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Abstract.  In this paper, thermal vibration of a nonlocal functionally graded (FG) plates with arbitrary 
boundary conditions under linear and non-linear temperature fields is explored by developing a refined shear 
deformation plate theory with an inverse cotangential function in which shear deformation effect was 
involved without the need for shear correction factors. The material properties of FG nanoplate are 
considered to be temperature-dependent and graded in the thickness direction according to the Mori-Tanaka 
model. On the basis of non-classical higher order plate model and Eringen’s nonlocal elasticity theory, the 
small size influence was captured. Numerical examples show the importance of non-uniform thermal 
loadings, boundary conditions, gradient index, nonlocal parameter and aspect and side-to-thickness ratio on 
vibrational responses of size-dependent FG nanoplates. 
 

Keywords:  thermal vibration; four-variable plate theory; functionally graded nanoplate; nonlocal elasticity 
theory; elastic foundation 

Structures composed of functionally graded materials (FGMs) have been increasingly applied 
in the field of aerospace, mechanic and civil engineering due to possessing beneficial features. 
However, these structures are often exposed to severe thermo-mechanical loads during their 
operational life, so that the temperature rise indicates notable impact on the mechanical behavior 
of FGM structures (Barati, Zenkour et al. 2016). As a consequence, carefully evaluation of thermal 
effects on the behavior of FGM structures under various thermo-mechanical loadings is a key 
issue. To this purpose, several papers are published incorporating the high-order displacement 
terms with transverse displacements, for analysis of FGM plates to overcome the defects of 
classical plate theory (CPT) which neglects the influences of shear deformation and overestimates 
natural frequencies (Bouiadjra, Bedia et al. 2013). For example, Javaheri and Eslami (2002) 
derived the equilibrium and stability equations of FGM based rectangular plates under thermal 
loads, based on the higher order shear deformation plate theory. Recently refined two-variable 
plate theory develop by Shimpi (2002) has been gained a great attention from many authors (Kim, 
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plate theory develop by Shimpi (2002) has been gained a great attention from many authors (Kim, 

Thai et al. 2009, Narendar 2011, Thai and Kim 2012, Sobhy 2014, 2015a, 2015b, Mechab, 

Atmane et al. 2010). The refined two-variable plate theory is extended by several researchers to 

contain four unknown functions (Thai and Choi 2011, Bourada, Tounsi et al. 2012, Tounsi, Houari 

et al. 2013, Sobhy 2016). The refined four-variable plate theory accounts for a higher order 

variation of the transverse shear strains in the thickness direction and mentioned that the number of 

independent unknowns of the theory is four, as against five in other shear deformation theories. 

Also, Zenkour and Sobhy (2011) analyzed thermal stability of FGM plates embedded in two-

parameter Pasternak’s foundations based upon the trigonometric shear deformation plate theory. 

Also, Ta and Noh (2015) presented analytical solution of the dynamic behavior of FG rectangular 

plates embedded in elastic medium using a new refined plate theory. Most recently, Kulkarni et al. 

(2015) developed a shear deformation theory named as inverse cotangential shear deformation 

theory (ICSDT) for functionally graded macro plates. They showed that inverse cotangential shear 

deformation theory provide accurate results in analysis of FG plates. Therefore, examination of 

accuracy of this theory has not examined in vibration analysis of FG nanoplates till to now. 

Recently, nano-size structures have extensively been applied for development of 

Nanoelectromechanical systems (NEMS) such as nanosensors and nanoactuators. On the other 

hand, due to shortcomings of classical continuum theories in accurate description of the size-

dependent behavior of nano-scale structures, the investigators have attempted to propose 

appropriate theories for this purpose. In this manner, the nonlocal theory of elasticity by Eringen 

