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Abstract.  Based on Vlasov‟s torsional theory of open thin-walled members and the nonlinear constitutive 

relations of materials, a nonlinear analysis model to predict response of open thin-walled RC members 

subjected to pure torsion is proposed in the current study. The variation of the circulatory torsional stiffness 

and warping torsional stiffness over the entire loading process and the impact of warping shear deformation 

on the torsion-induced rotation of the member are considered in the formulation. The torque equilibrium 

differential equation is then solved by Runge-Kutta method. The proposed nonlinear model is then applied 

to predict the behavior of five U-shaped thin-walled RC members under pure torsion. Four of them were 

tested in an earlier experimental study by the authors and the testing data of the fifth one were reported in an 

existing literature. Results show that the analytical predictions based on the proposed model agree well with 

the experimental data of all five specimens. This clearly shows the validity of the proposed nonlinear model 

analyzing behavior of U-shaped thin-walled RC members under pure torsion. 
 

Keywords:  U-shaped RC members; thin-walled members; warping torsion; nonlinear stiffness; warping 

shear deformation 

 
 
1. Introduction 
 

The application of U-shaped thin-walled reinforced concrete members (UTWRCMs) to the 

construction of urban rail viaduct has become more and more popular. However, compared to 

closed section members, the much lower torsional stiffness of open section members is a main 

drawback. To reduce the risk of potential failure of open thin-walled RC members caused by low 

torsional stiffness, it is imperative to develop an analytical model which would allow a better 

understanding of the behavior of UTWRCMs in pure torsion over the entire loading process. Since 

the effect of warping cannot be ignored in the torsional response of an open section member, it is 

very challenging to analyze the behavior of open thin-walled RC members in pure torsion. 
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Remarkable progress has been made since the 1950s in the linear analysis of elastic torsional 

response of open thin-walled members with the consideration of warping torsion. In particular, the 

significant contribution made by Timoshenko (1945), Vlasov (1984), as well as Kollbrunner and 

Basler (Kollbrunner and Basler 2013) are worth mentioning. The linear theory for analyzing 

torsional behavior of open thin-walled elastic members or the Vlasov‟s theory was developed in 

1961. By computing the warping torsion and the warping moment based on the sectorial area 

coordinate system, the linear analysis of open thin-walled section elastic members in torsion was 

made simple and possible. In recent years, how to calculate the shear deformation induced by the 

warping torsion (Pavazza 2005, Erkmen and Mohareb 2006, Murín and Kutiš 2008, Aminbaghai, 

Murin et al. 2016) ignored in the Vlasov‟s theory becomes one of the research focuses in the field. 

Nevertheless, all of these efforts were still within the framework of linear elastic analysis. In the 

case of a RC member, however, once concrete cracks, tension in the member would be solely 

resisted by the reinforcements in the tension zone. Both material properties and structural behavior 

would manifest strong nonlinearity. Therefore, the existing linear elastic theory is no longer 

applicable to study the post-cracking torsional performance of RC members. To the knowledge of 

the authors, analytical and experimental studies on the post-cracking behavior of open thin-walled 

RC members in torsion are quite scarce. 

In 1968, Zbirohowski-Koscia (1968) made the first attempt to extend Vlasov‟s elastic theory to 

analyze stress distribution of cracked open thin-walled reinforced and prestressed concrete beams 

in elastic range when under the combined effect of axial force bending moments and bimoments. 

Subsequently, Krpan and Collins (1981a, 1981b) conducted an experimental study to investigate 

the post-cracking behavior and inelastic warping torsion response of a 6.4m long fixed-fixed U-

shaped thin-walled specimen subjected to a torque applied at the mid-span. A theoretical model 

was proposed to predict the torques corresponding to the stages of concrete cracking, 

reinforcement yielding and specimen failure. Although only one specimen was tested and the test 

was terminated by an unexpected anchorage failure, the experimental results and the proposed 

theoretical model still provided a basic and systematic comprehension for the torsional behavior of 

UTWRCMs. Hwang and Hsu (1983) analyzed the torsional response of simply supported U-

shaped beams in an experimental study. The torsional equilibrium differential equation was solved 

by applying a Fourier Series approach. However, since the circulatory torsional stiffness and the 

warping torsional stiffness, especially their values in the post-cracking stage, were computed using 

a simplified approach (Collins 1973, Hwang and Hsu 1983), a sizable discrepancy between the 

predicted response and the experimental data was observed. Despite the fact that the Space Truss 

Analogy has been continuously developed since the middle of the 20
th
 century and the variation of 

the circulatory torsional stiffness over the entire loading process can now be accurately obtained 

(Jeng and Hsu 2009, Bernardo, Andrade et al. 2012, Bernardo, Andrade et al. 2015), besides some 

efforts on determining the elastic warping torsional stiffness (Waldron 1986, Kollbrunner and 

Basler 2013), approaches to properly evaluate the warping torsional stiffness of open thin-walled 

RC members after concrete cracks can rarely be found in literature. 

Luccioni, Reimundin et al. (1991) tested the response of eight I-shaped prestressed concrete 

beams under combined torsion, flexure and shear and proposed a simple method for predicting 

bearing capacity based on the skew bending theory. Subsequently, they developed an associated 

computer program to reproduce the behavior of prestressed concrete I-beams under combined 

loads (Luccioni, Reimund et al. 1996). The theoretical predictions were found to agree well with 

the experimental results (Luccioni, Reimund et al. 1996). However, the approach developed in 

(Luccioni, Reimund et al. 1991) and (Luccioni, Reimund et al. 1996) are not applicable to 
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UTWRCMs because of the considerable difference in the geometrical properties between the I-

shaped and the U-shaped cross sections. Little progress has been made in the field of torsional 

response of open thin-walled RC members in the last two decades. 

