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A four-variable plate theory for thermal vibration of embedded
FG nanoplates under non-uniform temperature distributions
with different boundary conditions
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Abstract. In this paper, thermal vibration of a nonlocal functionally graded (FG) plates with arbitrary
boundary conditions under linear and non-linear temperature fields is explored by developing a refined shear
deformation plate theory with an inverse cotangential function in which shear deformation effect was
involved without the need for shear correction factors. The material properties of FG nanoplate are
considered to be temperature-dependent and graded in the thickness direction according to the Mori-Tanaka
model. On the basis of non-classical higher order plate model and Eringen’s nonlocal elasticity theory, the
small size influence was captured. Numerical examples show the importance of non-uniform thermal
loadings, boundary conditions, gradient index, nonlocal parameter and aspect and side-to-thickness ratio on
vibrational responses of size-dependent FG nanoplates.

Keywords: thermal vibration; four-variable plate theory; functionally graded nanoplate; nonlocal elasticity
theory; elastic foundation

1. Introduction

Structures composed of functionally graded materials (FGMSs) have been increasingly applied
in the field of aerospace, mechanic and civil engineering due to possessing beneficial features.
However, these structures are often exposed to severe thermo-mechanical loads during their
operational life, so that the temperature rise indicates notable impact on the mechanical behavior
of FGM structures (Barati, Zenkour et al. 2016). As a consequence, carefully evaluation of thermal
effects on the behavior of FGM structures under various thermo-mechanical loadings is a key
issue. To this purpose, several papers are published incorporating the high-order displacement
terms with transverse displacements, for analysis of FGM plates to overcome the defects of
classical plate theory (CPT) which neglects the influences of shear deformation and overestimates
natural frequencies (Bouiadjra, Bedia et al. 2013). For example, Javaheri and Eslami (2002)
derived the equilibrium and stability equations of FGM based rectangular plates under thermal
loads, based on the higher order shear deformation plate theory. Recently refined two-variable
plate theory develop by Shimpi (2002) has been gained a great attention from many authors (Kim,
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plate theory develop by Shimpi (2002) has been gained a great attention from many authors (Kim,
Thai et al. 2009, Narendar 2011, Thai and Kim 2012, Sobhy 2014, 2015a, 2015b, Mechab,
Atmane et al. 2010). The refined two-variable plate theory is extended by several researchers to
contain four unknown functions (Thai and Choi 2011, Bourada, Tounsi et al. 2012, Tounsi, Houari
et al. 2013, Sobhy 2016). The refined four-variable plate theory accounts for a higher order
variation of the transverse shear strains in the thickness direction and mentioned that the number of
independent unknowns of the theory is four, as against five in other shear deformation theories.
Also, Zenkour and Sobhy (2011) analyzed thermal stability of FGM plates embedded in two-
parameter Pasternak’s foundations based upon the trigonometric shear deformation plate theory.
Also, Ta and Noh (2015) presented analytical solution of the dynamic behavior of FG rectangular
plates embedded in elastic medium using a new refined plate theory. Most recently, Kulkarni et al.
(2015) developed a shear deformation theory named as inverse cotangential shear deformation
theory (ICSDT) for functionally graded macro plates. They showed that inverse cotangential shear
deformation theory provide accurate results in analysis of FG plates. Therefore, examination of
accuracy of this theory has not examined in vibration analysis of FG nanoplates till to now.

Recently, nano-size structures have extensively been applied for development of
Nanoelectromechanical systems (NEMS) such as nanosensors and nanoactuators. On the other
hand, due to shortcomings of classical continuum theories in accurate description of the size-
dependent behavior of nano-scale structures, the investigators have attempted to propose
appropriate theories for this purpose. In this manner, the nonlocal theory of elasticity by Eringen
(Eringen and Edelen 1972, Eringen 1983) is the most cited theory which has the potential to
consider the scale effects on the mechanical responses of nanostructures. To extend nonlocal
elasticity theory for analysis of FG structures, vibrational behavior of nanosize (FG) beams via
finite element method was explored by Eltaher, Emam et al. (2012). Also, based on finite element
method scale-dependent linear free vibrational behavior of functionally graded (FG) nanoplates is
investigated by Natarajan, Chakraborty et al. (2012). In this work, the nonlocal constitutive
relation based on Eringen’s differential form of nonlocal elasticity theory was applied. The
resonance behaviors of FG micro/nano plates using Kirchhoff plate theory was studied by Nami
and Janghorban (2014). In this study, they adopted the nonlocal elasticity theory and strain
gradient theory with one gradient parameter to consider the small scale effects. Daneshmehr and
Rajabpoor (2014) presented a nonlocal higher order plate theory for stability analysis of FG
nanoplates subjected to biaxial in plane loadings using Generalized Differential Quadrature (GDQ)
method. Based on a modified couple stress theory, a model for sigmoid functionally graded
material (S-FGM) nanoplates on elastic medium is developed by Jung, Han et al. (2014). Most
recently, Ebrahimi and Barati (2015) proposed a nonlocal third order beam model for vibration
analysis of FG nanobeams. Also, based on surface elasticity theory, Ansari, Ashrafi et al. (2015)
investigated the buckling and vibration responses of nanoplates made of FGMs subjected to a
linear thermal loading in pre-buckling domain with considering the effect of surface stress. Zare,
Nazemnezhad et al. (2015) determined the natural frequencies of a FG nanoplate for different
combinations of boundary conditions. Recently, Sobhy (2015c) presented a comprehensive study
on FGM nanoplates embedded in an elastic medium using an analytical method.

