric longitudinal wave 

dispersion.  

 

4.2 On the algorithm of the numerical solution of the 
dispersion equation with respect to the wave attenuation  

 

As the values of the determinant obtained in (21) are 

complex, the dispersion Eq. (21) can be reduced to the 

following one 

det 0ij  ,                              (34) 

where |det||βij||| means the modulus of the complex number 

det||βij||. Consequently for construction of the attenuation or 

dispersion curves it is necessary to solve numerically the 

Eq. (34) for the selected problem parameters. In this 

solution procedure, the values of all the problem parameters 

(except c, k1R and β) are selected in advance. Consequently, 

the equation (34) has three unknowns: c, k1R and β which 

must be determined from this equation.  

Note that in the corresponding purely elastic problems 

the dispersion equation contains only two unknowns: c and 

k1R. The values of c are determined for each possible 

selected value of k1R through the solution to this equation. 

Moreover, in the purely elastic case this solution procedure 

is carried out by employing the well-known “bi-section” 

method which is based on the sign change of the dispersion 

determinant. A more detailed description of the solution 

algorithm of the dispersion equations related to the purely 

elastic problems is given in the monograph by Akbarov 

(2015) and in papers such as Akbarov and Guliev (2009), 

Akbarov and Ipek (2010, 2012, 2015), Akbarov, Negin et 

al. (2015), Ipek (2015) etc. However, in the case under 

consideration we have not changed the sign of the 

dispersion determinant, i.e., |det||βij|||≥0 and this 

determinant, as noted above, contains three unknowns. 

Consequently, for the solution to the dispersion Eq. (34) we 

cannot employ the aforementioned algorithm based on the 

“bi-section” method. Therefore, for the solution to the 

dispersion Eq. (34) we use the algorithm which is based on 

direct calculation of the values of the moduli of the 

dispersion determinant |det||βij||| and determination of the 

sought roots from the criterion |det||βij|||≤10
-12

. It should be 

noted that under employing this algorithm it is necessary to 

give in advance a certain value of one of the unknowns c, 

k1R or β. For instance, in the paper by Barshinger and Rose 

(2004) the admissible values for the wave propagation 

velocity c  are given in advance and the values of the 

attenuation coefficient β are determined for each selected 

value of k1R. It is also possible to give a value to the 

attenuation coefficient β and then to determine the phase 

velocity c for each selected value of k1R. This latter case 

was considered in the paper by Akbarov and Kepceler 

(2015) and the expressions given by Ewing et al. (1957) 

and Kolsky (1963) are used for determination of the 

attenuation coefficient β through ( )
1

Im ( )
n

   and ( )
1

Re ( )
n

  . 

It is evident that this approach can give certain results on 

the dispersion curves but cannot illustrate sufficiently and 

correctly the influence of the rheological, mechanical and 

geometrical parameters on the attenuation dispersion of the 

waves. In the application sense, knowledge of this influence 

has great significance. Taking this statement into 

consideration, in the present paper we aim to determine the 

dispersion attenuation curves directly from the solution of 

the dispersion Eq. (34) for selected admissible wave 

propagation velocities under selected values of the 

dimensionless wavenumber k1R and to determine how the 

mechanical and rheological parameters affect these curves. 

How we select the admissible wave propagation velocity (or 

wave dispersion curves) will be discussed below. 

 

4.3 On the low and high wavenumber limit values of 
the wave propagation velocity 

 

According to the well-known physico-mechanical 

principle (see, for instance Rabotnov 1980), the effect of the 

viscosity of the viscoelastic material on its vibration 

increases with decreasing of the vibration frequency, and 

this effect decreases with increasing of the vibration 

frequency. Consequently, using this principle we can predict 

that if the wave propagation velocity  approaches a finite 

limit in the case where k1R→0 (in the case where k1R→∞), 

then this means that along the dispersion curves, the wave 

frequency   also approaches zero (infinity). Consequently, 

in the cases under consideration, a decrease (an increase) in 

the values of k1R also means a decrease (an increase) in the 

values of the wave frequency. Therefore, according to the 

foregoing physical principle, in the cases where k1R→0 (in 

the cases where k1R→∞) the influence of the viscosity of 

the layers' materials on the dispersion curves, i.e., on the 

wave propagation velocity must disappear and the dynamic 

behavior of the viscoelastic system under consideration 

must approach that of the corresponding purely elastic 

system with long-term values (with instantaneous values) of 

the elastic constants. In other words, according to the 

foregoing physico-mechanical principle, the attenuation 

coefficient β must satisfy the following conditions. 