Four large size U-shaped thin-walled RC members have been designed and tested under pure 

torsion in an earlier experimental study by our research group (Chen, Diao et al. 2016). By 

analyzing the crack development, the stress and strain status, as well as the failure mode, a simple 

yet effective method for computing ultimate torque was proposed. In the current study, an effort is 

made to develop a nonlinear model to analyze the behavior of UTWRCMs in pure torsion. The 

nonlinear warping torsional stiffness of the member over the entire loading history is calculated 

based on Vlasov‟s elastic theory and the nonlinear constitutive relation of concrete and steel bars. 

The circulatory torsional stiffness is computed by the modified variable angle truss model 

(Bernardo, Andrade et al. 2012). The torsional rotation of the member is determined by solving the 

torque equilibrium differential equation using Runge-Kutta method (McGuire, Gallagher et al. 

2000). The combined effect of circulatory torsion and warping torsion, and the possible 

amplification of warping shear deformation on the member rotational angle are considered in the 

formulation of the proposed nonlinear model. The model is then applied to analyze the torsional 

response of the specimens tested in (Chen, Diao et al. 2016), of which a good agreement with the 

experimental data is found. This verifies the validity of the proposed nonlinear model in predicting 

torsional response of UTWRCMs.  

 

 

2. Development of torsional equilibrium differential equation 
 

A typical fixed-fixed UTWRCM subjected to a concentrated torque T(l/2) applied at the mid-

span is depicted in Fig. 1. The right-hand Cartesian coordinate system xoy is used in the 

derivation, where o is the centroid of member cross-section, x and y are the principal axes. When a 

UTWRCM is constrained at two ends, both circulatory torsion and warping torsion exist, as shown 

in Fig. 2. The applied torque T(z) at any arbitrary location z is resisted by both circulatory torsion 

and warping torsion. The torsional equilibrium equation can thus be expressed as 

( ) ( ) ( )cT z T z T z                                                              (1) 

 

 

 

Fig. 1 Coordinate system and structural sketch of U-shaped thin-walled members in pure torsion 
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Fig. 2 Stress distribution along U-shaped cross sections 

 

 
Fig. 3 Deterioration curve of circulatory torsional stiffness for U-shaped RC members 

 
 

Where Tc(z), Tω(z) are respectively the torque induced by circulatory torsion and warping torsion 

at section z, and T(z)is the applied torque at section z. For a fixed-fixed member with a 

concentrated torque T at the mid-span, T(z)=T/2.  

 
2.1 Circulatory torsion 
 
Circulatory torsion, which is also called the St.Venant torsion, can be obtained by 

cT GK                                                                     (2) 

where GK is circulatory torsional stiffness, G is shear modulus of the material; K is the circulatory 

torsional constant, υ′ is the first-order derivative of torsional rotation with respect to the coordinate 

z, i.e., the twist rate. If decompose the U-shaped section into n rectangles, 
3

3

i ih t
K 

 
in elastic 

stage, in which hi 
and ti 

are respectively the length and the width of the i
th 

rectangular component; 

Shear stresses (shown in Fig. 2(c)) corresponding to the circulatory torsion can be derived as 

c
c

T
t

K
                                                                      (3) 

Based on the softened space truss analogy model (Collins 1973, Hsu 1973, Hsu and Mo 2010, 

Bernardo, Andrade et al. 2012), the circulatory torsional stiffness over the entire loading process 

can be obtained. The modified variable angle truss model (MVATM) proposed by Bernardo, 

Andrade et al. (2012) is adopted in the current study to develop the post-cracking deteriorative 

curve of circulatory torsional stiffness. The U-shaped section is decomposed into three rectangular 
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sections, of which the circulatory torsional stiffness can be respectively obtained by MVATM. 

Resultant stiffness of the U-shaped section is the sum of the circulatory torsional stiffness of these 

three rectangular sections. The detailed procedures of computing the nonlinear circulatory 

torsional stifness are summarized in (Bernardo, Andrade et al. 2012).  

Fig. 3 displays the deterioration of the circulatory torsional stiffness GK of the U-shaped RC 

members with respect to the icrease of its twist rate υ′ determined by the MVATM. As  can be 

seen from the figure, the circulatory torsional stiffness remains as a constant ((GK)0) before 

cracking. Once crack appears,  it reduces rapidly. The progress of the deterioration becomes much 

more slower when the member is fully cracked. This relation will be used in the following 

nonlinear analysis of UTWRCM torsional behavior. 

 
2.2 Warping torsion and warping moment 
 
Besides circulatory torsion, warping effects also plays an important role in the torsional 

behavior of open thin-walled members. Based on the Vlasov‟s theory (Vlasov 1984, Kollbrunner 

and Basler 2013), the torsion induced by elastic warping can be expressed in terms of sectorial 

coordinate as 

T EI                                                                    (4) 

where E is the elastic modulus of the material; Iω is the principal sectorial moment of inertia; EIω is 

the warping torsional stiffness; =
s

ds   is the sectorial area coordinate, where ρ is the polar 

radius with respect to the principle sectorial pole, and s is the coordinate in the curvilinear 

coordinate system; υ′′′
 

is the third-order derivative of torsional rotation with respect to the 

coordinate z. The elastic warping torsional stiffness ((EIω)0 shown in Fig. 4) can be evaluated by 

Vlasov‟s theory (Vlasov 1984, Kollbrunner and Basler 2013). Warping moment Mω 
resulted from 

elastic warping can be obtained by integrating Eq. (4), which gives 

M EI  
                                                            

 (5) 

where υ′′, the second-order derivative of the torsional rotation with respect to coordinate z, 

represents the curvature of deformation due to warping.  

For any arbitrary cross section, the normal stress caused by warping moment and the shear 

stress caused by warping torsion (refer to Fig. 2) can be expressed respectively as 

M

I






                                                                    (6) 

T
S

I


 



  

                                                                

 (7) 

where
A

S dA  
 
is the sectorial static moment. 