It is apparent that the temperature-dependency effect is disregarded in all of the above-
mentioned studies on FG nanoplates. Therefore, a work to investigate various thermal loadings
effects on vibrational behavior of nano-scale FG plates with temperature-dependent material
properties in both pre-buckling and post-buckling regions has not been published up to now. In
fact, a significant change in material properties is reported when the FGM based structures are
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Fig. 1 Geometry and coordinates of functionally graded nanoplate

under high temperature environments. For example, Young’s modulus usually reduces due to
temperature rise. To more accurate anticipation of FGMs behavior exposed to vigorous
temperatures, consideration of temperature dependency on the material properties is very
necessary. Furthermore, due to the expansion of new technologies, especially nanotechnology, a
number of systems and structures may experience severe thermal environments, resulting in
various kinds of thermal loads. Therefore, creating a text is necessitated which focuses on the
thermal vibration analysis of such nanostructures. As a destructive phenomenon, thermo-
mechanical vibration must be analyzed to ensure the safety of size-dependent structures.

This study investigates the effects of non-uniform thermal loadings on vibration characteristics
of size-dependent functionally graded (FG) nanoplates resting on elastic foundation near the post-
buckling region. FG nanoplate is modeled via a refined four-variable shear deformation theory
with an inverse cotangential function so that doesn’t require any shear correction factor. The
material properties of FG nanoplate are assumed to be dependent on both temperature and spatial
coordinate based on Mori-Tanaka homogenization scheme. The related formulations are derived
using extended Hamilton’s principle in conjunction with Eringen’s nonlocal elasticity theory. The
proposed analytical solution which satisfies simply-supported, clamped and free boundary
conditions and some combinations of them is used to solve the equations. The reliability of the
present plate model and solution procedure is verified with those published works. The effects of
elastic foundation, temperature-dependency, various thermal loads, small scale parameter and
gradient index on vibration of thermally pre/post buckled FG nanoplates are figured out and
presented.

2. Theory and formulation
2.1 Mori-Tanaka (MT) FGM plate model
Material properties of FGMs are supposed to change according to a Mori-Tanaka model about

spatial coordinates. The coordinate system for FG nanoplate is shown in Fig. 1. The FG nanoplate
is assumed to be combination of ceramic and metal and effective material properties (Py) of the FG
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plate such as Young’s modulus Es is supposed to change continuously in the direction of z-axis
(thickness direction) according to an power function of the volume fractions of the material
constituents. So, the effective material properties, Ps can be stated as

Pf :Pcvc +vam (1)
where subscripts m and ¢ denote metal and ceramic, respectively and the volume fraction of the
ceramic is associated to that of the metal in the following relation:

V, o+, =1 (2.a)

The volume fraction of the ceramic constituent of the plate is assumed to be given by:
z 1
V,=(—+2)" 2.b
o=+ (2.b)

in which p is gradient index and determines the material composition through the thickness.

According to Mori-Tanaka homogenization technique the local effective material properties of the

FG nanoplate such as effective local bulk modulus K, and shear modulus . can be calculated
K.-K, V

K, —K, 1+V (K —K_)/(K, +4u 13) (34)

He — Hy — Vc
Ho =ty 1V (g = ) Tty + 10, OK, +8) 1 (B(K  +24,))]

Therefore from Eq. (3), the effective Young’s modulus (E), Poisson’s ratio (v) based on Mori-
Tanaka scheme can be expressed by

(3.0)

K, 4,

E(z,T)=
(z.T) T (4)
3K, -2
v(z,T) = SRe Tl (5)
6K, + 24,
Also, The thermal expansion coefficient (« ) and thermal conductivity (x) may be expressed by
1 _1
ad,—ay _ Ke Km
a-ay 11 ©
KC KITI
Ke Km _ Vc
K. = Kn 1+Vm M (7)
3x

m

The material composition of the FG nanoplate at the upper surface (z=+h/2) is supposed to be
the pure ceramic and it changes continuously to the opposite side surface (z=-h/2) which is pure
metal as it is shown in Fig. 1.