0   as 1 0k R   and 0   as 1k R  .         (35) 

Taking into consideration the foregoing discussions and 

those made in subsection 4.1, as well as the expressions 

obtained in the monograph by Akbarov (2015), for the low 

wavenumber limit values of the propagation velocity of the 

axisymmetric longitudinal waves in the bi-layered hollow 

cylinder, we can write the following low wavenumber limit 

values for the wave propagation velocity in the bi-layered 

circular hollow cylinder made of viscoelastic materials. 

1
(1) 2

(2) (2) (1) (1)

(2) (2)

(2) (2) (1)
(2) (1)20 0

(2)

e e
c

c


 

 


 




 

 

 
 
 

  
 

 
 

 as 1 0k R   ,(36) 
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where  

( )
( )

( ) ( )
2 1

2( )

n
n

n n
e



 




 

 
  
  

 , 

(2)

(2)

(1) (2) (1)

(2)

2

1 2

h

R

h h h

R Rh






   
     

   
   

 , 

(1)

(1)

(2) (2) (1)

(1)

2

1 2

h

R

h h h

R Rh






   
     

   
   

.                   (37) 

In a similar manner, according to the foregoing 

discussions and those in subsection 4.1, as well as the 

monograph by Akbarov (2015) we can write the following 

high wavenumber limit values for the case under 

consideration 

(1) (2)

(2) (2) (2) (2)
20 20 20 20

min , , SR Rc c cc

c c c c

 
 

  
  

,                           (38) 

where 
( )n
Rc  is the Rayleigh wave propagation velocity of 

the n-th material for the instantaneous values of the elastic 

constants of this material and cS is the Stoneley wave 

propagation velocity of the selected pair of materials of the 

layers as well as for the instantaneous values of the elastic 

constants of these materials. 

It should be noted that the expressions (35)-(38) occur 

not only for the fractional exponential operators given in 

(25) and (26), but also for the arbitrary possible operators 

describing the viscoelasticity of the layers' materials of the 

cylinder.  

Thus, it follows from the foregoing results and from the 

expressions in (28) that the low wavenumber limit values of 

the wave propagation velocity determined by expressions 

(36) and (37) depend on the rheological parameter d only 

and do not depend on the rheological parameters Q and α. 

However, the high wavenumber limit values of the wave 

propagation velocity determined by the expression (38) do 

not depend on any of the above-introduced rheological 

parameters.  

 

4.4 The selection of the admissible dispersion curves 
and algorithm for determination of the attenuation curves 
 

Numerous numerical results and mechanical 

considerations show that the dispersion curves obtained for 

the corresponding purely elastic case with long-term values 

of the elastic constants and the dispersion curves also 

obtained for the corresponding purely elastic case with 

instantaneous values of the elastic constants under 

satisfaction of certain conditions can be taken as the lower 

and upper limit cases, respectively, for the dispersion curves 

obtained for the viscoelastic case. Namely this statement 

allows us to select admissible dispersion curves (and wave 

propagation velocity c) for the viscoelastic case and 

according to these curves (or velocity), to find the 

attenuation coefficient β from the solution of the dispersion 

Eq. (34) for each fixed value of the dimensionless 

wavenumber k1R.  