Although the warping torsional stiffness of an open thin-walled RC member in the elastic stage 

can be computed by applying Vlasov‟s theory, the approach to evaluate its value after concrete 

cracks is not yet available. In the current study, it is proposed to evaluate the post-cracking 

warping torsional stiffness of a RC member based on its equivalent section. The details of how to 

calculate the equivalent warping torsional stiffness in the post-cracking stage is described in the  
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Fig. 4 Deterioration curve of warping torsional stiffness 

 

 

Fig. 5 Analysis element of U-shaped members 

 

 

appendix. Fig. 4 depicts schematically the deterioration curve of the warping torsional stiffness of 

an UTWRCM with the increase of the curvature υ′′. As shown in Fig. 4, similar to the circulatory 

torsional stiffness, the warping torsional stiffness also remains unchanged before concrete cracks 

and drops rapidly with the formation of crack. It approaches to a constant value after the yielding 

of steel bars. 

 

2.3 Differential equation for torque equilibrium 
 
  Substitute Eqs. (2) and (4) into Eq. (1), the differential equation for torque equilibrium can be 

achieved, i.e. 

( ) ( ) ( ) ( ) ( )GK z z EI z z T z   
                                              

 (8) 

This third-order torque equilibrium differential equation can be solved using the fourth-order 

Runge-Kutta method. 

 

 

3. Nonlinear model for predicting torsional response of UTWRCMs 
 

3.1 Solution to torque equilibrium differential equation 
 
Due to the symmetry of the studied UTWRCMs, only half of its span is considered in the 

analysis. As shown schematically in Fig. 5, the half-span of the UTWRCM is divided into n equal 

length segments along the z-axis by (n+1) nodes. Each element has a length of Δz, Δz=l/(2n), 

where l  is the length of the UTWRCM. Assume Δz is infinitesimally small so that the associated 

element has uniform cross-sectional properties along its length. Take the i
th
 element as an example, 

both the circulatory torsional stiffness and the warping torsional stiffness of the element are 

assumed to be the same as those at node i. Further, it is assumed that the circulatory torsional 
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stiffness GK is not affected by the presence of warping flexural cracks and the warping torsional 

stiffness EIω is not influenced by the occurrence of circulatory torsional shear cracks. In other 

words, GK and EIω can be calculated independently without considering their interaction effect. 

Therefore, the circulatory torsional stiffness and warping torsional stiffness of the UTWRCM at 

each loading step can be computed respectively according to the MVATM (Bernardo, Andrade et 

al. 2012) and the equivalent warping torsional stiffness approach proposed in the current study. 

Eq. (8) can be rewritten for the i
th
 element as 

( 1)
( ) ( ) ( )

2
i i i i

i l
GK EI T

n
   


                                                   (9) 

The fourth-order Runge-Kutta method (McGuire, Gallagher et al. 2000) is applied to solve the 

above third-order differential equation, Denote [αi βi γi]= 
   i i i i i i       , Eq. (9) can be expressed as 

 

( 1)
( ) ( )

2

( )

T

i i
T

i i i i i

i

i l
GK T

n

EI

 
    



 
 

     
 
 

                                   (10) 

To simplify this expression, define ( )i if   , ( )i if    and ( , )i ih     
( 1)

[ ( ) ( )] / ( )
2

i i i

i l
GK T EI

n
  


 . Thus, Eq.(10) can be rewritten as 

   ( ) ( ) ( , )
T T

i i i i i i if g h                                                (11) 

Substituting the circulatory torsional stiffness (GK(βi)) and the warping torsional stiffness 

(EI(γi)) corresponding to the i
th 

node into Eq.(11), the relation between the displacements at node 

i and node (i+1) can be established as 

1

1

1

( 2 2 )
6

i i

i i

i i

z
 

 

 







   
   

       
      

1 2 3 4k k k k                                        (12) 

where the vectors k1, k2, k3, k4 have the form of 

11

12

13

( )

( )

( , )

i

i

i i

fk

k g

k h





 

  
  

    
     

1k ； 

21 12

22 13

12 1323

( / 2)

( / 2)

( / 2, / 2)

i

i

i i

k f z k

k g z k

h z k z kk





 

     
   

       
          

2k ; 

31 22

32 23

22 2333

( / 2)

( / 2)

( / 2, / 2)

i

i

i i

k f z k

k g z k

h z k z kk





 

     
   

       
          

3k ; 

41 32

42 33

32 3343

( / 2)

( / 2)

( / 2, / 2)

i

i

i i

k f z k

k g z k

h z k z kk





 

     
   

       
          

4k ; 
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Apply the fixed boundary condition to node 1 at the support. At each loading step, the initial 

condition of node 1 is set as [α1 β1 γ1]=[0 0 γ1], where γ1 is determined based on the applied T at the 

corresponding loading step. Based on Vlasov‟s elastic theory (Vlasov 1984), the initial value of γ1, 

i.e., 1can be derived by 

1

1 cosh( / 2)

sinh( / 2)

T l

EI l




 


                                                          (13) 

where = /GK EI is the ratio between the circulatory torsional stiffness and the warping 

torsional stiffness. Eq. (13) is not applicable after concrete cracks because both circulatory and 

warping torsional stiffness would vary along the member length. Therefore, the average value of 

these two kinds of torsional stiffness, as given in Eq. (14) and (15), are substituted into Eq. (13) for 

computing the stiffness ratio  in the post-cracking stage. 

1
( ) /

n

ii
GK GK n


                                                        (14) 

1
( ) /

n

ii
EI EI n  


                                                       (15) 

Finally, the displacement vector at all the nodes can be evaluated using Eq. (12). By gradually 

increasing the applied torque, the torsional response of the studied UTWRCM over the entire 

loading process can be calculated.  