For more precise prediction of FGMs behavior under severe temperature, material properties
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Table 1 Temperature-dependent coefficients for SisN,and SUS304 (Shen and Wang 2015)

Material Properties Po P P, P, P
E (Pa) 348.43e+9 0 -3.070e-4 2.160e-7  -8.946e-11

a (Kh 5.8723e-6 0 9.095e-4 0 0

SisN, p (Kg/m®) 2370 0 0 0 0
K (W/mK) 13.723 0 -1.032e-3 5.466e-7  -7.876e-11

v 0.24 0 0 0 0

E (Pa) 201.04e+9 0 3.079e-4 -6.534e-7 0

a (Kh 12.330e-6 0 8.086e-4 0 0

SUS304 p (Kg/m?) 8166 0 0 0 0
K (W/mK) 15.379 0 -1.264e-3 2.092e-6  -7.223e-10

v 0.3262 0 -2.002¢e-4 3.797e-7 0

should be dependent on temperature. The non-linear equation of thermo-elastic material properties
in function of temperature T (K) can be stated as (Touloukian 1967)

P=P,(P,T*+1+PT +P,T2+P,T?) (8)
where Py, P4, P31, P, and P3; denote the temperature dependent coefficients of material properties,
according to those given in Table 1, of SizN4 and SUS304.

2.2 Kinematic relations

Non-polynomial shear deformation theory recently developed by Kulkarni, Singh et al. (2015)
for FG plates which has five field variables has extended for FG nanoplates and the number of
unknowns are reduced based on the four-variable plate theory. Hence, the displacement field at
any point of the plate can be written as

ow, oW,
Yozt)=u(xyt)-z—2—f :
u(xy,zt)=u(xyt)-z i~ (2) ™ 9)
ow, ow,
u,(x,y,z,t)=v(x,y,t)—z—2—-f(z2) = 10
Us (X, Y, Z,1) = W, (X, ¥, 1) + W (X, ¥, 1) (11)
where the theory has an inverse cotangential function in the form
f(2)=2-Y(2)+Qz (12-a)
and
W¥(z) =cot™(rh/ z) (12-h)
Q=4r/[h(4r? +1)] (12-c)

with r=0.46. Also, u and v are displacement components of the mid-surface and wy and ws are the
bending and shear transverse displacement, respectively. Nonzero strains of the four-variable plate
model are expressed as follows
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&y g)? K)? Ki ¥ )’S
g, r=1&y) (+2iky v+ F(D) 1K { yZ}:g(z){ Zz} (13)
0 b s Y 2%
7/Xy )/)(y ny ny
where g(z)=1-df/dz and
azwb azws
ou T2 T2
I T N 1 O e B 1 B O R A [
ey (= Y (T 2 ()Y [T 2 - (14)
0 oy b oy . oy vz | MW
rxy ou oV | Kxy 52 KXy 52 ox
oy  ox 29 Wb 29 Ws
oxoy Oxoy

Through extended Hamilton’s principle, in which the motion of an elastic structure in the time
interval t1<t<t2 is so that the integral with respect to time of the total potential energy is extremum

_[:) oU -T +VvV )dt =0 (15)

here, U is strain energy, T is Kinetic energy and V is work done by external forces. The first
variation of the strain energy can be calculated as

ouU = IV Uij55ij dv =IV (o068, +ay5gy + O'Xy5yxy +ayz5;/yz +0,07,,)dV (16)

Substituting Egs. (13) and (14) into Eq. (16) yields
2 2 2
SsuU :J‘aj‘b[Nx osu _m® o 5\2/vb Ve o 5\2/vS N, 65V_M,y) o cS‘\2/vb
0 Jo ox OX ox oy oy
o8u  dSV o%ow, o*Sw, OSW, OSW,
N (——+—)—2M2 ——52 _2M?$ = = =]dxd
N oy N X ) Y oxoy Y oxoy + Qe oy + Qe OX Jdxdy

In which the variables introduced in arriving at the last expression are defined as follows

o°SwW,
ayZ

— M
17)

(N MEMA) =" @z, oz, i = (x,y,xy)
i’ i i/l _hi2 1 &y i y 1y) y

3 h/2 dz =
Q =], 9@z i=(xy2)
The first variation of the work done by applied forces can be written in the following form
SV = Jajb(Nf o(w, +Ww,) 05 (w, +W,) N O(W, +W,) 08 (W, +W,)
0Jo OX OX Y oy oy

+26N°, a(Wt’a* W) 0 (Wba; M) k5w +w,) (19)
X

05 (W, +w,) o (W, +Ww,) N 00 (W, +w,) o(w, +w,)

ox ox oy oy

(18)