(Eringen and Edelen 1972, Eringen 1983) is the most cited theory which has the potential to 

consider the scale effects on the mechanical responses of nanostructures. To extend nonlocal 

elasticity theory for analysis of FG structures, vibrational behavior of nanosize (FG) beams via 

finite element method was explored by Eltaher, Emam et al. (2012). Also, based on finite element 

method scale-dependent linear free vibrational behavior of functionally graded (FG) nanoplates is 

investigated by Natarajan, Chakraborty et al. (2012). In this work, the nonlocal constitutive 

relation based on Eringen’s differential form of nonlocal elasticity theory was applied. The 

resonance behaviors of FG micro/nano plates using Kirchhoff plate theory was studied by Nami 

and Janghorban (2014). In this study, they adopted the nonlocal elasticity theory and strain 

gradient theory with one gradient parameter to consider the small scale effects. Daneshmehr and 

Rajabpoor (2014) presented a nonlocal higher order plate theory for stability analysis of FG 

nanoplates subjected to biaxial in plane loadings using Generalized Differential Quadrature (GDQ) 

method. Based on a modified couple stress theory, a model for sigmoid functionally graded 

material (S-FGM) nanoplates on elastic medium is developed by Jung, Han et al. (2014). Most 

recently, Ebrahimi and Barati (2015) proposed a nonlocal third order beam model for vibration 

analysis of FG nanobeams. Also, based on surface elasticity theory, Ansari, Ashrafi et al. (2015) 

investigated the buckling and vibration responses of nanoplates made of FGMs subjected to a 

linear thermal loading in pre-buckling domain with considering the effect of surface stress. Zare, 

Nazemnezhad et al. (2015) determined the natural frequencies of a FG nanoplate for different 

combinations of boundary conditions. Recently, Sobhy (2015c) presented a comprehensive study 

on FGM nanoplates embedded in an elastic medium using an analytical method. 

It is apparent that the temperature-dependency effect is disregarded in all of the above-

mentioned studies on FG nanoplates. Therefore, a work to investigate various thermal loadings 

effects on vibrational behavior of nano-scale FG plates with temperature-dependent material 

properties in both pre-buckling and post-buckling regions has not been published up to now.  In 

fact, a significant change in material properties is reported when the FGM based structures are  
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Fig. 1 Geometry and coordinates of functionally graded nanoplate 

 

 

under high temperature environments. For example, Young’s modulus usually reduces due to 

temperature rise. To more accurate anticipation of FGMs behavior exposed to vigorous 

temperatures, consideration of temperature dependency on the material properties is very 

necessary. Furthermore, due to the expansion of new technologies, especially nanotechnology, a 

number of systems and structures may experience severe thermal environments, resulting in 

various kinds of thermal loads. Therefore, creating a text is necessitated which focuses on the 

thermal vibration analysis of such nanostructures. As a destructive phenomenon, thermo-

mechanical vibration must be analyzed to ensure the safety of size-dependent structures. 

This study investigates the effects of non-uniform thermal loadings on vibration characteristics 

of size-dependent functionally graded (FG) nanoplates resting on elastic foundation near the post-

buckling region. FG nanoplate is modeled via a refined four-variable shear deformation theory 

with an inverse cotangential function so that doesn’t require any shear correction factor. The 

material properties of FG nanoplate are assumed to be dependent on both temperature and spatial 

coordinate based on Mori-Tanaka homogenization scheme. The related formulations are derived 

using extended Hamilton’s principle in conjunction with Eringen’s nonlocal elasticity theory. The 

proposed analytical solution which satisfies simply-supported, clamped and free boundary 

conditions and some combinations of them is used to solve the equations. The reliability of the 

present plate model and solution procedure is verified with those published works. The effects of 

elastic foundation, temperature-dependency, various thermal loads, small scale parameter and 

gradient index on vibration of thermally pre/post buckled FG nanoplates are figured out and 

presented. 

 

 

2. Theory and formulation 
 

2.1 Mori-Tanaka (MT) FGM plate model 
 
Material properties of FGMs are supposed to change according to a Mori-Tanaka model about 

spatial coordinates.  The coordinate system for FG nanoplate is shown in Fig. 1. The FG nanoplate 

is assumed to be combination of ceramic and metal and effective material properties (Pf) of the FG 
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plate such as Young’s modulus Ef is supposed to change continuously in the direction of  z-axis 

(thickness direction) according to an power function of the volume fractions of the material 

constituents. So, the effective material properties, Pf can be stated as 

        f c c m mV VP P P 
 

(1) 

where subscripts m and c denote metal and ceramic, respectively and the volume fraction of the 

ceramic is associated to that of the metal in the following relation: 

        1c mV V   (2.a) 

The volume fraction of the ceramic constituent of the plate is assumed to be given by: 

        

1
( )

2

p

c

z
V

h
   (2.b) 

in which p is gradient index and determines the material composition through the thickness. 

