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Abstract.  Components manufactured from composite materials are frequently subjected to superimposed 

mechanical and thermal loadings during their operating service. Both types of loadings may cause fracture 

and failure of composite structures. When composite cross-ply laminates of type [0m
 
/
 
90n]s are subjected to 

uni-axial tensile loading, different types of damage are set-up and developed such as matrix cracking: 

transverse and longitudinal cracks, delamination between disoriented layers and broken fibers. The 

development of these modes of damage can be detrimental for the stiffness of the laminates. From the 

experimental point of view, transverse cracking is known as the first mode of damage. In this regard, the 

objective of the present paper is to investigate the effect of transverse cracking in cross-ply laminate under 

thermo-mechanical degradation. A Finite Element (FE) simulation of damage evolution in composite cross-

ply laminates of type [0m
 
/
 
90n]s subjected to uni-axial tensile loading is carried out. The effect of transverse 

cracking on the cross-ply laminate strength under thermo-mechanical degradation is investigated 

numerically. The results obtained by prediction of the numerical model developed in this investigation 

demonstrate the influence of the transverse cracking on the bearing capacity and resistance to damage as 

well as its effects on the variation of the mechanical properties such as Young’s modulus, Poisson’s ratio and 

coefficient of thermal expansion. The results obtained are in good agreement with those predicted by the 

Shear-lag analytical model as well as with the obtained experimental results available in the literature. 
 

Keywords:  cross-ply laminate; thermo-mechanical properties; Shear-lag analysis; transverse cracking; 

finite element method (FEM) 

 
 
1. Introduction 
 

The three modes of damage in composite laminates: transverse cracking, longitudinal cracking 

and delamination had been the subject of thorough theoretical and experimental research. Several 

theories have studied the initiation and the development of these damage modes and have 

described their effect on the thermo-mechanical properties degradation of laminates: theory of 
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nonlinear elasticity (Gu and Reddy 1992), fracture mechanics approach (Joffe, Krasnikovs et al. 

2001), (Brighenti, Carpinteri et al. 2013), variational approach (Yang et al. 2003), (Rebière 

2009), (Rebière, Maâtallah et al. 2001), (Rebière, Maâtallah et al. 2002), (Rebière and Gamby 

2004) and (Rebière and Gamby 2008), Shear-lag type analysis (Henaff-Gardin, Lafarie-Frenot et 

al. 1996), (Henaff-Gardin, Lafarie-Frenot et al. 1996), (Henaff-Gardin and Lafarie-Frenot 2002), 

(Brighenti, Carpinteri et al. 2016) and finite-element analysis (McCartney, Schoeppner et al. 

2000). Most of the studies investigate the behavior and the properties of composite laminates with 

matrix cracking by assuming that the cracks are regularly spaced, thus, the analysis can be focused 

on a segment containing a crack (elementary cell) (Rebière 2009), (Berthelot, El Mahi et al. 1996) 

and (Leblond, El Mahi et al. 1996). 

Using an approach based on an Equivalent Constraint Model (ECM), Kashtalyan and Soutis 

(2000) have analyzed the degradation of the stiffness of cross-ply laminates of type [0m
 
/
 
90n]s due 

to matrix crack in the two plies at 90° (transverse cracking) and at 0° (longitudinal cracking). They 

have performed a 2D Shear-lag type analysis to determine the stress field in the damaged cross ply 

laminates and to describe the degradation of the stiffness. They have found that the stiffness of a 

damaged laminate depends on the density of cracks of 90° layer and on the density of cracks in the 

external layers. The effect of matrix cracking on the behavior of a Glass-fiber / Epoxy of type 

[0
 
/
 
90]s and of a symmetric unbalanced cross-ply laminate of type [0

 
/
 
45]s under static loading as 

well as the theoretical prediction of stiffness reduction due to damage based on ECM which takes 

account of simultaneous matrix cracking in all laminate layers have been analyzed by Katerlos, 

Kashtalyan et al. (2008).  