+kp(

))dxdy
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where N?, NJ, N2 are in-plane applied loads and k. ,k_ are elastic foundation parameters. The

w?! tp

first variation of the kinetic energy can be written in the form

SK = II[ (au oou 8v65v 6(W +W,) 06(w, +W)) (au oow, 8W oou 8v85w
"ot at at ot o oxat | oxat ot ot ayet
, Ow, 35V QU dow, _ow, dou v asw,  ow, dov oW, 95w, _ ow, dow,
Tyt at 1(5 oxdt | oxat ot ot ayat | oyat et )+, (axat oxat  ayet ayat)
(D 00w, 0w, DOW, ) OW, DOW, | OW, 0w, | O, DOW, O, 00Wy v
oxat oxet  dyet ayet OXOt Oxat | oxat oxat | dyet ayet | ayet ayet
(20)

in which lg, 14, J1, 15, J, and K, are mass inertia statements which defined as
h/2 P 2
Uy, 1,30, 1,,d,, Kz)zjlhlzp(z)(l,z, f,2%,2f, f2)dz 1)

By inserting Egs. (17)-(20) into Eq. (15) and setting the coefficients of du, dv, owp and Jws to
zero, the following Euler—Lagrange equations can be obtained

ON, ON, o’u o°w, o°w,

X + X — | _ b s 22
ox oy Cot? toxot?  toxot? (22)
ON ON 2 8 8

v Ny oV o°w, o°w, 23)

ox oy  Cat2 toyat?  toyar?

o*MP My 9°My

PV +2 X0y + EY: —kW(Wb+W5)+ka2(Wb+WS)—NTV2(Wb+WS)
(24)
o%(w, +w,) o%u o%v o°w,
=1 . 2 +1 + 1,v? by J,v?
0 ot? 1(6x6t2 8y6t2) ( 2 )~ ( ot? )
2 s 2MS ZMs
56)'\(/2|x +268xa;y +aay2y +5§sz +a§yyz —kw(wb+ws)+ka2(wb +wW,)— NTV?(w, +w,)
25
| 0% (W, +W,) J(a3u -3, ( (23)
S0 a2 1 oxot? 8y6t2
where N? = NS =NT, N° = 0and thermal resultant can be expressed as
h2  E(z,T)
Ih/zl v(z,T) a(z,T) (T —To) dz (26)

2.3 The nonlocal elasticity model for FG nanobeam

According to Eringen nonlocal elasticity model (Eringen and Edelen 1972) which contains
wide range interactions between points in a continuum solid, the stress state at a point inside a
body is regarded to be function of all neighbor points’ strains. Hence, in the present work in order
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to capture the small size impacts nonlocal elasticity theory is implemented in which a linear
differential framework of constitutive equations is expressed as

(1~ ER)V)oy =t 27)
In which V? denotes the Laplacian operator. Therefore, the scale length e,a considers the

influences of small size on the response of nano-scale structures. Thus, the constitutive relations of
nonlocal theory for a higher order FG nanoplate can be stated as

Ix Q1 Q2 0 0 0 &y —aAT
Ty Qo Qyy O 0 0 ||sy—aAT
A—uv2) oy (=] O 0 Qg O 0 |7y 28)
oy 0 o 0 Qua o Vyz
Oy 0 o o 0 Qss Vg
also
E(z,T) E(z,T)
Q,=Q, = m: Q= V(Z)qu Qu = st = Qse = m (29)

where u=(eoa)’. Integrating Eq. (28) over the plate’s cross-section area, one can obtain the force-

strain and the moment-strain of the nonlocal refined FG plates as follows

) Nx A1 A2
(1-uVE)INy = M2 A2
Nxy 0 0

b
5 M’g Bi1 B12
(Q-uv7) My r=|B2 B2
0 o0

MYy
S S
Mg Bl B
2 s s s
A-pv ) My =1Bp By
M3y 0 o0

Bs6

S
Bge

|

As6
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gi Bl1 Bi2

Y + B2 B22
0 0

ou  ov

7+7

oy Ox
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g D11 D12

Y +| D12 D22
0 0
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ou, v
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57U S S

o bi1 Do

ov s s

& +| Do D3

au ov 0 0
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Dee
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azmh
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62mh

ay2
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62mb

oy2

2
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0

S
Dy

S
+ EﬁZ

S
Hiq
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0

S
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S
B2
0

S

Do
S
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S
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S
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0

0
0

S
Bse

S
Dg6

S
Hee

azmg
ox?
azmg
8y2
_Zazmg
oxoy

62wg
ox?
azmg
6y2
02wg
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-2

azm@
ox2
6ZM@
6y2
azmg
oxdy

-2

(30)

31)

(32)
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Qy 0 A)|M

oy
In which the cross-sectional rigidities are defined as follows
Ail’ ll’Bll’Dll’Dlsl'Hs b2 1
A, BB, Dy,, D, HY, :thlen(l:Z’ f,z%,zf, £2)] v(zT) (dz
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21+v(z,T))
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(33)

(34)

(35)