For detailed illustration of the foregoing algorithm we 

consider the case where d
(1)

=d
(2)

=25, h
(1)

/R=h
(2)

/R=0.1 and 

μ
(2)

/μ
(1)

=0.5. Moreover, we assume that Q
(1)

=Q
(2)

 and 

consider how we can determine the attenuation curves from 

the dispersion Eq. (34). First we construct the dispersion 

curves related to the purely elastic case with long-term and 

instantaneous values of the elastic constants of the layers of 

the cylinder. These dispersion curves are illustrated in Fig. 2 

with dashed lines. Thus, after construction of the dispersion 

curves related to the purely elastic cases, according to the 

discussions made in the foregoing subsections of the present 

section, we can select the admissible dispersion curves 

related to the viscoelastic case. As an example, for 

selection, we can take the dispersion curves shown in Fig. 2 

with solid lines which are numbered from the dispersion 

curve constructed at t=∞ to the dispersion curve constructed 

at t=0.  

Thus, after the foregoing preparation, we select values 

for the dimensionless wavenumber k1R and the wave 

propagation velocity (2)
20

c c . Note that selection of the 

values for the velocity (2)
20

c c  is made according to the 

admissible dispersion curves indicated in Fig. 2. For 

instance, if as an admissible dispersion curve we take the 

dispersion curve indicated by number 1 in Fig. 2, then the 

values of (2)
20

c c  for the given k1R are determined from this 

curve. After this determination, given the values for the 

rheological parameters Q
(1)

, Q
(2)

, α
(1)

 and α
(2)

 we determine 

the attenuation β from the dispersion Eq. (34) and as a result 

of this determination we construct the attenuation curves 

which will be discussed in the next subsection. 

 

 

 
Fig. 2 Selected dispersion curves (solid lines) and 

dispersion curves (dashed lines) obtained under 

instantaneous (i.e., under t=0) and long-term (i.e., under 

t=∞) values of the elastic constants for the case where 

d
(1)

=d
(2)

=25 
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Fig. 3 Attenuation curves obtained for the admissible 

dispersion curve indicated by number 1 in Fig. 2 for various 

values of the rheological parameter Q 

 

 
Fig. 4 Attenuation curves obtained for the admissible 

dispersion curve indicated by number 2 in Fig. 2 for various 

values of the rheological parameter Q 

 

 

Under theoretical investigations of the considered type 

of  problems,  the  selection  of  the  concrete  material 

properties and sizes of the constituents limits the application 

field  of  the  obtained  results.  For  instance,  the  results 

obtained in the case where (2) (1)
0 0

0.5    relate to any 

pair  of  materials,  the  ratio  of  the  instantaneous  modulus 

elasticity  of  which  is  equal  to  0.5  (we  assume  that  the 

Poisson ratios of the materials are equal to each other and to 

0.3). Moreover, the results obtained in the case where 

h
(1)

/R=h
(2)

/R=0.1 relate simultaneously to all the cases 

where the thickness of the cylinder layers is equal to each 

other and the ratio of this thickness to the radius R as shown 

in Fig. 1 is equal to 0.1. However, in connection with this,  

 
Fig. 5 Attenuation curves obtained for the admissible 

dispersion curve indicated by number 3 in Fig. 2 for various 

values of the rheological parameter  Q 

 

 
Fig. 6 Attenuation curves obtained for the admissible 

dispersion curve indicated by number 4 in Fig. 2 for various 

values of the rheological parameter Q 

 

 

the concrete values of the material properties and sizes of 

the constituents are not indicated in Fig. 2 or in other 

figures given below or in any illustrated obtained numerical 

results. 

 

4.5 Attenuation curves and their discussions 
 

As above we assume that μ
(2)

/μ
(1)

=0.5, h
(1)

/R=h
(2)

/R=0.1, 

α
(1)

=α
(2)

=0.5 and Q
(1)

=Q
(2)

(=Q), and consider the attenuation 

curves obtained by employing the foregoing solution 
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algorithm. These curves are given in Figs. 3, 4, 5, 6 and 7 

which are constructed under various values of the parameter 

Q for the dispersion curves indicated by numbers 1, 2, 3, 4 

and 5 in Fig. 2, respectively. 

First of all, we note that throughout the present paper 

under “wave propagation” we mean “guided wave 

propagation” only and the attenuation is estimated by the 

parameter β which is determined through the expression 

(22). According to the expressions in (6), this parameter 

characterizes a decrease of the wave amplitude under 

consideration with the wave propagation distance.   

