
 

 

 

 

 

 

 

Structural Engineering and Mechanics, Vol. 60, No. 5 (2016) 891-902 

DOI: http://dx.doi.org/10.12989/sem.2016.60.5.891                                           891 

Copyright ©  2016 Techno-Press, Ltd. 

http://www.techno-press.org/?journal=sem&subpage=8        ISSN: 1225-4568 (Print), 1598-6217 (Online) 
 

 

 

 
 
 
 

Dynamic responses of a beam with breathing cracks 
by precise integration method 

 

C.C. Cui, X.S. He, Z.R. Lu, Y.M. Chen

 and J.K. Liu 

 
Department of Mechanics, Sun Yat-sen University, Xingang Road West 135, 510275 Guangzhou, China 

 
(Received January 22, 2015, Revised September 21, 2016, Accepted October 6, 2016) 

 
Abstract.  The beam structure with breathing cracks subjected to harmonic excitations was modeled by 

FEM based on Euler-Bernoulli theory, and a piecewise dynamical system was deduced. The precise 

integration method (PIM) was employed to propose an algorithm for analyzing the dynamic responses of the 

deduced system. This system was first divided into linear sub-systems, between which there are switching 

points resulted from the breathing cracks. The inhomogeneous terms due to the external excitations were 

tackled by introducing auxiliary variables to express the harmonic functions, hence the sub-systems are 

homogeneous. The PIM was then applied to solve the homogeneous sub-systems one by one. During the 

procedures, a predictor-corrector algorithm was presented to determine the switching points accurately. The 

presented method can provide solutions with an accuracy to a magnitude of 10
-12

 compared with exact 

solutions obtained by the theories of ordinary differential equations. The PIM results are much more accurate 

than Newmark ones with the same time step. Moreover, it is found that the PIM can maintain a high level of 

accuracy even when the time step increases within a relatively wide range. 
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1. Introduction 
 

The influences and detections of cracks on beam structures have stimulated the curiosities and 

interests of many researchers and engineers for decades (Chondros, Dimarogonas et al. 2001, Kim 

and Stubbs 2003, Kisa and Brandon 2000, Krawczuk 2002, Law and Zhu 2004, Kisa 2012). As we 

know, vibration analysis of a cracked beam focused mainly on direct simulations based on FEM 

(Krawczuk 2002, Shakti et al. 2015) as well as modal analysis (Kim and Stubbs 2003). A variety 

of dynamical behaviors were reported by time-marching integration techniques. It is very useful 

for the better understanding of the dynamic nature of the beam structures (Akbas and Seref 2016). 

More importantly, they can provide much useful information for crack identifications (Andreaus 

and Baragatti 2009, Moradi, Razi et al. 2011, Abolbashari et al. 2014). Many studies demonstrated 

that a crack in a beam may cause the structure to exhibit nonlinear dynamical behaviors, if the 

crack opens and closes during the vibration, which actually indicates a breathing crack (Lee and 

Fenves 1998, Andreaus, Batra et al. 2005, Andreaus, Casini, et al. 2007). Breathing cracks have 

received continuous attentions usually with emphasis on the implications to vibration features as 
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well as crack detections (Ariaei, Ziaei-Rad et al. 2009, Bouboulas and Anifantis 2011, Caddemi, 

Calio et al. 2010, Andreaus and Baragatti 2012). 

Real time simulation is one of the pivotal tasks for dynamics research. As for a cracked beam, 

specifically, the time-marching integration is usually implemented using the Newmark method, the 

Wilson method, and the Runge-Kutta method etc (Wang, Lu et al. 2012, Ozkul 2004). These 

techniques are both unconditionally stable and can provide very accurate results as long as the time 

step is refined enough. However, the accuracy is usually improved at the expense of tremendous 

computational resources.  

On the other hand, there should be a criterion for the judgment whether the breathing crack 

opens or closes during numerical simulations. This criterion will lead to switching points (Law and 

Zhu 2004). Though the switching points can be approximated very accurately as the time step is 

chosen small enough, the computational cost is very high even unacceptable in some working 

conditions such as real time structural health monitoring as well as damage detections. Therefore, 

it is worthy of proposing some more efficient approaches to tackle this problem.  