The nonlocal governing equations of refined four-variable shear deformation FG nanoplate in
terms of the displacement can be derived by substituting Egs. (30)-(33), into Eqgs. (22)-(25) as

follows
o%v o’w, o’w, s 0w,
Au A\Se +(A12 + A&se) Ox ay Bll 8X3b _(Blz +2866) 8X8ybz - Bll 8X3
. . 63WS o%u o*w, o*w,
—(By, +2Bg; W"'(l_ﬂvz)(_lo o2 +1; axatbz +J 1 ax atz) 0
o’u o°w, o°w, s O°W,
A56 Azz +(A12+A\36) ay Bzz?gb_(Blz 2866)a 8by 22 8y3
3 3 3
(B, + 2B}, 8TW NS A SRR AU
ox oy ° ot oyot ayat
3 3, 3 4 4
811%4_(812 +2866) ay (Bz +2866)£T;y+ Bzz %_Dn aa)\(,Zb _D22 aéyvgb
o'w, s Oty . oy O'W, GAA
—2(D12+2D66) 8)(48;2 —D1l a)(4 _2(D12+2D66 W—DQW
0% (W, +W,) o%u o%v 82
+(L— V(I e | + 1,V?
Q- u )(o o2 1(6X8t2 8y8t2) (
—NTVZ(w, +w,) =k, (W, +W,) +k,V? (W, +Ww,)) =0
s d%u . <\ Ou . . 0% L OV O'w, . 0w,
Bllﬁ_F(BlZ_'—ZBGB 5X8y +(812+2866 6X ay+8226y Dll X4b +A55 axz
s O°W, . <. O'w . 0w, s 0w, o'w,
+A44?_2(D12+2D66 8)(4—6;2_ 22#_H11 X 4 2(H 2H66) 8y
. 0w, % (W, +Ww. &u o%v 82
Hy e, o) o SRR C

~NTV?(w, +w,) -k, (W, +WS)+ka2(Wb +w,))=0

(36)

@37)

(38)

(39)
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It should be mentioned that by setting =0, a local thermo-mechanical vibration analysis of FG
plates is rendered.

3. Solution procedures

In this section, an analytical solution of the nonlocal governing equations for free vibration of a
FG nanoplate with the following relations of simply-supported (S), clamped (C) or free (F) edges
or some combinations of them is presented (Sobhy 2013):

Simply-supported (S):

w,=w, =N, =M, =0 atx=0, a

w,=w, =N, =M, =0aty=0,b
Clamped (C):

u=v=w,=w, =0 atx=0, aand y=0, b
Free (F):

M,=M,=Q,=0atx=0,a

M, =M, =Q,=0aty=0,b

To satisfy aforementioned boundary conditions, the displacement quantities are presented in the
following form

u=33°0,, Zely et (@0)
AN oY) ging

mn m " 41

Y= 2 2 mKal0) e 1)

ZZ bmnxm(X)Yn(y)eiwnt (42)

W, = ii W, X, (X)Y, (y)e'™ (43)

where (Umn, Vinn, Womn, Wsmn) are the unknown coefficients and the approximate functions X, and
Y, are tabulated in detail in Table 3 for different boundary conditions (A=mz/a, f=nz/b). Inserting
Egs. (40)-(43) into Egs. (36)-(39) respectively, leads to

kl,l k1,2 k1,3 k1,4 ml,l m1,2 ml,3 m1,4 U mn
k , k , k , k , — 2 m2,l m2,2 m2,3 m2,4 an
~ @, =0 (44)
k3,1 k3,2 k3,3 k3,4 m3 1 m3,2 m3 3 m3,4 Wbmn
k4,l k4,2 k4,3 I(4,4 m4,l m4,2 m4,3 m4,4 Wsmn
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where

Ky = Aukiy + Ay Kip = (Ag+ A ) Ky kg =—Bu, (B +2Bg )iy, Ky =Bk, —(BY + 285 )i,

Koo = Ay + Akt Koy = =Bk, —(By, + 2By )i, Ky 4 = —B3or, —(BY +2Bg ),

k3|3:— 111(13—2(D12+2D65)K11—D22)(5—KW1(1+(—NT+Kp—/JKW)(K3+K9)+/1(NT—Kp)(/(5-¢—1q3+2)<'11),

Ky, =— 151)(13—2(D152+2D656)K11—DZSZKS—KWK1+(—NT+Kp—/JKW)(K3+Kg)+,u(NT—Kp)(K5+K'13+2KM),
kM:folkmfZ(Hfz+2H§6)KufHZSZKS+A:4K9+A§5K37KWK1+(7NT+Kpf/1KW)(K3+K9)+/,z(NTpr)(K5+K13+2Ku),
My, =+ loie — g (K +15) » My =+lig — Lp(ky + i), My =+dikg — (s + 54y,