According to Mori-Tanaka homogenization technique the local effective material properties of the 

FG nanoplate such as effective local bulk modulus Ke and shear modulus μe 
can be calculated 

         
1 ( ) / ( 4 / 3)
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 (3.b) 

Therefore from Eq. (3), the effective Young’s modulus (E), Poisson’s ratio (v) based on Mori-

Tanaka scheme can be expressed by 
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Also, The thermal expansion coefficient (α ) and thermal conductivity (κ) may be expressed by 
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(7) 

The material composition of the FG nanoplate at the upper surface (z=+h/2) is supposed to be 

the pure ceramic and it changes continuously to the opposite side surface (z=-h/2) which is pure 

metal as it is shown in Fig. 1. 

For more precise prediction of FGMs behavior under severe temperature, material properties  
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Table 1 Temperature-dependent coefficients for Si3N4 and SUS304 (Shen and Wang 2015)  

Material Properties P0 P-1 P1 P2 P3 

Si3N4 

E (Pa) 348.43e+9 0 -3.070e-4 2.160e-7 -8.946e-11 

α (K-1) 5.8723e-6 0 9.095e-4 0 0 

ρ (Kg/m3)  2370 0 0 0 0 

κ (W/mK) 13.723 0 -1.032e-3 5.466e-7 -7.876e-11 

v 0.24 0 0 0 0 

SUS304 

E (Pa) 201.04e+9 0 3.079e-4 -6.534e-7 0 

α (K-1) 12.330e-6 0 8.086e-4 0 0 

ρ (Kg/m3)  8166 0 0 0 0 

κ (W/mK) 15.379 0 -1.264e-3 2.092e-6 -7.223e-10 

v 0.3262 0 -2.002e-4 3.797e-7 0 

 

 

should be dependent on temperature. The non-linear equation of thermo-elastic material properties 

in function of temperature T (K) can be stated as (Touloukian 1967) 

        
1 2 3

0 1 1 2 3( 1 )P P P T P T P T P T

      (8) 

where P0, P-1, P1, P2 and P3 denote the temperature dependent coefficients of material properties, 

according to those given  in Table 1, of Si3N4 and SUS304. 

 

2.2 Kinematic relations 
 

Non-polynomial shear deformation theory recently developed by Kulkarni, Singh et al. (2015) 

for FG plates which has five field variables has extended for FG nanoplates and the number of 

unknowns are reduced based on the four-variable plate theory. Hence, the displacement field at 

any point of the plate can be written as 

             
   1 , , , (, ), b su x y z t u x y

w w
f z

x x
t z 

 


 
 (9) 

            
   2 , , , (, ), b su x y z t v x y

w w
f z

y y
t z 

 


 
 (10) 

             3( , , , ) ( , , ) ( , , )b su x y z t w x y t w x y t   (11) 

where the theory has an inverse cotangential function in the form 

( ) ( )f z z z z                                                        (12-a) 

and 

              
1( ) cot ( / )z rh z   (12-b) 

             
24 /[ (4 1)]r h r   (12-c) 

with  r=0.46. Also, u and v are displacement components of the mid-surface and wb 
and ws are the 

bending and shear transverse displacement, respectively. Nonzero strains of the four-variable plate 

model are expressed as follows 
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where g(z)=1-df/dz and 
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(14) 

Through extended Hamilton’s principle, in which the motion of an elastic structure in the time 

interval t1<t<t2 is so that the integral with respect to time of the total potential energy is extremum 

              0
( ) 0

t

U T V dt     
(15) 

here, U is strain energy, T is kinetic energy and V is work done by external forces. The first 

variation of the strain energy can be calculated as 

         
( )ij ij x x y y xy xy yz yz xz xz

v v
U dV dV                          (16) 

Substituting Eqs. (13) and (14) into Eq. (16) yields 

2 2 2 2

2 2 2 20
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(17) 