Henaff-Gardin, Lafarie-Frenot et al. Part 1 (1996), Henaff-Gardin, Lafarie-Frenot et al. Part 2 

(1996) and Henaff-Gardin and Lafarie-Frenot (2002) have used Shear-lag type analysis to study 

cross-ply laminates damaged by double matrix periodic cracks, i.e., transverse and longitudinal 

cracking under plane bi-axial and thermal loading. They have assumed that the displacement in the 

plane in each layer has a parabolic variation through the thickness of the laminate in the normal 

direction of the crack plane and is constant in the other direction.  

Rebière, Maâtallah et al. (2001), Rebière, Maâtallah et al. (2002), Rebière and Gamby (2004) 

and Rebière and Gamby (2008) have examined, through a model approach of variation using the 

complementary minimum energy principle, the effect of transversal and longitudinal cracks on the 

stress field distribution, the loss of stiffness and the reduction of Poisson’s coefficient of cross-ply 

laminate subjected to tensile and fatigue tests. Their models are intended to predict the evolution 

of mechanical properties of the cross-ply laminates of type [0m
 
/
 
90n]s  with m+n=8 for a better 

understanding of damage evolution.  When the transverse damage becomes important, Robiere, 

Maâtallah et al. have observed a reduction in the Poisson’s coefficient and, on the other hand, 

longitudinal damage increases it.  

The aim of the present work is the investigation on the stiffness degradation of a cross-ply 

laminate of type [0m
 
/
 
90n]s due to transverse cracking. A finite element analysis is performed, and 

the results are compared with experimental and theoretical results under the same conditions for 

crack crossing the width of an elementary cell characterized by a geometric transverse crack ratio 

a  (Eq. (1)).  

 
 
2. Geometrical model 
 

The plate under study is a cross-ply laminate of type [0m/90n]s composed of two external layers  
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Fig. 1 Plate laminated with transverse cracks in the 90° layer 

 

 

at 0° and an intermediate layer at 90° as is shown in Fig. 1. The thicknesses of the layers at 0° and 

90° are respectively labeled t0 and 2t90  with t0+t90=h. The median plan (o, x, y) of the laminate is a 

symmetry plan. 

In Fig. 1, the transverse cracks are assumed to cross all the thickness of the 90° layer. They 

have a planar rectangular form, normal to the loading axis. Moreover, their distribution is assumed 

to be in the x direction of the median plan of the laminate. The number of transverse cracks 

increases with increasing load up to the saturation of the crack density. With the above hypotheses 

and due to the symmetry, the laminate plate can be treated as an elementary cell as is shown in 

Fig. 2. Then the analysis of the stiffness degradation is reduced to a 2D approach of the elementary 

cell. This cell is limited by two consecutive transverse cracks. The origin of the reference system is 

located at the center of the damaged cell between the two cracks (x direction) and in the median 

plan of the laminate (z direction). The transverse cracking is characterized by 2a. 

 
 
3. Formulation of the problem in the laminates 
 

The applied stress is expressed by: ,N
h

x

2

1
0


 
where Nx is the applied load by unit of width 

along the x-axis. To define a model of stress distribution, the spacing between the cracks is 

assumed equidistant which means that the laminate has a periodic row of cracks in the 90° layer. 

Indeed, models taking into account non-uniform distribution had been treated via Weibull 

parameter as in (Sun, Daniel et al. 2003), (Li and Wisnom 1997). The uniform spacing considered 

in this investigation has been applied for symmetry reason and simplicity.  Then, the symmetry 

conditions can be used in a transverse section containing one crack (Fig. 2). The non-dimensional 

coordinates and the geometrical parameters are introduced by dividing the corresponding quantity 

by the half of the thickness of the 90° layer 

90
t

z
z    ;  

90
t

x
x    ;  

90
t

a
a    ;  

90
t

h
h                                             (1) 

a  is the geometric ratio of the transverse crack. The following analysis is made by assuming a 

general plane strain condition 
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Fig. 2 Elementary cell between two consecutive transverse cracks 

 

 

const
yyy
  900                                                           (2) 