My, =+loi, — ptly (g +55 ) My =+l — Lp(kgy +&5), My, =+Ji — du(i; +55),

{myzmy,m, F=+1o —{1,,3,, Kz}(Ks +K9)*ﬂ|o (Ks +Kg)+ﬂ{|zv‘]2v Kz}(Ks + K3 +2K11)v

(45)
in which
(i3 5) = [ [0 (XY XY XY )XY, dxly
(Ko &1, /35) = [ [ (XY, XY XY, )XY, dlxdly )
(R 85 K1) = [ [0 (XY XY, XY, ) XY, dixly

(K Ko 10) = [ [ (XYos XYy X0 Y,) X Y, dixdly

4. Types of thermal loading
4.1 Linear Temperature Rise (LTR)

When the plate thickness is thin enough, the temperature distribution is supposed to be varied
linearly through the thickness as follows (Javaheri and Eslami 2002)

1,z

where the temperature difference in Eq. (47) is AT=T.—T, and T, and T, are the temperature of the
top surface and the bottom surface, respectively.

4.2 Nonlinear temperature rise (NLTR)

The temperature distribution through-the-thickness can be obtained by solving the steady-state
heat conduction equation with the boundary conditions on bottom and top surfaces of the plate

—(;j—Z(K(Z,T )%_:]zo

(ERACT

(48)
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Table 2 Displacement models applied in analysis of nanoplates

Number of unknown

Model Theory functi
unctions
CPT Classical plate theory 3
ESDT First-orgjer shear deformation theory 5
(Natarajan, Chakraborty et al. 2012)
TSDT Third-order shear defo_rmation theory 5
(Daneshmehr and Rajabpoor 2014)
SSDT Sinusoidal shear deformation theory 5
present Refined inverse cotangential shear deformation theory

Table 3 The admissible functions X,,,(x) and Y,,(y) (Sobhy 2013)
Boundary conditions

The functions X,,, and Y,,

Atx=0, a Aty=0,Db X (x) Y, (y)

sssg Xm0 =Xz(0)=0 Y,(0)=V,(0)=0 Sin(Ax) Sin(By)
Xm(a) =Xp(a) =0 Y,(b) =Yy (h) =0

CSSS Xn,(0)=X,,000=0 Y,(0)=Y,(0) =0 Sin(Ax)[Cos(Ax) — 1] Sin(By)
Xm(a) =Xp(a) =0 Y,(b)=Yy(h) =0

CSCS Xm(0) =Xp(0) =0 Y,(0) =Y;(0) =0 Sin(Ax)[Cos(Ax) — 1] Sin(By)[Cos(By) — 1]
Xm(a) =Xp(a) =0 Y,(b) =Yy (h) =0

cess Xm(0) =X,(0) =0 Y,(0) =Y;'(0)=0 Sin®(Ax) Sin(By)
Xm(a) =Xp(a) =0 Y,(b) =Yy (h) =0

ceee Xm(0) = X,(0) =0 Y,(0) =Y;(0) =0 Sin?(Ax) Sin*(By)
Xm(a) = Xp(a) =0 Y, (b)=Ya(b) =0

FFCC X0(0)=X(0)=0 Y,(0)=Y.(0)=0 Cos?>(Ax)[Sin?(1x) + 1] Sin?(By)

Xm(a) = Xp/(a) =0 Y,(b) =Y,(b) =0

The solution of above equation is

’ 1dz

- k(z,T)

J;

=

T=T,+AT (49)

[S1=y
H

AN

Nl =

where AT=TTh.

5. Numerical results and discussions

Here, the thermo-mechanical vibration behavior of temperature-dependent FG nanoplates
embedded in two-parameter elastic foundation is studied using a new four-variable shear
deformation theory with an inverse cotangential function. The temperature-dependent material
properties of the nonlocal FG plate vary through the thickness direction according to Mori-Tanaka
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Table 4 Comparison of non-dimensional fundamental natural frequency of Mori-Tanaka based FG
nanoplates with simply-supported and clamped boundary conditions (p=5)

alh SSSS CCcCcC
H alb=1 alb=2 alb=1 alb=2
Natarajan, Natarajan, Natarajan, Natarajan,
Chakraborty present Chakraborty present Chakraborty present Chakraborty present
et al. (2012) et al. (2012) et al. (2012) et al. (2012)
0 0.0441  0.043823 0.1055 0.104329 0.0758 0.078893  0.1789  0.189380
10 1 0.0403  0.040070  0.0863  0.085493 0.0682  0.070135 0.1426  0.146338
2 0.0374  0.037141  0.0748  0.074174 0.0624  0.063767 0.1218  0.123547
4 0.0330 0.032806  0.0612  0.060673  0.0542  0.054949  0.0978  0.098461
0 0.0113  0.011256  0.0279  0.027756  0.0207  0.020954  0.0534  0.054706
20 1 0.0103  0.010288  0.0229  0.022722 0.0186  0.018639  0.0422  0.042393
2 0.0096  0.009534  0.0198  0.019704  0.0170  0.016953  0.0358  0.035836
4 0.0085 0.008418 0.0162  0.016110 0.0147 0.014615 0.0287  0.028592