 

3.2 Refinement of torsional rotation by considering warping shear deformation 
 
When Vlasov‟s elastic theory was applied to derive the torque equilibrium differential 

equation, Eq. (16), for open thin-walled members under pure torsion, it was assumed that no shear 

deformation would occur at the midline of any arbitrary section. This assumption is valid in the 

elastic range. However, after concrete cracks, the effect of shear deformation on the torsional 

response of the member cannot be ignored. It was reported in literature (Krpan and Collins 1981a, 

Luccioni, Reimundin et al. 1996, Pavazza 2005) that although the shear stress caused by warping 

torsion would not affect the shear bearing capacity, it would considerably increase the torsional 

rotation of the member. Data obtained from an experimental study by Krpan and Collins (1981a) 

indicated that more than 60% of the torsional rotation was induced by shear strain after the  

 

 

 

Fig. 6 Refinement of the torque- rotation curve 

1046



 

 

 

 

 

 

Nonlinear model to predict the torsional response of U-shaped thin-walled RC members 

yielding of steel bars. In the current study, the effect of shear deformation on the bearing capacity 

of UTWRCMs under pure torsion will be neglected. The Refinement of the member torsional 

rotation will be achieved based on Eq. (17), i.e. 

cor cor                                                               (18) 

Where υcor is the refined torsional rotation with the consideration of warping shear deformation; υ 

is the torsional rotation; Δυcor 
is the amount of applied correction to the torsional rotation; and λ is 

the empirical amplification coefficient. As is shown in Fig. 6, the torque-rotation curve can be 

divided into three stages by two characteristic points, i.e., the diagonal shear cracking point (Tcr) 

and the longitudinal bar yielding point (Ty).  

The empirical amplification coefficient is determined based on the magnitude of the applied 

torque T: 

(1) Prior to the occurrence of diagonal shear cracks (T≤Tcr): λ=0, which neglects the effect of 

 

 

shear deformation. 

(2) From the occurrence of diagonal shear cracks till yielding of the longitudinal bars 

(Tcr<T<Ty): Assume the torsional rotation induced by warping shear deformation has a linear 

relation with the increase of the applied torque, i.e. 

0.6
( )cr

y cr

T T
T T

   


                                                        

 (19) 

(3) After yielding of the longitudinal bars (Ty≥T): λ=0.6. 

A refined torque-rotation curve describing the torsional response of UTWRCMs over the entire 

loading process can be obtained by applying the above correction to the torsional rotation in the 

post-cracking stage. Curve 1 and 2 in Fig. 6 portray respectively the torque-rotation curves without 

and with the refinement.  

 

 

4. Application of the proposed nonlinear model 
 
4.1 Description of specimens used in existing experimental studies 
 
The torsional response of five UTWRCM specimens, four tested recently by our research group 

(Chen, Diao et al. 2016) and another one by Krpan and Collins in 1981 (Krpan and Collins 

1981b), are analyzed in this section using the proposed nonlinear model. The results are then 

compared with the existing experimental data. The four specimens tested in (Chen, Diao et al. 

2016) are denoted as MEM-1, MEM-2, MEM-3 MEM-4, whereas the one tested in (Krpan and 

Collins 1981b) is denoted as MEM-C. Detailed dimensions and reinforcement arrangement of 

these five specimens are given in Fig. 7 and Fig. 8. The only difference between the four 

specimens tested in (Chen, Diao et al. 2016) is that the diameter of the longitudinal steel bars in 

MEM-1 and MEM-2 is 10mm, whereas the diameter of those in MEM-3 and MEM-4 is 8mm. The 

mechanical and material properties of all the specimens are listed in Table 1. For other related 

information, please refer to (Krpan and Collins 1981b, Chen, Diao et al. 2016). 
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(a) Dimensions of tested specimen MEM-1 (b) Reinforcement of tested specimen MEM-1 

Fig. 7 Details of tested specimen MEM-1 

 

 

 
(a) Dimensions of tested specimen MEM-C (b) Reinforcement of tested specimen MEM-C 

Fig. 8 Details of specimen MEM-C 

 
Table 1 Mechanical properties of specimens 

Material                    Specimen MEM-1 MEM-2 MEM-3 MEM-4 MEM-C 

Concrete 

Compressive strength 

of cube specimen (MPa) 
50.95 50.95 63.83 51.57 52.00

 

Elastic modulus (GPa) 40.00 38.50 42.20 34.38 34.04 

Longitudinal 

Steel bar 

Reinforcement ratio (%) 

Diameter (mm) 

2.80 

10 

2.80 

10 

1.80 

8 

1.80 

8 

3.16 

15.9 

Yield strength (Mpa) 576.25 576.25 353.33 353.33 348 

Ultimate strength (Mpa) 623.00 623.00 573.33 573.33 475 

Stirrup 

Diameter (mm) 6 6 6 6 6.4 

Yield strength (Mpa) 365.00 365.00 276.70 276.70 362.00 

Ultimate strength (Mpa) 645.00 645.00 446.70 446.70 492.60 
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(a) Torque-rotation curves of specimen MEM-2 (b) Torque-rotation curves of specimen MEM-C 

Fig. 9 Comparison of analytically predicted and experimentally recorded  torque-rotation curves 

 
 
4.2 Torque-rotation curves 
 

The proposed nonlinear model is applied to determine the torsional response of the five 

UTWRCM specimens under pure torsion. Fig. 9 illustrates the torque-rotation curves associated 

with two sample specimens MEM-2 and MEM-C. In each case, besides the theoretical prediction 

and experimental data, the variation of torsional rotation with respect to the applied torque 

determined based on Vlasov‟s elastic model is also shown in the figure for convenience of 

comparison. Results show that for both specimens, prior to formation of the diagonal shear cracks, 

the torque-rotation curves obtained from three different approaches agree well with each other. 