In which the variables introduced in arriving at the last expression are defined as follows 
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 (18) 

The first variation of the work done by applied forces can be written in the following form 
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where 0 0 0, ,x y xyN N N are in-plane applied loads and ,w pk k  are elastic foundation parameters. The 

first variation of the kinetic energy can be written in the form 

(20) 

in which I0, I1, J1, I2, J2 and K2 are mass inertia statements which defined as 

 

(21) 

By inserting Eqs. (17)-(20) into Eq. (15) and setting the coefficients of δu, δv, δwb and δws to 

zero, the following Euler–Lagrange equations can be obtained 
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(25) 

where 0 0 0, 0T

x y xyN N N N   and thermal resultant can be expressed as 

          

/2

0
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( , )
( , ) ( )

1 ( , )

h
T

h

E z T
N z T T T dz

v z T
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2.3 The nonlocal elasticity model for FG nanobeam 
 

According to Eringen nonlocal elasticity model (Eringen and Edelen 1972) which contains 

wide range interactions between points in a continuum solid, the stress state at a point inside a 

body is regarded to be function of all neighbor points’ strains. Hence, in the present work in order 
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to capture the small size impacts nonlocal elasticity theory is implemented in which a linear 

differential framework of constitutive equations is expressed as 

        0
2(1 ( ) ) kl kle a t    (27) 

In which 2 denotes the Laplacian operator. Therefore, the scale length e0a considers the 

influences of small size on the response of nano-scale structures. Thus, the constitutive relations of 

nonlocal theory for a higher order FG nanoplate can be stated as 
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                      (29) 

where μ=(e0a)2. Integrating Eq. (28) over the plate’s cross-section area, one can obtain the force-

strain and the moment-strain of the nonlocal refined FG plates as follows 
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In which the cross-sectional rigidities are defined as follows 
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The nonlocal governing equations of refined four-variable shear deformation FG nanoplate in 

terms of the displacement can be derived by substituting Eqs. (30)-(33), into Eqs. (22)-(25) as 

follows 
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It should be mentioned that by setting μ=0, a local thermo-mechanical vibration analysis of FG 

plates is rendered. 

 

 

3. Solution procedures 
 

In this section, an analytical solution of the nonlocal governing equations for free vibration of a 

FG nanoplate with the following relations of simply-supported (S), clamped (C) or free (F) edges 

or some combinations of them is presented (Sobhy 2013): 

Simply-supported (S): 

0b s x xw w N M     at x=0, a 

0b s y yw w N M     at y=0, b 

Clamped (C): 

0b su v w w     at x=0, a and y=0, b 

Free (F): 

0x xy xzM M Q    at x=0, a 

0y xy yzM M Q   at y=0, b 

To satisfy aforementioned boundary conditions, the displacement quantities are presented in the 

following form 

             1 1
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            1 1

( ) ( ) ni t
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(43) 

where (Umn, Vmn, Wbmn, Wsmn) are the unknown coefficients and the approximate functions Xm and 

Yn are tabulated in detail in Table 3 for different boundary conditions (λ=mπ/a, β=nπ/b). Inserting 

Eqs. (40)-(43) into Eqs. (36)-(39) respectively, leads to 

1,1 1,2 1,3 1,4 1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4 2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4 3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4 4,1 4,2 4,3 4

2

,4

mn

mn

n

bmn

smn

k k k k m m m m

k k k k m m m m

k k k k m m m m

k

U

V

k k k m m

W

m m W



   
   
   
   
      
   

  
  
  

  
 
   

0



               (44) 
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where 
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4. Types of thermal loading 
 
4.1 Linear Temperature Rise (LTR) 

 

When the plate thickness is thin enough, the temperature distribution is supposed to be varied 

linearly through the thickness as follows (Javaheri and Eslami 2002) 

        

1
2

m T
z

T T
h

 
  
 

    (47) 

where the temperature difference in Eq. (47) is ΔT=Tc−Tm and Tc and Tm are the temperature of the 

top surface and the bottom surface, respectively. 