Moreover, we note that the attenuation curves are 

constructed as follows: first, the wave propagation velocity 

c is selected from the corresponding admissible dispersion 

curves given in Fig. 2 for the selected value of k1R and the 

unknown β is determined from the solution to the dispersion 

Eq. (34). Thus, according to this procedure, the function 

β=β(k1R)
 

is determined numerically (or graphically), 

however, the possible function c=c(k1R) is given a priori.   

The  frequency  related  to  the  point  selected  on  the 

arbitrary attenuation curves given in Figs. 3-7 is determined 

as follows. For simplicity we consider the points on the 

attenuation curves given in Fig. 3 which relate to the 

dispersion curve 1 in Fig. 2. Thus, as an example, we 

consider the point on the attenuation curve obtained in the 

case where Q=100 under k1R=0.2. After this selection, we 

again turn to the dispersion curve 1 in Fig. 2 and from this 

we find the wave propagation velocity related to k1R=0.2. 

Multiplying this velocity with k1R=0.2 we obtain the 

frequency related to the selected point on the attenuation 

curve. It is evident that this frequency also relates to the 

point on each attenuation curve in Fig. 3 which corresponds 

to the case where k1R=0.2. In a similar manner, the 

frequency related to an arbitrary point on the attenuation 

curves can be determined. 

We recall that the attenuation curves given in Figs. 3-7 

are obtained in the case where d
(1)

=d
(2)

=25. For illustration 

of the influence of the rheological parameter d
(1)

 (=d
(2)

) on 

 

 

 
Fig. 7 Attenuation curves obtained for the admissible 

dispersion curve indicated by number 5 in Fig. 2 for various 

values of the rheological parameter Q 

the attenuation curves, these curves are also constructed for 

the cases where d
(1)

=d
(2)

=35 and d
(1)

=d
(2)

=50. The dispersion 

curves related to the case where d
(1)

=d
(2)

=35 are given in 

Fig. 8 and the corresponding attenuation curves are given in 

Figs. 9, 10, 11, 12 and 13 which are also constructed under 

various values of the rheological parameter Q for the 

dispersion curves indicated by the numbers 1, 2, 3, 4 and 5 

in Fig. 8, respectively. 

However, the dispersion curves related to the case where 

d
(1)

=d
(2)

=50 are given in Fig. 14 and the corresponding 

attenuation curves are given in Figs. 15, 16, 17, 18 and 19 

which are also constructed under various values of the 

rheological parameter Q for the dispersion curves indicated 

by the numbers 1, 2, 3, 4 and 5 in Fig. 14, respectively. 

Note that in the foregoing graphs for clarity of the 

illustration, in general, the cases where 10≤Q≤100 are 

considered. However, under obtaining the results given 

Figs. 3, 9 and 15 it is assumed that 10≤Q≤2000 to show the 

character of the dependence between the maximum of β 

(denote it by max{β}) and the parameter Q. According to 

these results, we can conclude that the dependence between 

max{β} and the rheological parameter Q is non-monotonic. 

In other words, we can conclude that up to a certain value 

of the rheological parameter Q (denote it by Q*) before 

which, i.e., under Q≤Q* an increase in the values of Q 

causes an increase in the values of max{β}, but after which, 

i.e., under Q>Q* an increase in the values of Q causes a 

decrease in the values of max{β}. The results given in Figs. 