By applying the deformation in the external layers at 0° (which are not damaged and, 

consequently, the deformations are equal to those of the laminate 0 xx  ) and by assuming that 

the thermal residual stresses are null, the longitudinal modulus and the Poisson’s coefficient of the 

damaged laminate can be defined by the following expressions 

0

0

x

x
E




      ;     

0

x

y

xy




                                                         (3) 

We note that the initial modulus of the undamaged laminate measured with the same load is 

Ex0=0/σx0 and consequently 

0

0

0 x

x

x

x

E

E




                                                                 (4  ) 

For the calculation of the coefficient of thermal expansion αx of the laminate, it is assumed that 

the applied load σ0 is null, and 0
x  and αx are defined by the following expressions 

T

x

x






0

                                                                    (5) 

Using Eqs. (A14)-(A15) reported in Joffe et al. (2001), the constitutive equations of layers at 

90° and 0° are obtained. In these equations we have 0
090

 zz  , and the equilibrium of the 

forces in the z direction is given by 







a

a

i

z
dx 0           i = 90°, 0°                                                   (6) 

      The corresponding constitutive equations to the deformation components and of the normal 

stress in the plan are as follows 
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                                           (8) 

The equilibrium equations of a damaged or undamaged laminate are: 

a) In the x-direction 

 
09000

0

90

90

tttt xx                                                      (9) 

b) In the y-direction 

0
0

0

90

90

 tt yy                                                            (10) 

Eqs. (7)-(10) contain seven unknowns: four stress components and three strain components. 

The total number of equations is six. One of these unknowns can be considered dependent on the 

others. The system is solved with respect to 90
x  

Tmfg x
y


101

90

1
  

 Tmfg xx 
202

90

2

90

                                                (11) 

Tmfg xx 
303

90

3

0

  

The expressions of gi, fi, mi, i=1, 2, 3 with respect to the laminate geometry and the properties 

of the constituents are given in Joffe et al. (2001). 

In order to obtain an expression for the stress 90
x , we consider the axial disturbance caused by 

the presence of two cracks. The distribution of the axial stress can be written under the following 

form Joffe et al. (2001), Rebière (2009) 

 z,xf
xxx 1

90

0

90

0

90                                                         (12) 

 z,xf
xxx 2

90

0

0

0

0                                                         (13) 

Where 90
0x  and 0

0x  are the longitudinal stresses of the undamaged laminate loaded along x 

direction, and are determined by the classical theory of laminates in the 90° and 0° layers 

respectively;  z,xf
x 1

90

0
  and  z,xf

x 2

90

0
  are stress perturbations caused by the presence of the 

cracks. By using the results of the force of equilibrium in the x direction (Eq. (9)), we obtain 

 aR
a

xx
x

2

190

0

90

0

90

                                                     (14) 

 aR
a

xx
x




2

190

0

0

0

0

                                                   (15) 
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With 

    





a

a
zdxdzxfaR

1

0 1
,                                                         (16) 

Eq. (16) is called perturbation function. It is linked to the axial stress perturbation in the 90° 

layer and is dependent on the crack spacing (crack density). The stress perturbation function is 

written under the following form (Berthelot and Le Corre 1999), (Amara, Tounsi et al. 2006) 

   aaR 


tanh
2

                                                            (17) 

Where ξ is the shear lag parameter 

 
900

0

0

0

90

90902

EEt

EtEtt
G

x

x


                                                     (18) 

The coefficient G  depends on the hypotheses used for longitudinal displacements and on the  

shear stress distribution. 

• Hypothesis on longitudinal displacements: The variation of the longitudinal displacement is 

assumed to be parabolic in the thickness of the 90° layer.  

     xA
t

zxuzxu
90

2

902
90

90

3
, 








                                          (19) 

The variation of the longitudinal displacement is determined in the thickness of the 0° layers by 

       xAzfxuzxu
0

0
0

,                                                  (20) 

Where )(90 xu  and )(0 xu  are the average values (estimated through the thickness of the layers) of  

the longitudinal displacements u90 (x,z) and u0 (x,z) in the 90° and 0° layers (Berthelot and Le Corre 

2000). 