However, once the diagonal shear crack forms, the results obtained from Vlasov‟s elastic model 

deviate considerably from the other two sets because of significant reduction in the member 

torsional stiffness, whereas the prediction based on the proposed nonlinear model remains 

comparing well with the experimental data for the rest of the loading history. This clearly indicates 

that Vlasov‟s elastic theory is applicable to determine the response of open thin-walled RC 

members under pure torsion in the elastic stage, whereas the proposed nonlinear model is capable 

of predicting its behavior over the entire loading process. 

 
4.3 Cracking torque and yielding torque 
 
Three characteristic points, namely the flexural cracking point, the web shear cracking point 

and the yielding point, are shown on the torque-rotation curves in Fig. 9. They divide the entire 

loading process of the studied UTWRCMs into three stages. Based on experimental observation 

and mechanical analysis, two types of cracks, i.e., vertical flexural cracks and diagonal web shear 

cracks, are identified. The initiation of the vertical flexural crack is dictated by the magnitude of 

the normal stress due to warping moment at the support or mid-span sections. The normal tensile 

stress caused by warping moment can be computed using Eq. (6). Once it exceeds the concrete 

tensile strength, which is 0.63 ( )cf MPa according to ACI 318-05, where cf  is the concrete 

compressive strength measured by the standard cylinder test, the first „vertical flexural crack‟  
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Table 2 Comparison of experimentally obtained and theoretically predicted torques (k·Nm) 

Specimen 

Cracking toque 
Yielding torque Ultimate torque 

Flexural cracking Web shear cracking 

Ttest Tcal 
Ttest/ 

Tcal 
Ttest Tcal 

Ttest/ 

Tcal 
Ttest

a 
Tcal 

Ttest/ 

Tcal 
Ttest Tcal 

Ttest/ 

Tcal 

MEM-1 20.00 20.40 0.98 36.00 32.00 1.12 —— 138.5 —— —— 206.1 —— 

MEM-2 22.00 20.40 1.08 36.00 32.00 1.13 114.9 138.5 0.83 199.7 206.1 0.97 

MEM-3 19.30 18.10 1.07 36.00 36.10 1.00 87.50 89.80 0.97 151.0 147.2 1.03 

MEM-4 17.29 17.78 0.97 56.00 35.40 1.58 90.00 89.80 1.00 147.0 147.2 0.99 

MEM-C 23.00 18.10 1.27 39.00 36.30 1.07 191.0 200.4 0.95 266.0 259.4 1.03 

Xaverage= 1.07 Xaverage= 1.18 Xaverage= 0.94 Xaverage= 1.01 

SD= 0.07 SD= 0.20 SD= 0.06 SD= 0.02 

CV= 6.5% CV= 17% CV= 6.8% CV= 2.7% 

Note: Ttest=tested value; Tcal=calculated value; Xaverage=average value of Ttest/Tcal; SD=sample standard 

deviation; CV=coefficient of variation. 
a 
Tested values of yielding torque is the average values of the first yielding in reference (Chen, Diao et al. 

2016). 

 

 

would appear. The shear stress contains two components, one resulted from the circulatory torsion 

and the other from the warping torsion. They can be determined based on Eqs. (3) and (7), 

respectively. Similarly, once the maximum resultant shear stress reaches the concrete shear 

strength, i.e., 0.33 ( )cf MPa , the first diagonal shear crack will appear at a quarter span. 

The torques at the three characteristic points are predicted for the five UTWRCM specimens by 

applying the proposed nonlinear model. They are summarized in Table 2, together with those 

measured in the experimental tests. The theoretically predicted and experimentally measured 

torsional rotation corresponding to the three characteristic points are listed in Table 3. It is worth 

mentioning that limited by the capacity of the originally selected actuator, the loads applied to 

MEM-1 did not reach the ultimate value (Chen, Diao et al. 2016). Consequently, data collected for 

MEM-1 were not complete. As can be seen from Table 2, for the five studied specimens, the 

predicted vertical flexural cracking torque, yielding torque and ultimate torque agree well with the 

experimental data, with an average ratio between the experimental data and the theoretical 

prediction being respectively 1.07, 1.01 and 1.01, and the associated coefficient of variation being 

6.5%, 7.1% and 2.7%, respectively. However, the predicted torque corresponding to the 

occurrence of the diagonal web shear crack has a relatively large discrepancy when compared to 

the experimental results. The average ratio between the two sets is Xaverage=1.18, and the 

coefficient of variation is 17%. A closer look at the results in Table 2 reveals that this relatively 

large discrepancy is mainly due to the great delay of diagonal web shear crack formation in MEM-

4. However, although the proposed nonlinear model can properly predict the torsional rotation at 

the formation of the vertical flexural crack and the diagonal web shear crack with Xaverage being 

respectively 0.96 and 0.892, large dispersion exists for υtest/υcal, which is 17.3% and 19.7%, 

respectively. Further, the predicted torsional rotation at the yielding of longitudinal reinforcement 

is significantly larger than that recorded in the test, with Xaverage=0.70 and the coefficient of 

variation being 26.4%. Therefore, more research effort is needed to improve the prediction of 

torsional rotation. 
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Table 3 Comparison of experimentally obtained and theoretically predicted torsional rotation (rad) 