3, 9 and 15 also show that the values of Q* increase with 

the rheological parameter d
(1)

 (=d
(2)

)       

Also, it follows from the foregoing results that as has 

been predicted, the limit case β→0 takes place as k1R→0. It 

should be noted that β→0 as k1R→∞, although this result 

does not clearly follow from the foregoing results (because 

here, for convenience, only the cases where k1R≤20 are 

considered). However, a further increase in the values of 

k1R causes β to approach zero. The foregoing results also 

show that the values of the attenuation coefficient β become 

 

 

 
Fig. 8 Selected dispersion curves (solid lines) and 

dispersion curves (dashed lines) obtained under 

instantaneous (i.e., under t=0) and long-term (i.e., under  

t=∞) values of the elastic constants for the case where  

d
(1)

=d
(2)

=35 
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Fig. 9 Attenuation curves obtained for the admissible 

dispersion curve indicated by number 1 in Fig. 8 for various 

values of the rheological parameter Q 

 

 
Fig. 11 Attenuation curves obtained for the admissible 

dispersion curve indicated by number 3 in Fig. 8 for various 

values of the rheological parameter Q 

 

 

more considerable in the cases where 1.5<k1R<2.5. 

According to the numerical results we can conclude that 

max{β}appears in the near vicinity of k1R=2. 

Comparison of the corresponding results given in Figs. 

4-7, Figs. 9-13 and Figs. 15-19 with each other shows that 

the approach of these curves to the dispersion curves 

constructed for the purely elastic cases with instantaneous 

values of the elastic constants (we call this case the 

“instantaneous” case and note that in the figures this curve 

is indicated by t=0) and with long-term values of the elastic 

constants (we call this case the “long-term” case and note 

that in the figures this case is indicated by t=∞), the values 

of max{β} decrease and are close to zero. This result agrees 

with the well-known mechanical consideration, according 

to which the attenuation coefficient of the purely elastic 

 
Fig. 10 Attenuation curves obtained for the admissible 

dispersion curve indicated by number 2 in Fig. 8 for various 

values of the rheological parameter Q 

 

 
Fig. 12 Attenuation curves obtained for the admissible 

dispersion curve indicated by number 4 in Fig. 8 for various 

values of the rheological parameter  Q 

 

 

waves must be equal to zero. 

Moreover, comparison of the results given in Figs. 4-7 

with the corresponding results given in Figs. 9-13 and 

comparison of the latter ones with the corresponding results 

given in Figs. 15-19 show that an increase in the values of 

the rheological parameter d
(1)

 (=d
(2)

) causes a decrease in 

the values of max{β}.   

Now we attempt to make a comparison of the 

attenuation curves obtained in the present investigation and 

given in Figs. 4-7, 9-13 and 15-19 with the corresponding 

ones given in the works by Barshinger and Rose (2004), 

Hernando Quintanilla, Fan et al. (2015), Mazotti, Marzani 

et al. (2012). It is evident that this comparison can be made 

in the qualitative sense only, because the viscoelasticity 

models and concrete materials selected in these works differ 

from those selected in the present paper. Consequently, 
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Fig. 13 Attenuation curves obtained for the admissible 

dispersion curve indicated by number 5 in Fig. 8 for various 

values of the rheological parameter Q 

 

 
Fig. 15 Attenuation curves obtained for the admissible 

dispersion curve indicated by number 1 in Fig. 14 for 

various values of the rheological parameter Q 

 

 
Fig. 17 Attenuation curves obtained for the admissible 

dispersion curve indicated by number 3 in Fig. 14 for 

various values of the rheological parameter Q 

 
Fig. 14 Selected dispersion curves (solid lines) and 

dispersion curves (dashed lines) obtained under 

instantaneous (i.e. under  t=0) and long-term (i.e. under  

t=∞) values of the elastic constants for the case where  

d(1)=d(2)=50 

 

 
Fig. 16 Attenuation curves obtained for the admissible 

dispersion curve indicated by number 2 in Fig. 14 for 

various values of the rheological parameter Q 

 

 
Fig. 18 Attenuation curves obtained for the admissible 

dispersion curve indicated by number 4 in Fig. 14 for 

various values of the rheological parameter Q 
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Fig. 19 Attenuation curves obtained for the admissible 

dispersion curve indicated by number 5 in Fig. 14 for 

various values of the rheological parameter Q 

 

 

comparison can be made with respect to the character of the 

attenuation curves, i.e., with respect to the graphs of the 

dependence between β and k1R (or frequency ω). It follows 

from the Figs. 4-7, 9-13 and 15-19 that each graph obtained 

for the dependence between β and k1R (or ω) has a certain 

maximum under a certain value of β and k1R (or ω). 