A simple yet efficient algorithm, named as precise integration method (PIM), was initiated by 

Zhong and Williams (1994) two decades ago. The most outstanding merit of PIM consists in its 

high precision and efficiency. Theoretically, it can reach computer precision without too much 

computational costs. It is also applicable to both initial-valued and boundary-valued problems 

(Huang, Deng et al. 2007, Zhang and Huang 2013). So far, the PIM has been developed and 

applied in various computational problems such as dynamical systems, wave propagation, optimal 

control, structural mechanics, electro-magnetic wave guide problems, bio-medical engineering 

problems, aeroelastics, and soil mechanics, etc (Zhong 2004, Cui, Liu et al. 2015, Gao, Wu et al. 

2012, Wang 2011, Lin, Han et al. 2013).  

In this study, the PIM will be applied to solve the dynamical equations of a beam with 

breathing cracks subjected to external harmonic excitations. The beam is modeled by the 

Euler-Bernoulli beam theory based on FEM. An alternative approach could be the Meshless Local 

Petrov-Galerkin Method (Andreaus, Batra et al. 2005). Under the assumption that an opening 

crack can cause a reduction of the stiffness (Abdel Wahab, De Roeck et al. 1999), a piecewise 

dynamical system is deduced. The system is further separated as linear sub-systems, between 

which there are switching points. The PIM is then used to solve the sub-systems repeatedly. 

During the computation, a predictor-corrector algorithm is proposed based on the PIM to 

accurately determine the switching points. 

 

 

2. Equations of motions 
 

Figure 1 presents a simply supported beam with a breathing crack at its bottom edge of the 

mid-point. The parameters for the beam are chosen as follows: the stiffness as EI=5625 KN/m, the 

density as ρ=7850 kg/m
3
, and the length as L=3 m. As an illustration, the beam is modeled as an 

Euler-Bernoulli beam and is divided into 20 elements. Each element has two nodes. The nodes are 

numbered consecutively from left to right, with the two supports as Node-1 and Node-21, 

respectively. Each node has two degrees-of-freedom. The vertical and angular displacement are 

denoted as v and θ, respectively. 

The breathing crack locates at Element-10, with two nodes as Node-10 and Node-11. There are 

many theoretical as well as experimental treatments of a breathing crack, for example, modeling 

the breathing crack as a reduction of stiffness (Abdel Wahab, De Roeck et al. 1999, Sinha, Friswell  
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Fig. 1 A simply supported beam with a breathing crack 

 

 

et al. 2002), or as a frictional contact problem (Bouboulas and Anifantis 2011), etc. The first 

strategy will be employed in this study. 

Assume the crack only influences the element that it is located at, i.e., Element-10. It reduces to 

ηEI at Element-10 as the crack opens, with 0<η<1 as the reduction ratio. When the crack closes, 

the element stiff matrix for the damaged element is K10. It becomes ηK10 as the crack opens. For 

convenience, we rewrite the corresponding stiffness matrix as 1010 KK  . According to the 

Euler-Bernoulli beam theory, the longitudinal strain is assumed as 0 at the mid-plane of the beam, 

i.e., εx=0 if y=0. The crack opens if εx>0 at the upper side of the mid-plane, i.e., y>0, otherwise it 

closes. Additionally, the longitudinal strain at Element-10 can be approximated as  
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Mathematically, the crack opens when θ10>θ11, otherwise it closes. 

A harmonic external force, fcos(ωt), acts on the beam at 1.35 m from the left side of the beam, 

i.e., at Node-10. The harmonically forced responses can be applied in crack identifications 

(Andreaus and Baragatti 2011). The equations of motions can be deduced as 

)cos( tfKxxCxM  
                           

(2) 

where the displacement is x=[θ1,v2,θ2,...,v20,θ20,θ21]
T

 
(with v1=v21=0). The superscript denotes the 

differentiation with respect to time t. Here, M and C are time-invariant mass and damping 

matrixes, respectively. The stiffness matrix, K, depends upon the displacement and is assembled by 

the element stiffness matrixes as follows 
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3. Precise integration method 
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The first-order angular frequency of the free vibration is ω1=240rad/s. Under the transformation 

of a non-dimensional time scale as τ=ω1t, Eq. (2) becomes 

)cos()(1

2

1  fxxKxCxM                        
(4) 