Specimen 

Rotation at cracking 
Rotation at yielding 

Flexural cracking Web shear cracking 

υtest υcal υtest/υcal υtest υcal υtest/υcal υtest υcal υtest/υcal 

MEM-1 0.0022 0.0025 0.88 0.0047 0.0048 0.98 —— 0.0656 —— 

MEM-2 0.0030 0.0025 1.20 0.0046 0.0048 0.96 0.0476 0.0656 0.73 

MEM-3 0.0016 0.0021 0.76 0.0040 0.0064 0.63 0.0215 0.0458 0.57 

MEM-4 0.0017 0.0020 0.85 0.0070 0.0062 1.13 0.0230 0.0458 0.50 

MEM-C 0.0010 0.0009 1.11 0.0016 0.0021 0.76 0.0368 0.0373 0.98 

Xaverage= 0.960 Xaverage= 0.892 Xaverage= 0.70 

SD= 0.166 SD= 0.176 SD= 0.185 

CV= 17.3% CV= 19.7% CV= 26.4% 

Note: υtest=tested rotation; υcal=calculated rotation; Xaverage= average value of of υtest/υcal; SD=sample 

standard deviation; CV=coefficient of variation. 
a
Tested values of rotation at yielding is the average value of rotations corresponding to the first yielding in 

reference (Chen, Diao et al. 2016). 

 
 
4.4 Effect of warping torsion 
 
Torsion in open thin-walled members consists of both circulatory torsion and warping torsion. 

They cannot be isolated in the experimental test and measured separately. Therefore, it is difficult 

to directly obtain the effect of warping on the torsional response of UTWRCMs from the testing 

data. To better understand the impact of warping on the torsional response of an open thin-walled 

members, analysis will be performed in this section based on the proposed concept of equivalent 

warping torsional stiffness in the post-cracking stage. 

 

4.4.1 Deterioration of warping torsional stiffness 
An approach to compute the warping torsional stiffness of an open thin-walled member having 

an arbitrary cross-section in pure torsion is illustrated in the appendix. It is applied to determine 

the warping torsional stiffness deterioration curve for MEM-2, MEM-3 and MEM-C, as portrayed 

in Fig. 10. Results show that prior to concrete cracking (point ① in Fig.10), the warping torsional 

stiffness of a UTWRCM remains as a constant. With the formation of cracks, concrete in tension 

zone no longer contributes to the resistance, which leads to a significant reduction in the warping 

torsional stiffness. In other words, the concrete cracking point, point ①, is a key point which 

indicates the beginning of deterioration in the warping torsional stiffness. When the longitudinal 

bar yields (point ② in Fig. 10), the warping torsional stiffness of the three studied specimens is 

reduced respectively by 75.3%, 76.1%, and 45.5% of their initial values. It is interesting to note 

that in the case of MEM-C, the reduction of warping torsional stiffness between point ① and point 

② is much less than that in the other two specimens. This is mainly because the longitudinal bars 

in MEM-C exhibits a more obvious and wider yielding stage. The warping torsional stiffness of 

this specimen continuously drop beyond the yielding point at a relatively slower rate. However, in  
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Fig. 10 Calculated deterioration curves of warping torsional stiffness 

 

 

Fig. 11 Calculated trajectory of principal sectorial pole (unit: mm) 

 

 

the case of MEM-2 and MEM-3, after the longitudinal reinforcements yields, with the rapid 

growth of the member curvature (υ′′), there is a much less reduction in the warping torsional 

stiffness. 

 
4.4.2 Warping property of a U-shaped cross section 
Warping effect has a visible impact on the torsional property of UTWRCMs, especially in the 

inelastic stage. After concrete cracks, the warping torsional stiffness of the members constantly 

varies. Fig. 11 describes the variation of the cross-sectional properties of MEM-3 over the entire 

loading process. Point A and point B represent respectively the original position of the centroid 

and principle sectorial pole (i.e., center of twist) of the U-shaped cross section. They remain 

unchanged prior to the formation of the vertical flexural cracks. After concrete cracks, concrete in 

tension zone no longer contributes to resistance and longitudinal reinforcement would carry all 

tensile stress. Changes of strain condition of this cross section due to warping lead to the position 

changes of the centroid and the principle sectorial pole. As can be seen from Fig. 11, when the 

specimen failed, the position of centroid moved from point A to point A′, whereas that of the 

principle pole moved from point B to point B′′. Over the entire loading process, the position of the 
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principle sectorial pole shifted significantly by −324 mm and −128 mm along the x-axis and the y-

axis, respectively, where the negative sign represents the direction of movement is opposite to the 

positive direction of the coordinate axes defined in Fig. 1. 

The change in position of the principle sectorial pole would affect the principle sectorial area 

coordinates ω and the principal sectorial static moment Sω, which, based on Eqs. (6) and (7), are 

directly related to the warping normal stress and warping shear stress. The distribution of ω and Sω 

over the member cross section in the elastic stage, at the yielding of the longitudinal 

reinforcements and the member failure are given respectively in the three subplots in Fig. 12. 

Compared to Fig. 12(a), the distribution of the principle sectorial area in the post-cracking stage 

is no longer anti-symmetric, as can be seen from Figs. 12 (b) and (c). With the increase of the 

applied torque, the neutral axis, represented by the dashed line in Fig. 12, shifts towards the 

compression zone (denoted by the positive sign in Fig. 12). This results in a gradual reduction of 

the compression zone but expansion of the tension zone. When the ultimate torque is reached, the 

stress condition of the two flanges differs considerably. The compression zone in the left flange 

almost vanishes, whereas its maximum tensile stress is significantly higher than that in the right 

flange. In addition, the principle sectorial static moment Sω is found to decrease with the increase 

of the applied torque. At failure, it drops to less than 20% of its value in the elastic stage, which 

 
 

 
(a) Elastic stage 

 
(b) At yielding of longitudinal steel bars 

 
(c) At ultimate torque 

Fig. 12 Distribution of ω and Sω over the mid-span section of a U-shaped RC member 
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suggests that the warping shear stress plays a minor role in the post-cracking stage. This agrees 

with the observation reported in (Chen, Diao et al. 2016) that after yielding, further development 

of the diagonal shear crack was dictated by the circulatory torsional shear stress. 