Observation of the attenuation curves given in the 

aforementioned works shows that these curves also have 

such character. Namely, this situation can be taken as 

validation of the obtained numerical results in the 

qualitative sense. 

We attempt to explain why the aforementioned character 

of the attenuation curves appears. This explanation can be 

based on the behavior of the viscoelastic system under 

lowest and highest frequencies, so that under lower 

(highest) frequencies the behavior of the viscoelastic system 

is very near to the corresponding elastic system with long-

term (instantaneous) values of the elastic constants. 

Therefore, under lowest (highest) frequencies or lowest and 

highest values of k1R, attenuation must decrease with 

decreasing (increasing) either the frequency or the values of 

the dimensionless wavenumber k1R. Consequently, 

according to this statement, the attenuation must have its 

maximum under moderate values of the frequency or of the 

dimensionless wavenumber k1R. Namely, this property of 

the attenuation is a cause of the character of the 

dependencies between β and k1R which is observed in all 

investigations related to this question.   

This completes the discussions of the numerical results. 

 

 

5. Conclusions 
 

Thus, in the present paper an approach is proposed and 

applied for determination of the longitudinal axisymmetric 

wave attenuation in the bi-layered hollow cylinder made of 

viscoelastic materials. This approach is based on selection 

of the admissible dispersion curves of the considered waves 

which can propagate in the viscoelastic bi-layered cylinder 

under consideration. The investigations are made within the 

scope of the exact equations of motion of the theory of 

linear viscoelasticity. The fractional exponential operators 

by Rabotnov (1980) are employed for describing the 

constitutive relations of the constituents of the cylinder. 

Dimensionless rheological parameters are introduced and 

through these parameters the influence of the viscosity of 

the cylinder’s materials on the attenuation curves is studied. 

The numerical results related to these curves are presented 

and discussed. According to these results, the following 

concrete conclusions can be drawn: 

• For the considered values of the problem parameters, 

attenuation of the axisymmetric waves becomes more 

significant in the cases where 1.5<k1R<2.5; 

• Maximal values of the attenuation coefficient β appear 

approximately at k1R≈2.0; 

• There exists such a value of the rheological parameter 

Q (denoted by Q*) under which the attenuation 

coefficient max{β} has its maximum, however, in the 

cases where Q>Q* (in the cases where Q<Q*) an 

increase (a decrease) in the values of Q causes a 

decrease in max{β}; 

• The values of Q* increase with the rheological 

parameter d
(1)

 (=d
(2)

); 

• At first max{β} increases as the “distance” between 

the admissible dispersion curve and the “long-term” 

dispersion curve grows and this increase continues up to 

a certain “distance”. After this “distance” max{β} 

decreases with the approaching of the admissible 

dispersion curve to the “instantaneous” dispersion 

curve; 

• An increase in the values of the rheological parameter 

d
(1)

 (=d
(2)

) causes a decrease in the values of max{β}: 

• The approach proposed in the present paper for the 

axisymmetric longitudinal waves can be employed for 

investigation of the attenuation of other types of waves, 

such as torsional and flexural waves in cylinders, Lamb 

waves in layers, near-surface waves in the layered half-

space etc. made of viscoelastic materials; 

• Using the theoretical results obtained by employing the 

proposed approach, attenuation of the waves through the 

rheological parameters of the viscoelastic material of the 

elements of constructions can be controlled; 

• The character of the obtained attenuation curves agrees 

well with the corresponding ones obtained by other 

researchers and in this way validation of these curves is 

established in the qualitative sense. 
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Appendix A 
 

Here we give the expressions of the components of the 

matrix (βnm), where n;m=1,2,…,8 the determinant of which 

enters the dispersion Eq. (21). These expressions are the 

following ones. 
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In relation (A1), Jn(x) and Yn(x) are Bessel functions of 

the first and second kinds, respectively. Moreover in (A1) 

the following notation is used 
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(A2) 

This completes the consideration of the explicit 

expressions of the components of the matrix (βnm). 
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