The superscript denotes differentiation with τ, and 
1/  . Denote  Txxy  , , and 

rewrite Eq. (4) as a system of first-order ordinary differential equations as 
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with its dimension as 80 which is two times of the dimension of x (i.e., 40). In order to eliminate 

the inhomogeneous terms, a dimension expansion method is employed (Gu, Chen et al. 2001). We 

introduce two new variables )cos(81 y  and )sin(82 y  satisfying  

81828281 , yyyy  
                            

(6) 

Synthesizing Eqs. (5)-(6) results into 
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where Bi is the coefficient matrix for sub-system i (i=1or 2). In each sub-system, the analytical 

solution of Eq. (7) can be given as 

)0()exp( yBy i (8) 

with y(0) as an initial condition with y81(0)=1 and y82(0)=0. A time step, Δτ, is chosen repeatedly to 

generate solutions for a given time series, denoted as [0, Δτ, 2Δτ, …, NΔτ]. Note that the exponent 

matrix, exp(BiΔτ), holds that exp(nBiΔτ)=[exp(BiΔτ)]
n
. At the n-th time point, the solution can be 

given as   )0()exp( yBy
n

i

n  .  

In PIM, the small time step, Δτ, is further split uniformly as δ=Δτ/2
m
 with m as an positive 

integer as 20 or larger. By this means, the exponential matrix can be calculated recursively by 

mm

ii BBT 2)2/exp()exp(  
                        

(9) 

Expanding exp(Biδ) as a series and retaining several lower-order terms, we have 
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Fig. 2 Illustration of the predictor-corrector algorithm for seeking a switching point 

 

 

The matrix Ta is introduced to distinguish the higher-order terms from I. Substitution of Eq. 

(10) into (9) results in 

11 222 )()()(



mmm

aaa TITITIT
                   

(11) 

The factorization should be iterate m times, for instance, we can let the index iter increase from 

iter=0 to iter=m stepwise, and in each iteration step carry out the calculation to matrix Ta by 

Ta=2Ta+Ta×Ta. After these iterations, the exponential matrix for one step (Δτ) can finally be given 

as T=I+Ta. More details about solving the exponential matrix for the above procedures can be 

referred to Zhong (2004). 

 

 

4. Determine switching points 
 

Note that all the above PIM procedures are based on the assumption that, the vibration state 

y
n
=y(nΔt) and its following state y

n+1
=y((n+1)Δt) both locate at either one of the sub-systems. 

Generally, the state will finally leave one sub-system to another as θ10-θ11 passes 0. That means a 

switching point, as shown in Fig. 2. It is necessary to point out that, y
n+1

 is calculated from y
n 
under 

the assumption that the curve between them is totally located at sub-system (1).  

A predictor-corrector algorithm will be presented to accurately find the state passing the 

switching points. If the state is exactly at the switching point, we have μ
n
=0

 
with μ

n
=θ10

n
−θ11

n
. 

Introduce a mean of ratio 

1


nn

n




              (12) 

If y
n+1 

is exactly located at the switching point, the ratio is equal to 1. It is predicted that it needs 

about λΔτ for y
n
 reaching the switching point. Then, the predicted state is further corrected as 
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nn

i

n yTyBy   )exp(1

                         
(13) 

The predictor-corrector algorithm is constructed by repeating Eqs. (12) and (13) until λ 
approaches 1 closely enough. In this study, the tolerance error between λ and 1 is chosen as 10

-14
. 

The effectiveness of the presented algorithm will be validated by numerical results. 

 

 

5. Numerical examples 
 

5.1 A simply supported beam with a breathing crack 
 

The first two free vibration frequencies of the intact beam are 38.26 Hz and 154.5 Hz obtained 

with N=20 elements. Frequency reduction in elastic beams due to a stable crack is dealt with by 

Andreaus (2003). The obtaned frequencies agree well with the exact ones (38.15 Hz and 152.6 

Hz). As an illustrative example, we take the excitation frequency as ω=200 rad/s and f=100 KN. 