 

 

5. Conclusions 
 

A nonlinear model has been proposed in the current study to predict torsional behavior of U-

shaped thin-walled RC members under pure torsion. It has been applied to analyze torsional 

response of five UTWRCMs experimentally tested in the literature. The following conclusions are 

drawn based on the comparison between the theoretical prediction and the existing experimental 

data. 

• The proposed nonlinear model can effectively predict the torsional behavior of UTWRCMs 

over the entire loading process. The prediction by the proposed model agrees well with the 

existing experimental data. 

• The key issue is to determine the deterioration curves of the circulatory torsional stiffness and 

the warping torsional stiffness. While the circulatory torsional stiffness can be determined by 

the existing theory of MVATM, the warping torsional stiffness deterioration curve of 

UTWRCMs over the entire loading history can be computed by introducing the concept of 

equivalent warping torsional stiffness in the post-cracking stage. 

• The effect of shear deformation due to warping torsion on the post-cracking torsional rotation 

of UTWRCMs cannot be ignored in the analysis. The introduction of an empirical modification 

factor would allow effectively estimating the additional rotation caused by warping shear 

deformation.  
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Nomenclature 
 

A cross-sectional area; 

As, Ac the actual area of steel bars and concrete section; 

A′s, A′c 
 the equivalent area of steel bars and concrete section; 

C a constant of integration; 

E elastic modulus of material; 

E0 the initial elastic modulus of concrete; 

Es, Ec secant modulus of steel bars and concrete; 

cf   concrete compressive strength measured by the standard cylinder test; 

fy, fp yielding strength and ultimate strength of steel bars; 

f(β), g(γ), h(β, γ) expressions to simplify the  expression; 

G shear modulus of material; 

h height of a cross section; 

i numbering of each element; 
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Ix, Iy moment of inertia about axis x or y, respectively; 

Ixy product of inertia; 

Iω principle sectorial moment of inertia; 

AxI ,
A yI  sectorial linear static moment about axis x or y, respectively; 

K circulatory torsional constant; 

k1, k2, k3, k4 state vectors; 

l beam span; 

Mω warping moment; 

m1 an initial variable determined by the loading level; 

n total number of element segments; 

s curvilinear coordinate; 

S static moment; 

SSx, SSy interim parameters in applying Simpson‟s rule; 

Sω sectorial static moment; 

T total applied torque; 

Tc circulatory torsion; 

Tcr diagonal shear cracking torque; 

Ty yielding torque of longitudinal steel bars; 

T(z) applied torque at  section z; 

Tω warping torsion; 

t shorter dimension of a cross section; 

(X,Y) coordinates in a coordinate system with an arbitrary origin; 

x,y,z centroidal principle axes; 

(xA,yA) coordinates of center of gravity; 

(xB,yB) coordinates of principle sectorial pole; 

α, β, γ simplified symbols for expressing terms υ, υ′ and υ′′; 

ε longitudinal strain; 

ε0 strain of concrete corresponding to peak compressive stress; 

εu ultimate strain of compressive concrete; 

εy, εp strains of steel bars corresponding to yielding and ultimate loads, respectively; 

υ torsional rotation; 

υ′ the first-order derivative of torsional rotation with respect to coordinate z; 

υ′′ the second-order derivative of torsional rotation with respect to coordinate z; 

υ′′′ the third-order derivative of torsional rotation with respect to coordinate z; 

υcor torsional rotation after correction; 

χ 
ratio between the circulatory torsional stiffness and the warping torsional 

stiffness; 

λ empirical correction coefficient; 

ρ polar radius with respect to principle sectorial pole; 

ρA, ρB polar radius with respect to point A and point B, respectively; 

σω warping normal stress; 

ω sectorial area coordinate; 

τc circulatory shear stress; 

τω warping shear stress; 

Δυcor modified variation of torsional rotation; 

ΔA area of a differential segment; 
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Appendix A. Approach to determine warping torsional stiffness of open thin-walled 
RC members with arbitrary cross section 
 

A.1 Location of principle sectorial pole 
 

A principle sectorial coordinate system needs to be established to analyze the warping 

properties of open thin-walled members (Vlasov 1984, Kollbrunner and Basler 2013). The origin 

of this coordinate system is defined as the principle sectorial pole, i.e., the center of twist. If apply 

a torque at this point, no axial force and bending moment will be induced. This condition can be 

mathematically expressed as  

0

0

0

A

A

A

dA

ydA

xdA






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

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








                                      (20) 

 

 

 
 

Fig. A1 Coordinate systems Fig. A2 Segments of a typical U-shaped cross section 

 

 

Fig. A1 shows an infinitesimal element of an open thin-walled cross section. A Cartesian 

coordinate system xoy is established, the origin of which is set at the centroid of the section, i.e., 

point A in Fig. A1. Besides, a curvilinear coordinate s is introduced which is along the midline of 

the sections. Assume point B is the actual principle sectorial pole. Based on the definition of the 

sectorial area coordinate, the differential sectorial area coordinate at point M(x,y) by respectively 

taking point A and point B as the sectorial pole are 

( sin cos )A Ad ds x y ds xdy ydx                                            (21) 

( sin cos )B B A B B A B Bd ds x y ds d x dy y dx                                   (22) 

where ρA, ρB are the polar radius with respect to point A and point B, respectively; sinα=dy/ds
 
and 

cosα=dx/ds. Integrate Eq. (22) along s gives 

B A B Bx y y x C                                                        (23) 

where C is the integration constant. 