  

4.2 Nonlinear temperature rise (NLTR) 
 

The temperature distribution through-the-thickness can be obtained by solving the steady-state 

heat conduction equation with the boundary conditions on bottom and top surfaces of the plate 

         
( , ) 0

d dT
z T

dz dz

 

   
 

  

           
,

2 2
c m

h h
T T T T
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Table 2 Displacement models applied in analysis of nanoplates 

Model Theory 
Number of unknown 

functions 

CPT Classical plate theory 3 

FSDT 
First-order shear deformation theory 

(Natarajan, Chakraborty et al. 2012) 
5 

TSDT 
Third-order shear deformation theory 

(Daneshmehr and Rajabpoor 2014) 
5 

SSDT Sinusoidal shear deformation theory 5 

present Refined inverse cotangential shear deformation theory 4 

 
Table 3 The admissible functions       and       (Sobhy 2013) 

 Boundary conditions The functions    and    

 At x=0, a At y=0, b             

SSSS 
        

                
                        

        
                

          

CSSS 
        

               
                                   

        
                

          

CSCS 
        

               
                                             

        
                

          

CCSS 
        

               
                         

        
               

          

CCCC 
        

               
                         

        
               

         

FFCC 
  

        
                 

                                     

  
        

                 
         

 

 

The solution of above equation is 

           

2

2

2

1

( , )

1

( , )

z

h

m h

h

dz
z T

T T T

dz
z T









 




 (49) 

where ΔT=Tc−Tm. 

 

 

5. Numerical results and discussions 
 

Here, the thermo-mechanical vibration behavior of temperature-dependent FG nanoplates 

embedded in two-parameter elastic foundation is studied using a new four-variable shear 

deformation theory with an inverse cotangential function. The temperature-dependent material 

properties of the nonlocal FG plate vary through the thickness direction according to Mori-Tanaka  
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Table 4 Comparison of non-dimensional fundamental natural frequency of Mori-Tanaka based FG 

nanoplates with simply-supported and clamped boundary conditions (p=5) 

a/h µ 
SSSS CCCC 

a/b=1 a/b=2 a/b=1 a/b=2 

  

Natarajan, 

Chakraborty 

et al. (2012) 

present 

Natarajan, 

Chakraborty 

et al. (2012) 

present 

Natarajan, 

Chakraborty 

et al. (2012) 

present 

Natarajan, 

Chakraborty 

et al. (2012) 

present 

10 

0 0.0441 0.043823 0.1055 0.104329 0.0758 0.078893 0.1789 0.189380 

1 0.0403 0.040070 0.0863 0.085493 0.0682 0.070135 0.1426 0.146338 

2 0.0374 0.037141 0.0748 0.074174 0.0624 0.063767 0.1218 0.123547 

4 0.0330 0.032806 0.0612 0.060673 0.0542 0.054949 0.0978 0.098461 

20 

0 0.0113 0.011256 0.0279 0.027756 0.0207 0.020954 0.0534 0.054706 

1 0.0103 0.010288 0.0229 0.022722 0.0186 0.018639 0.0422 0.042393 

2 0.0096 0.009534 0.0198 0.019704 0.0170 0.016953 0.0358 0.035836 

4 0.0085 0.008418 0.0162 0.016110 0.0147 0.014615 0.0287 0.028592 

 

 

homogenization technique. Different plate theories available in the literature and their 

displacement models are tabulated in Table 2 to show the novelty of the present plate theory. 

Numerical results are provided to indicate the influences of non-uniform thermal loads (LTR and 

NLTR), nonlocal parameter, Winkler and Pasternak constants, gradient index and aspect ratio on 

the vibration responses of a FG nanoplate. Also a 5 (K) increase in metal surface to reference 

temperature T0 of the nanoscale FG plate is considered, i.e., Tm−T0=5(K) (Javaheri and Eslami 

2002). To evaluate the correctness of the present results, dimensionless frequency of FG 

nanoplates with simply-supported and clamped boundary conditions are compared with those 

obtained by Natarajan, Chakraborty et al. (2012) through first order shear deformation theory and 

finite element method and the results are provided in Table 4. For comparison study, the material 

properties are selected as:                   = 348.43 GPa,                   = 201.04 