homogenization technique. Different plate theories available in the literature and their
displacement models are tabulated in Table 2 to show the novelty of the present plate theory.
Numerical results are provided to indicate the influences of non-uniform thermal loads (LTR and
NLTR), nonlocal parameter, Winkler and Pasternak constants, gradient index and aspect ratio on
the vibration responses of a FG nanoplate. Also a 5 (K) increase in metal surface to reference
temperature T, of the nanoscale FG plate is considered, i.e., Tn—To=5(K) (Javaheri and Eslami
2002). To evaluate the correctness of the present results, dimensionless frequency of FG
nanoplates with simply-supported and clamped boundary conditions are compared with those
obtained by Natarajan, Chakraborty et al. (2012) through first order shear deformation theory and
finite element method and the results are provided in Table 4. For comparison study, the material
properties are selected as: p. = 2370 kg/m3, E, = 348.43 GPa, p,, = 8166 kg/m3 , E,,, = 201.04
GPa and v=0.3. Also, for better presentation of the obtained results the following dimensionless
guantities are adopted

2 4 k a2 3
a’\):wa_ p_c’ KW:kWa ’Kp: p C: Ech .
h \E D D 12(1-V?)

C C C

(50)

b

To provide extensive numerical results, Tables 5 and 6 present the influences of Winkler and
Pasternak elastic foundation constants (K, Kp), non-uniform thermal loadings, nonlocal parameter
and gradient index on the thermal vibration frequency of temperature-dependent nonlocal square
FG plates with various boundary conditions (SSSS, CSSS, CSCS, CCSS, CCCC and FFCC) at
a/h=20. A rise in Winkler or Pasternak parameter of elastic foundation leads to larger values of
dimensionless frequency for all cases of thermal loads and boundary conditions. The reason is
higher rigidity of the nanoplate when it is in contact with elastic foundation. Contrary to elastic
foundation, the presence of nonlocality results in reduction in plate stiffness and natural
frequencies. For a prescribed thermal condition and gradient index, the SSSS FG nanoplate has the
smallest dimensionless frequency and FFCC has the largest one. Also, it is found that non-linear
temperature rise (NLTR) provides higher natural frequency than LTR.
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Table 5 The variation of the non-dimensional fundamental frequency of the FG nanoplate subjected to linear
temperature rise (LTR) with various boundary conditions

AT=20 [K] AT=50 [K] AT=100 [K]
(Kw, Kp) (Kw, Kp) (Kw, Kp)
00 (250) (255) (0,0) (250) (255) (0,0) (250) (255)
3.44673 3.58768 4.09643 3.35201 3.4966 4.01691 3.17557 3.32783 3.87090
3.13288 3.28723 3.83604 3.02823 3.20457 3.72257 2.83228 3.03498 3.59353
2.88694 3.05368 3.63780 2.77263 2.97748 3.49619 2.55684 2.80614 3.38069
496129 506041 553929 4.87787 4.97822 546431 4.72300 4.82657 5.32651
440175 452309 5.0265 4.30244 4.43527 4.94762 4.15578 427315 4.80282
3.98932 4.12965 4.65657 3.87565 4.03641 4.57409 3.73376 3.86399 4.42268
6.27653 6.35536 6.82865 6.19686 6.27606 6.75491 6.04826 6.12939 6.61886
5.44137 554508 6.0549 5.34130 5.45784 597511 5.15632 5.29683 5.82841
485954 4.9835 552715 4.74172 4.88887 5.44198 452323 4.71417 5.28560
520360 5.29784 571185 5.13257 5.22809 5.64722 500126 509924 552815
4.67335 4.77804 5.24655 4.59080 4.69733 5.17315 4.40867 4.54842 5.03832
427266 4.38691 4.90268 4.17970 4.29642 4.82188 3.95174 4.12927 4.67357
6.53188 6.60787 6.99072 6.46919 6.54534 6.93164 6.35162 6.42900 6.82190
5.77745 5.86286 6.37626 5.68932 5.77541 6.29596 5.52644 5.61399 6.14822
522555 531955 5.94018 511548 5.21079 584300 4.91178 5.00985 5.66453
6.95121 7.02282 7.36586 6.89624 6.96784 7.31347 6.79244 6.86480 7.21545
6.18065 6.26862 6.72617 6.09684 6.19208 6.6549 594184 6.60505 6.52334
5.60955 571139 6.26403 550094 5.61634 6.1775 530012 5.44091 6.01844

B.C.