 Substitute Eq. (23) into Eq. (20), the coordinates of point B in the Cartesian coordinate system 
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and the integration constant can be expressed as  

2
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A A
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                                                   (24) 

where A is the cross sectional area; 2
x

A
I y dA  , 2

y
A

I x dA   are the moment of inertia referring 

respectively to the x-axis and y-axis; xy
A

I xydA  is the product of inertia;
Ax A

A
I ydA   ,  

A y A
A

I xdA    are the sectorial linear static moment referring respectively to x-axis and y -axis. 

 

A.2 Warping torsional stiffness in the elastic stage 
 

The approach proposed here for calculating the sectorial properties of an open thin-walled 

section is applicable to any arbitrary cross-sectional shape. Since the U-shaped section is the focus 

of the current study, it will be used as an example to illustrate the procedures of the proposed 

approach. As the first step, a Cartesian coordinate system is established by taking the top point of 

the left flange as the origin, as shown in Fig. A2. Then, the entire cross section is divided into 

(n−1) segments by n nodes. The length of the segments should be short enough to ensure the 

thickness within each element is a constant. For the i
th
 segment with the thickness it , its area can 

be calculated by 

2 2
1 1( ) ( )i i i i i iA t X X Y Y                                                    (25) 

where (Xi,Yi) and(Xi+1,Yi+1) are the coordinates of node i and node i+1. Transforming the 

coordinate of node i to a Cartesian coordinate system with the origin at the centroid of the cross 

section, it gives 
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                                     (26) 

Next, the sectorial properties of the section are calculated using the incremental method. The 

increment of the sectorial area coordinate between the two adjacent nodes based on sectorial pole 

A can be derived using Eq. (21), i.e.  

1 1Ai i i i i i i i ix y y x x y y x                                                    (27) 
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The increment of static moment are obtained by 

, 1

, 1

( ) / 2

( ) / 2

x i i i i

y i i i i

S A y y

S A x x




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
   

                                                   (28) 

Since in the case of an open section, the static moment at the open edges of the section equals 

to zero, i.e., S1=Sn=0. They can be used respectively as the initial condition for node 1 and the final 

check of Sn for node n. 

In terms of the moment of inertia, they can be calculated by integrating the static moment over 

the entire cross section. For the i
th 

segment, the static moment of node i, node i+1 and the segment 

middle node mid-i can all be computed following the above procedures. The interim parameters of 

SSxi 
and SSyi for the i

th 
segment can thus be computed from 

, , , , 1

, , , , 1

4

4
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y i y i y mid i y i
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                                                   (29) 

Applying the Simpson‟s rule, the moment of inertia and the sectorial moment of inertia can be 

evaluated by the following equations 

,
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                                                   (31) 

Substitute the values of moment of inertia determined by Eqs. (30) and (31) into Eq. (24). It 

yields the coordinates of the actual principle sectorial pole (xB,yB). Apply Eq. (23), the sectorial 

coordinates of a node can be transformed from that based on the principle pole at point A (i.e., ωA) 

to that based on the actual principle sectorial pole at point B (i.e. ωB). Once the principle sectorial 

coordinates is obtained, the corresponding warping parameters, i.e. principle sectorial static 

moment Sω 
and the principle sectorial moment of inertia Iω, can be conveniently determined. 

Finally, the warping torsional stiffness of the section in the elastic stage can be obtained as the 

product of Iω and the elastic modules E. 

 
A.3 Warping torsional stiffness in the post-cracking stage  

 

After concrete cracks, the behavior of concrete and reinforcing bars in a reinforced concrete 

member needs to be considered independently by applying their respective constitutive relations. 

For the convenience of analysis, it is assumed to introduce an imaginary new material of which its 

elastic modulus is the same as the initial elastic modulus of concrete E0. Based on the equivalent 

area method, the area of the concrete or the reinforcement at a specific stress level in the i
th
 

segment can be transformed into the equivalent area of the new material at the same stress level by 
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                                                         (32) 

where siA  , siA are respectively the transformed equivalent area and the original actual area of steel 

reinforcement in the i
th
 segment; ciA  , ciA are respectively the transformed equivalent area and the 

original actual area of concrete in the i
th
 segment; Esi, Eci are the secant modulus of steel 

reinforcement and concrete at a specific stress level in the i
th
 segment, respectively. 

Substitute Eq. (25) into Eq. (32), the transformed equivalent area of an arbitrary segment i can 

be obtained as 

i si ciA A A                                                                 (33) 

 

 

  

(a) Constitutive relation of concrete (b) Constitutive relation of steel bars 

Fig. A3 Calculation of secant modulus 

 

 

The constitutive relation of concrete and steel bars are shown in Fig. A3. The secant modulus 

of these two types of materials at a specific stress level can be obtained by evaluating the slope of 

the dashed lines in the figure. Therefore, to find the secant modulus, it is necessary to determine 

the strain associated with each segment. The longitudinal strains i of the i
th
 segment can be 

computed from Vlasov‟s elastic theory as 

i i                                                                    (34) 

where ωi is the principle sectorial area coordinate of i
th
 segment, and υ′′ is the curvature 

determined by  

0

M

I E





  


                                                              (35) 

where Mω 
is the warping moment; Iω is the principle sectorial moment of inertia; and E0 

is the 

initial elastic modulus of concrete. Combine Eqs. (34) and (35), the longitudinal strain of the i
th
 

segment becomes 
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Nonlinear model to predict the torsional response of U-shaped thin-walled RC members 

 

Fig. A4 Flow chart to calculate warping parameters 

 

 

0

i i

M

I E





  


                                                            (36) 

Replace Eq. (25) by Eq. (33) and repeat the procedures described in Section A.2, the warping 

torsional stiffness of a UTWRCM in the post-cracking stage can be derived. 

The warping torsional properties of the U-shaped thin-walled RC members over the entire 

loading history can be calculated following the flow chart in Fig. A4. Trial and error is needed in 

the calculation. Figs. 10, 11 and 12 in the current paper are obtained according to the procedures 

outlined in this appendix. 
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