GPa and v=0.3. Also, for better presentation of the obtained results the following dimensionless 

quantities are adopted 

(50) 

           

24 32

2

ρa
ˆ ω , , ,

E 12(1 )

pc w c
w p c

c c c c

k ak a E h
K K D

h D D v
    


 

To provide extensive numerical results, Tables 5 and 6 present the influences of Winkler and 

Pasternak elastic foundation constants (Kw, Kp), non-uniform thermal loadings, nonlocal parameter 

and gradient index on the thermal vibration frequency of temperature-dependent nonlocal square 

FG plates with various boundary conditions (SSSS, CSSS, CSCS, CCSS, CCCC and FFCC) at 

a/h=20. A rise in Winkler or Pasternak parameter of elastic foundation leads to larger values of 

dimensionless frequency for all cases of thermal loads and boundary conditions. The reason is 

higher rigidity of the nanoplate when it is in contact with elastic foundation. Contrary to elastic 

foundation, the presence of nonlocality results in reduction in plate stiffness and natural 

frequencies. For a prescribed thermal condition and gradient index, the SSSS FG nanoplate has the 

smallest dimensionless frequency and FFCC has the largest one. Also, it is found that non-linear 

temperature rise (NLTR) provides higher natural frequency than LTR. 
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Table 5 The variation of the non-dimensional fundamental frequency of the FG nanoplate subjected to linear 

temperature rise (LTR) with various boundary conditions 

B.C. µ 

ΔT=20 [K] ΔT=50 [K] ΔT=100 [K] 

(       (       (       

(0,0) (25,0) (25,5) (0,0) (25,0) (25,5) (0,0) (25,0) (25,5) 

SSSS 

0 3.44673 3.58768 4.09643 3.35201 3.4966 4.01691 3.17557 3.32783 3.87090 

1 3.13288 3.28723 3.83604 3.02823 3.20457 3.72257 2.83228 3.03498 3.59353 

2 2.88694 3.05368 3.63789 2.77263 2.97748 3.49619 2.55684 2.80614 3.38069 

CSSS 

0 4.96129 5.06041 5.53929 4.87787 4.97822 5.46431 4.72300 4.82657 5.32651 

1 4.40175 4.52309 5.0265 4.30244 4.43527 4.94762 4.15578 4.27315 4.80282 

2 3.98932 4.12965 4.65657 3.87565 4.03641 4.57409 3.73376 3.86399 4.42268 

CSCS 

0 6.27653 6.35536 6.82865 6.19686 6.27606 6.75491 6.04826 6.12939 6.61886 

1 5.44137 5.54508 6.0549 5.34130 5.45784 5.97511 5.15632 5.29683 5.82841 

2 4.85954 4.9835 5.52715 4.74172 4.88887 5.44198 4.52323 4.71417 5.28560 

CCSS 

0 5.20360 5.29784 5.71185 5.13257 5.22809 5.64722 5.00126 5.09924 5.52815 

1 4.67335 4.77804 5.24655 4.59080 4.69733 5.17315 4.40867 4.54842 5.03832 

2 4.27266 4.38691 4.90268 4.17970 4.29642 4.82188 3.95174 4.12927 4.67357 

CCCC 

0 6.53188 6.60787 6.99072 6.46919 6.54534 6.93164 6.35162 6.42900 6.82190 

1 5.77745 5.86286 6.37626 5.68932 5.77541 6.29596 5.52644 5.61399 6.14822 

2 5.22555 5.31955 5.94018 5.11548 5.21079 5.84300 4.91178 5.00985 5.66453 

FFCC 

0 6.95121 7.02282 7.36586 6.89624 6.96784 7.31347 6.79244 6.86489 7.21545 

1 6.18065 6.26862 6.72617 6.09684 6.19208 6.6549 5.94184 6.60505 6.52334 

2 5.60955 5.71139 6.26403 5.50094 5.61634 6.1775 5.30012 5.44091 6.01844 

 
Table 6 The variation of the non-dimensional fundamental frequency of the FG nanoplate subjected to heat 

conduction (NLTR) with various boundary conditions 

B.C. µ 

ΔT=20 [K] ΔT=50 [K] ΔT=100 [K] 