And the reduction ratio of stiffness is chosen as η=0.8. The non-dimensional frequency in Eq. (5) 

is given as 8333.0/200 1   . Fig.3 shows the time histories for θ10 and θ11, respectively. 

The integration begins with the initial conditions as y(0)=0 except that y81(0)=1. No matter the 

time step is chosen as small (Δτ=0.1), relatively large (Δτ=0.5) or very large (Δτ=1), the PIM 

results are in nice agreement with Newmark solutions with Δτ=0.01. In addition, the switching 

points indicated by the intersecting points can be determined for all three time steps. 

Accurate and efficient determination of the switching points between sub-systems is very 

helpful for accurate and efficient numerical simulations. Table 1 shows two numerical cases for  
 
 

 

Fig. 3 Time histories for angular displacements θ10 and θ11, respectively. The squares, solid dots and 

solid lines denote PIM results with Δτ=1, 0.5, 0.1, respectively. The circlets represent Newmark 

solutions with Δτ=0.01 
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Table1 Switching points found by the predictor-corrector algorithm 

Δτ=0.1 (Sub-system 2 switches to Sub-system 1) 

θ10 θ11 Ratio (λ) Repeats 

0.963478307099378e-4 0.444384128241526e-4 τ=3.3  

0.473150960462384e-4 0.644947824331599e-4 0.751340148815502 0 

0.596355585755368e-4 0.595209055461572e-4 1.002213602662304 1 

0.595539847620296e-4 0.595539792349865e-4 1.000000106474776 3 

0.595539808295935e-4 0.595539808293272e-4 1.000000000005130 5 

0.595539808294030e-4 0.595539808294049e-4 0.999999999999963 6 

Δτ=1 (Sub-system 1 switches to Sub-system 2) 

-0.529853453049430e-3 0.135185008316945e-3 τ=6.37529918460170  

-0.349009848623553e-4 -0.740323736301208e-4 0.944429048246938 0 

-0.661855157974566e-4 -0.625343027001704e-4 1.005520537486687 1 

-0.635212395921967e-4 -0.635208785463006e-4 1.000000542895055 5 

-0.635209760886156e-4 -0.635209760531082e-4 1.000000000053391 9 

-0.635209760627096e-4 -0.635209760626985e-4 1.000000000000017 13 

 

 

Fig. 4 Absolute errors for v10 obtained by PIM for Δτ=0.01 (black), Δτ=0.1 (blue), and Δτ=1 (red) 

versus that for Δτ=0.001 

 

 

switching points obtained by the predictor-corrector algorithm. As one can see, the ratio defined by 

Eq. (12) converges rapidly to 1 for both the cases of Δτ=0.1 and Δτ=1, respectively. That implies 

the switching points can be approximated very accurately and efficiently. Though more 

calculations are needed as Δτ increases, the repeated calculations only doubles as Δτ increases by 

one order of magnitude. It is reasonable to say the presented approach is computationally efficient.  
In order to analyze the influences of the time step on the precision of PIM, we present in Fig. 4 

the absolute errors for the displacement at Node-10 (v10) obtained by PIM with Δτ=0.01, Δτ=0.1,  
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Table 2 Comparisons between the CPU running times of the PIM, Newmark and exact solutions over [0, 

100] 

 Time (second, Δτ=1) Time (second, Δτ=0.1) Time (second, Δτ=0.01) 

PIM 0.1594 0.3947 3.9302 

Newmark 0.1949 0.1231 3.6201 

Exact 495.6 511.2 543.4 

 

 

Fig. 5 Logarithmic absolute errors for the displacement at Node-10 (v10) obtained by PIM, 

Newmark method versus exact solution 

 

 

and 1, respectively, and compare these solutions with the results obtained with Δτ=0.001. 

Interestingly, the discrepancies between them are at an order of magnitude between 10
-13

 and 10
-14

. 

It implies that, the calculation precision can maintain at a high magnitude even as the time step 

increases in a reasonable range.  