• Hypotheses on shear stresses. It is assumed that the transverse displacement is independent of 

on the longitudinal coordinate 

i

xz

i

xz

i

xz
G      ;   

z

u

x

w

z

u
iiii

xz














    ;   i = 0°, 90°                          (21) 

Where i
xyG  is the transverse shear modulus in the 0° and 90° layers (Berthelot and Le Corre 2001). 

Following this assumption, Eq. (21) becomes 

z

u
G ii

xz

i

xz




    ;   i = 0°, 90°                                                   (22) 

Thus, the shear stresses can be expressed by 

   xAzfG
xzxz 0

00                                                         (23) 

 xzAG
xzxz 90

9090 2                                                          (24) 

Where   
dz

df
zf   
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According to these assumptions and their association to the mechanical formulations of 

continuous medium which govern the elasticity problem in the elementary cell, (Berthelot and Le 

Corre 1999) have deduced the expressions of the average longitudinal stress (Eqs. (14)-(15)), 

respectively, in the 90° and 0° layers, as well as the shear stress at the interface between 0° and 90° 

layers: 

 




























acosh

a

x
acosh

E

E
x

x

x





 1
0

90

0

90                                                (25) 
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


























acosh

a

x
acosh

E

E

t

t

E

E
x

x

x






0

90

0

90

0

0

0

0

1                                         (26) 

 
acosh

a

x
acosh

E

E
x

x 















0

90

0
                                                   (27) 

Where η is the load transfer parameter between two consecutive cracks 

900

0

0

902 13
EE

GE

t

t
x









                                                         (28) 

The coefficient G  in Eq. (18) is determined by 

90

3

t

G
G                                                                  (29) 

The shear modulus of the elementary cell is given by 

 
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9090

90

0

90

90

31
tft

tf

G

G

G
G

xz

xz

xz





                                                    (30) 

Two analytical functions have been considered and deduced basing on the results of Berthelot 

and Le Corre (1999) for f(z): 

• A complete parabolic model 

    2

90900

2

0900

2 2
3

2
2 ttttzttzzf                                           (31) 

• A progressive shear model 

  









9090

0

90

0
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0

1cosh
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t

z

t

t

t

t

t

t

zf
t

t

t






                                             (32) 
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Where ηt is the transverse shear parameter through the thickness of 0° layers expressed by 

aG

E

xz

x

t

1
0

0

                                                                 (33) 

The function f(z) is similar to that used in shear deformation beam/plate theory and has been 

used in many works (Farahani and Barati 2015), (Bourada, Kaci et al. 2015), (Atteshamuddin et 

al. 2015), (Nguyen, Thai et al. 2015) and (Ait Yahia, Ait Atmane et al. 2015) to name a few. By 

substituting Eq. (14) in Eq. (11), the result obtained contains two terms. The first term is equal to 

the deformation of the classical theory of laminate, the second is a new term related to the shear 

perturbation function )(aR   

 aR
a

g
xyy

2

1
1

90

00
                                                       (34) 

 aR
a

g
xx

x

2

1
2

90

00

90

                                                      (35) 

 aR
a

g
xx

x

2

1
3

90

00

0

                                                     (36) 

The stress 90
0x   in the 90° layer of an undamaged laminate under thermo-mechanical loading 

can be calculated using the classical theory of laminates 

   TQTQ
yxx


10122022

90

0
                                    (37) 

In Eq. (37), εx0 and εy0 are the deformations provoked by the combined thermal and mechanical 

loads. This equation can be rewritten for the case of a pure mechanical load or a pure thermal load 

as follows: 

• For mechanical load (ΔT=0) 

 
012022

90

0
1

xyxx
Q                                                            (38) 

• For thermal load (σ0=0)  

T
xx


00
     and    T

yx


00
                                                 (39) 

Eq. (37) can be expressed as follows 

   TQ
yxx


10122022

90

0
                                            (40) 

vxy0 is the Poisson’s coefficient of the undamaged laminate. 