(       (       (       

(0,0) (25,0) (25,5) (0,0) (25,0) (25,5) (0,0) (25,0) (25,5) 

SSSS 

0 3.44911 3.5898 4.09829 3.35852 3.50285 4.02235 3.19279 3.34427 3.88504 

1 3.14424 3.29801 3.80331 3.05267 3.21082 3.72796 2.88465 3.05152 3.59167 

2 2.90591 3.07166 3.57674 2.81285 2.98378 3.50156 2.64155 2.82287 3.3655 

CSSS 

0 4.96371 5.06236 5.54107 4.88369 4.98392 5.4695 4.73805 4.8413 5.33986 

1 4.41449 4.52516 5.02835 4.32852 4.44133 4.95305 4.17197 4.2889 4.81684 

2 4.0103 4.13183 4.6585 3.91853 4.04282 4.57975 3.75111 3.88076 4.43734 

CSCS 

0 6.2791 6.35727 6.83043 6.20249 6.28162 6.76007 6.06272 6.14365 6.63207 

1 5.45735 5.54715 6.0568 5.3727 5.46389 5.98064 5.21863 5.31247 5.84263 

2 4.88561 4.98573 5.52916 4.79339 4.8954 5.44785 4.62551 4.73114 5.30074 

CCSS 

0 5.2053 5.29951 5.7134 5.13754 5.23297 5.65173 5.01403 5.11176 5.5397 

1 4.6753 4.77995 5.24829 4.59652 4.70292 5.17822 4.45314 4.56288 5.05138 

2 4.27484 4.38903 4.90458 4.1861 4.30265 4.82743 4.02442 4.14552 4.68793 

CCCC 

0 6.53415 6.6094 6.99216 6.47384 6.54979 6.93584 6.3631 6.44035 6.8326 

1 5.78921 5.87396 6.34416 5.71232 5.7982 6.27408 5.5722 5.6602 6.14678 

2 5.24469 5.33806 5.88153 5.15336 5.24835 5.80024 4.98712 5.08522 5.65306 

FFCC 

0 6.9534 7.02418 7.36717 6.90048 6.9718 7.31724 6.80263 6.87497 7.22504 

1 6.19116 6.27046 6.72789 6.11719 6.19745 6.65989 5.9822 6.06424 6.53611 

2 5.62656 5.71364 6.26609 5.53441 5.62293 6.18348 5.36671 5.45794 6.03385 
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Fig. 2 Influence of nonlocal parameter on the dimensionless frequency of the foundationless SSSS square 

FG nanoplate with respect to various temperature rises (p=1, a/h=20, Kw=Kp=0) 

 

 

Fig. 3 Influence of gradient index on the dimensionless frequency of FG nanoplate for different 

thermal loadings (μ=2, a/h=20, Kw=Kp=0) 

 

 

Figs. 2 and 3 respectively present the influences of small scale parameter and gradient index on 

the variation of dimensionless frequency of temperature-dependent square FG nanoplates versus 

various temperature rises at a/h=20. When µ=0 and p=0 the plate behavior is similar to those of 

homogenous macro scale plates. It should be mentioned that with the temperature increment, the 

natural frequency of FG nanoplates reaches to zero nearby the critical temperature point. This 

feature refers to stiffness degradation of a nanoplate when the temperature growths. After the 

critical temperature, the nanoplate continues to vibrating and increasing in temperature yields in 

larger values of natural frequency. Both nonlocality and gradient index have a softening impact on 

the rigidity of the nanoplate and reduce the dimensionless frequency. Hence, the branching point is 

shifted to the left with the increase of nonlocal parameter and gradient index. 
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Fig. 4 Variation of the dimensionless frequency of FG nanoplate with and without elastic foundation versus 

various temperature rises for different boundary conditions (μ=2, p=1, a/h=20) 
 

 

The variation of dimensionless frequency of square FG nanoplates with and without elastic 

foundation versus various temperature changes for different boundary conditions at µ=2 nm2, p=1 

and a/h=20 is illustrated in Fig. 4. As it is shown in this figure, the elastic foundation possesses 

remarkable capability to postpone the critical point of the nanostructure for all cases of thermal 

loads. Also, FFCC and SSSS FG nanoplates provide the highest and lowest values of critical 

temperature point. Therefore, boundary condition has a key factor for utilization of FG nanoplates 

in thermal environments. 