Note that, the error also oscillates with the same period as that of the displacement. That is 

because the difference of the vibration amplitude implies that, there is error in both the maximum 

and minimum displacements. If the amplitude obtained by PIM is larger than that by exact 

solution, the maximum displacement by PIM is also larger, whereas the minimum one by PIM is 

smaller than the counterpart by exact solution. 

Next, we will discuss the efficiency and precision of the PIM and Newmark method, 

respectively, based on exact solutions. The exact solutions of Eq. (5) with given initial conditions 

are obtained by using the theories of ordinary differential equations. As all sub-systems are linear, 

analytical expressions can be determined for the solution at each sub-system as long as the initial 

conditions is given. As the Bi is a coefficient matrix of dimension 82, there are 82 general solutions 

expressed by exponential functions in the product of the eigenvalues and τ. In order to express all 

82 unknowns (y), as many as 82×82 coefficients have to be solved from a linear algebraic  
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Fig. 6 Time histories for angular displacements θ6, θ7, θ16 and θ17, respectively. The circlets, solid dots 

and crosses denote PIM results with Δτ=1, 0.5, 0.1, respectively. The red dash lines represent Newmark 

solutions with Δτ=0.01. 

 

 

equation. Moreover, these coefficients have to be tediously updated when the solution passes a 

switching point. Considering that these computations will be too time-consuming, we re-divide the 

beam as only 4 elements as a simple illustration. The CPU running times for the PIM, the 

Newmark and the exact solutions are shown in Table 2, respectively. The times for PIM are at the 

same order of magnitude with that for Newmark method. This table also shows the PIM can 

provide solutions as accurate as the exact solution with much less computational effort. 

The respective accuracy of the PIM and Newmark results versus exact solutions are plotted in 

Fig. 5. The precision of PIM result remains the same as the time step increases. This is an 

outstanding merit that one can raise time step without losing precision, for instance only the long  
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Fig. 7 Logarithmic absolute errors for the displacement at Node-6 (θ6) obtained by PIM, 

Newmark method versus exact solution 

 

 

term vibration responses are needed, or when steady responses such as periodic responses and 

limit cycle oscillations are interested in. As for the Newmark results, as the time step increases 

from 0.01 to 0.1 and 1 step by step, the absolute errors increase by two orders of magnitude for 

each incremental step. It should be pointed out that the exact responses for (v10) are at the order of 

10
-3

. Therefore, the relative error for the Newmark results obtained with Δτ=1 increases to about 

10%. 

 

5.2 A multi-span continuous beam with multiple breathing cracks 
 

As for the case of a two-span continuous beam with two breathing cracks, the total length of the 

beam is 3 m and the beam is divided into 20 elements. Two cracks locate at each span of the beam, 

to be exact, at Element-6 and Element-16, respectively. The harmonic external force is applied to 

the beam at Node-15. The system should be divided into four linear sub-systems, depending on the 

states of the two cracks.  

Figure 6(a) shows the time histories for θ6 and θ7, and (b) the time histories for θ16 and θ17, 

respectively. Nice agreement between the PIM solutions and Newmark ones can also be observed. 

And Fig. 7 shows the respective accuracy of the PIM and Newmark results versus exact solutions. 

Though the precision of PIM result tends to decreases slightly as the time step increasing, but the 

PIM result with a large time step (Δτ=0.1) is much more accurate than the results obtained by 

Newmark method even with a smaller time step (Δτ=0.01). 

 
 
6. Conclusions 
 

We have presented an efficient and highly precise approach, based on the precise integration 

method (PIM), for the time-marching numerical integration of the dynamic system of a beam with 

breathing cracks. The beam is modeled using the FEM on the basis of the Euler-Bernoulli beam 

theory. The piecewise-linear system is separated into linear sub-systems. The switch points 

between sub-systems can be determined accurately and efficiently by a predictor-corrector 
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algorithm. With the help of this algorithm, the PIM provides numerical results with very high 

accuracies. More importantly, the PIM can keep the high accuracy even when the time step 

increases to relatively large values. With such high precision and efficiency, we could expect the 

presented method be applicable in structural dynamics simulation of large structures. 
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