By substituting Eqs. (34)-(36) in Eq. (3) and considering Eq. (38), we obtain the following 

fundamental expressions: 

 aRaE

E

x

x




1

1

0

     and     
 
 aRa

aRc
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











1

1

0

                              (41) 

Where 
a2

1
  is the normalized crack density and a

*
, c are known functions which depend on the 
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geometry and elastic properties of layers at 90° and 0°: 
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The coefficient of thermal expansion αx of the damaged laminate can be obtained by 

substituting Eq. (36) in Eq. (5) and assuming that the applied mechanical stress is null (σ0=0) 

 aRe
x

x 



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0

                                                          (42) 

Where e is a function of the elastic constants and geometry: 
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4. Finite element model analysis 
 

Evaluations of the stiffness degradation have been investigated by a finite element analysis for 

the case of regularly spaced cracks characterized by the elementary cell as is shown in Fig. 2. The 

finite element model calculations are made in plane stress condition. The 2D simulation of the 

stress state is carried out using ANSYS code. 

For symmetry reason, only one fourth of the elementary cell is modeled (Fig. 3(b)). The 

conditions of symmetry on the sides x=-a are check, z [t90, h] and x [-a, 0], z=0. Traction free 

conditions are on z=h and on the crack surface x=-a, z [0, t90]. A constant displacement is applied 

along the x direction at x=0 (Fig. 3(b)). Linear and quadratic 2D planar rectangular finite elements  

 

 

 

Fig. 3 Elementary cell model: (a) repeated transverse cracks in the 90° layer; (b) boundary 

conditions of modeled region and (c) finite element modeled region 
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Table 1 Material properties of cross-ply [0m/90n]s laminates 

Properties 
Glass-Fibre / Epoxy (Joffe, Krasnikovs et al. 

2001), (Joffe and Varna 1999) 

Graphite-Fibre / Epoxy (AS4-3502) 

(Groves, Haris et al. 1987) 

E1, GPa 44.73 144.78 

E2, GPa 12.76 9.58 

ν12 0.297 0.31 

ν23 0.420 0.55 

G12, GPa 5.80 4.785 

G23, GPa 4.49 3.09 

α1, 1/°C
 

8.6×10
-6

 -0.72×10
-6 

α2, 1/°C
 

22.1×10
-6

 27×10
-6 

ΔT, °C -105 -147 

 

 
Fig. 4 Variation of the longitudinal Young’s modulus as a function of the transverse cracking 

density for Glass-fibre / Epoxy laminate [02
 
/
 
904] s (a=5) 

 
 
have been used for meshing (Fig. 3(c)). 

In the finite element computation, an average stress of 45.35 MPa is applied to the elementary 

cell along the x direction (Figs. 3(b)-(c)). It is assumed that the interface between the layers is a 

perfect bond. The calculations have been carried out for two types of cross ply laminates: 

Graphite-fiber/Epoxy laminates AS4-3502 (Groves, Haris et al. 1987) and Glass-fiber/Epoxy 

laminate GF/GP (Joffe, Krasnikovs et al. 2001), (Joffe and Varna 1999). The results are compared 

to those of the analytical model and experimental tests results. The material properties used in this 

analysis at ambient temperature are shown in Table 1. The dimensions are: t90=1 mm and 

t0=0.5 mm for these cross ply laminates.  
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Fig. 5 Variation of the longitudinal Young’s modulus as a function of the transverse cracking 

density for Graphite-fiber / Epoxy [0
 
/
 
903]s laminate (a=5) 

 
 
5. Results and discussion 
 

The reduction of the longitudinal modulus as a function of transverse crack density has been 

widely studied. The obtained results are represented in Figs. 4-5 and are compared with the 

experimental results for the two different types of laminates (Glass-fiber / Epoxy [02/904]s (Fig. 4) 

and Graphite-fiber / Epoxy [0/903]s (Fig. 5)). 

Fig. 4 shows the variation of the normalized longitudinal modulus (Ex
 
/
 
Ex0) as a function of the 

crack density. The results deduced from the analysis of the Shear lag analytical model and the 2D 

FEM (Leblond et al. 1996) are also reported. A reduction of 25% is obtained for a crack density of 

0.7 to 0.8 for FEA model which agrees with experimental results (Joffe and Varna 1999), while 

the reduction is 30% for the others models. This reduction depends on the respective stiffnesses of 

0° and 90°. 