To present the effects of elastic foundation parameters individually. Figs. 5 and 6 show the 

variation of dimensionless frequency with respect to Winkler and Pasternak const ants, 

respectively, at a/h=20 and p=1 for both local (µ=0) and nonlocal (µ=2) plates with various 

temperature rises. It is observable that Winkler and Pasternak constants exhibit an increasing effect 

on the natural frequency by possessing a hardening influence on the plate structure. More, 

precisely it is clear that the shear layer or Pasternak-type foundation has a more considerable  
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Fig. 5 Influence of the linear layer of elastic foundation on the dimensionless frequency of FG nanoplate for 

different thermal loadings (p=1, a/h=20) 

 

  

Fig. 6 Influence of the shear layer of elastic foundation on the dimensionless frequency of FG nanoplate for 

different thermal loadings (p=1, a/h=20) 

 

 

impact on the dimensionless frequency than Winkler-type foundation. 

The non-dimensional frequency of FG nanoplates with arbitrary boundary conditions as a 

function of gradient index at ΔT=100(K) of various temperature rises when µ=2 nm2 is plotted in 

Fig. 7. According to the former discussions, gradient index has a reducing effect on the natural 

frequency of FG nanoplates. Here, it is shown that for all kinds of boundary edges at a specified 

contact conditions, the lower values of gradient index have more significant influence on the 

reduction of frequency, while the higher values of gradient index have no sensible effect on the 

frequency. 

Figs. 8 and 9 demonstrate the influence of plate side-to-thickness ratio (a/h) and aspect ratio 

(a/b) on the dimensionless frequency of a FG nanoplate with fully simply-supported and fully  
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Fig. 7 Influence of material composition on the dimensionless frequency of square FG nanoplate for various 

thermal loadings and boundary conditions (μ=2, a/h=20, ΔT=100(K)) 

 
 

 

 

 

Fig. 8 Influence side-to-thickness ratio on the dimensionless frequency of square FG nanoplate for different 

thermal loadings (μ=2, p=1, ΔT=100(K)) 

 

 
clamped boundary conditions resting or not on elastic foundation at ΔT=100(K) and µ=2 nm2. In 

both cases an increase in the Winkler or Pasternak parameters of elastic foundation supplies higher 

stiffness as well as natural frequency. Also, it is seen from the figures that for all types of thermal 

loading the dimensionless frequency arises for lower values of a/h and then diminishes with 

reducing plate thickness or increasing the value of a/h. While, with the increase of aspect ratio a/b 

the dimensionless frequency increases significantly.  
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Fig. 9 Influence of aspect ratio on the dimensionless frequency of FG nanoplate for different thermal 

loadings (μ=2, p=1, ΔT=100(K)) 

 

 

6. Conclusions 
 

The prime aim of the current work is to predict thermal vibration behavior of embedded 

temperature-dependent FG nanoplates based on four-variable plate theory. Two types of thermo-

mechanical loading including linear and non-linear temperature rise are assumed. The material 

properties of a FG nanoplate are supposed to be temperature-dependent and they are graded 

according to Mori-Tanaka homogenization technique. By implementing extended Hamilton’s 

principle, the nonlocal governing equations are derived based on a new trigonometric four-variable 

shear deformation plate theory. An analytical solution which satisfies various boundary conditions 

is then used to solve the equations. Several numerical examples are given to illustrate the impacts 

of elastic foundation, temperature-dependency, different thermal loadings, nonlocal parameter, 

gradient index, aspect and side-to-thickness ratio on the thermo-mechanical vibration behavior of 

FG nanoplates. It is indicated that, the dimensionless frequency of a FG nanoplate tends to zero 

near a prescribed temperature, which is known as critical temperature. It was found that a way to 

postpone the critical temperature is to increase the elastic foundation parameters. Also, various 

thermal loadings estimate different values of natural frequency and branching point so that linear 

temperature rise produce smaller natural frequency than non-linear temperature rise.  
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