In Fig. 5, the variation of the normalized longitudinal modulus (Ex
 
/
 
Ex0) as a function of crack 

density for the Graphite-fiber / Epoxy [0
 
/
 
903]s laminate is presented. The finite element results are 

compared with experimental data by Groves, Haris et al. (1987) and the results deduced from the 

analytical models: parabolic Shear-lag analysis of present study, progressive (Tounsi, Amara et al. 

2006) and modified (Lim and Hong 1989) Shear-lag analysis. The variations of the modulus 

appear a slight degradation as the transverse matrix crack density increases compared with Glass-

fiber/Epoxy laminate (Fig. 4). Indeed, for crack density of 0.8 crack/mm, the longitudinal Young’s 

modulus of Glass-fiber / Epoxy [02
 
/
 
904]s laminate is reduced by about 25%, whereas reduction in 

Graphite-fiber/Epoxy [0
 
/
 
903]s ones is almost 10%. The agreement between the models and 

experimental data (Groves, Haris et al. 1987) is reasonable. However, for a density greater than 

0.3, the analytical curves of present study and numerical curves diverge from the experimental 

results. This gap is due to the initiation and development of the transverse crack progression  
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Fig. 6 Poisson’s ratio variation due to transverse cracks density in a [02
 
/
 
904]s Glass-fibre  / Epoxy 

laminate 

 

 

Fig. 7 Change of longitudinal thermal expansion coefficient as a function of crack density for a 

Glass-fibre / Epoxy [0
 
/
 
904]s laminate 

 

 

simultaneously with a new damage process (longitudinal cracking and interface delamination) 

which are not taken into consideration in this analysis. 

Fig. 6 shows the degradation of the normalized Poisson’s ratio as a function of transverse crack 

density. The figure illustrates comparison with the predictions provided by progressive shear 
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approach (Amara, Tounsi et al. 2006) and experimental data (Joffe, Krasnikovs et al. 2001). It is 

seen that the agreement between the experimental results and those predicted using the analytical 

models is fairly satisfactory, while numerical results reveal a good agreement with test results 

(Joffe, Krasnikovs et al. 2001). 

Predicted changes of the thermal expansion coefficient (TEC) with respect to the crack density 

are shown in Fig. 7. It is seen that the cracks have a fairly significant effect on the TEC of the 

laminate. Indeed, we estimate the reduction between (32÷37)%. The plot presents the same form 

with a slight difference for higher densities, whereas, the variation for Joffe, Krasnikovs et al. 

(2001) takes a linear form. FEM analysis agrees well with Hashin (1988), till 0,75 mm
-1

, after that 

these curves moving away gradually from each other, but they show an overestimated changes of 

the TEC. However the shear lag model of present study underestimats the TEC. 

 
 
6. Conclusions 
 

A simple Finite element analysis method has been applied to the investigation of the stiffness 

degradation in cross-ply [0m
 
/
 
90n]s laminates due to transverse cracking in the 90° layer. The 

results are compared with existing experimental data and analytical results using a Shear-lag 

analysis. On conclusions the basis of the present results, the following conclusion can be drawn: 

• The stiffness reduction of Graphite-fiber/Epoxy [0
 
/
 
903]s is lower than that of Glass-fiber / 

Epoxy [02
 
/
 
904]s.  

• A new damage process (longitudinal cracking and/or interface delamination) initiated and 

developed simultaneously with transverse crack progression has been observed for a density 

greater than 0.3 in case of Graphite-fiber/Epoxy [0
 
/
 
903]s laminates. This result suggests that it 

is necessary and possible to take into consideration the other modes of damage for better 

prevision of the stiffness reduction. 

• Generally FEA slightly underestimates stiffness reduction. 

• The intra-laminar cracks significantly reduce the Poisson's ratio and TEC of the laminate. 

• The present FEA method is simple, yet its results show reasonable agreement with analytical 

results and experimental data. 
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