=

SSSS

CSSS

CSCS

CCSS

CcccC

FFCC

NEFP OINEFPOPNPEFEODNPEFODNEOINEF, O

Table 6 The variation of the non-dimensional fundamental frequency of the FG nanoplate subjected to heat
conduction (NLTR) with various boundary conditions
AT=20 [K] AT=50 [K] AT=100 [K]
(Kw, Kp) (Kw, Kp) (Kw, Kp)

(0,0 (25,0) (25,5 (0,0 (25,0) (25,5) (0,0 (25,0) (25,5)
3.44911 35898 4.09829 3.35852 3.50285 4.02235 3.19279 3.34427 3.88504
3.14424 3.29801 3.80331 3.05267 3.21082 3.72796 2.88465 3.05152 3.59167
290591 3.07166 3.57674 2.81285 298378 3.50156 2.64155 2.82287 3.3655
496371 5.06236 5.54107 4.88369 4.98392 5.4695 4.73805 4.8413 5.33986
441449 452516 5.02835 4.32852 4.44133 4.95305 4.17197 4.2889 4.81684
40103 4.13183 4.6585 3.91853 4.04282 457975 3.75111 3.88076 4.43734
6.2791 6.35727 6.83043 6.20249 6.28162 6.76007 6.06272 6.14365 6.63207
545735 554715 6.0568 5.3727 5.46389 5.98064 5.21863 5.31247 5.84263
4.88561 4.98573 5.52916 4.79339 4.8954 5.44785 4.62551 4.73114 5.30074
52053 5.29951 5.7134 513754 5.23297 5.65173 5.01403 5.11176 5.5397
46753 4.77995 5.24829 459652 4.70292 5.17822 4.45314 456288 5.05138
427484 438903 4.90458 4.1861 4.30265 4.82743 4.02442 4.14552 4.68793
6.53415 6.6094 6.99216 6.47384 6.54979 6.93584 6.3631 6.44035 6.8326
5.78921 5.87396 6.34416 5.71232 5.7982 6.27408 5.5722 5.6602 6.14678
524469 5.33806 5.88153 5.15336 5.24835 5.80024 4.98712 5.08522 5.65306
6.9534 7.02418 7.36717 6.90048 6.9718 7.31724 6.80263 6.87497 7.22504
6.19116 6.27046 6.72789 6.11719 6.19745 6.65989 5.9822 6.06424 6.53611
5.62656 5.71364 6.26609 5.53441 5.62293 6.18348 5.36671 5.45794 6.03385

B.C.

=

SSSS

CSSS

CSCS

CCSS

CCCC

FFCC

NEFP ONPFPONREFEPEOINEF ODNEONPEO
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Fig. 2 Influence of nonlocal parameter on the dimensionless frequency of the foundationless SSSS square
FG nanoplate with respect to various temperature rises (p=1, a/h=20, K,,=K,=0)
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Fig. 3 Influence of gradient index on the dimensionless frequency of FG nanoplate for different
thermal loadings («=2, a/h=20, K,,=K,=0)

Figs. 2 and 3 respectively present the influences of small scale parameter and gradient index on
the variation of dimensionless frequency of temperature-dependent square FG nanoplates versus
various temperature rises at a/h=20. When =0 and p=0 the plate behavior is similar to those of
homogenous macro scale plates. It should be mentioned that with the temperature increment, the
natural frequency of FG nanoplates reaches to zero nearby the critical temperature point. This
feature refers to stiffness degradation of a nanoplate when the temperature growths. After the
critical temperature, the nanoplate continues to vibrating and increasing in temperature yields in
larger values of natural frequency. Both nonlocality and gradient index have a softening impact on
the rigidity of the nanoplate and reduce the dimensionless frequency. Hence, the branching point is
shifted to the left with the increase of nonlocal parameter and gradient index.
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Fig. 4 Variation of the dimensionless frequency of FG nanoplate with and without elastic foundation versus
various temperature rises for different boundary conditions (=2, p=1, a/h=20)

The variation of dimensionless frequency of square FG nanoplates with and without elastic
foundation versus various temperature changes for different boundary conditions at p=2 nm?, p=1
and a/h=20 is illustrated in Fig. 4. As it is shown in this figure, the elastic foundation possesses
remarkable capability to postpone the critical point of the nanostructure for all cases of thermal
loads. Also, FFCC and SSSS FG nanoplates provide the highest and lowest values of critical
temperature point. Therefore, boundary condition has a key factor for utilization of FG nanoplates
in thermal environments.

To present the effects of elastic foundation parameters individually. Figs. 5 and 6 show the
variation of dimensionless frequency with respect to Winkler and Pasternak constants,
respectively, at a/h=20 and p=1 for both local (u=0) and nonlocal (u=2) plates with various
temperature rises. It is observable that Winkler and Pasternak constants exhibit an increasing effect
on the natural frequency by possessing a hardening influence on the plate structure. More,
precisely it is clear that the shear layer or Pasternak-type foundation has a more considerable
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Fig. 5 Influence of the linear layer of elastic foundation on the dimensionless frequency of FG nanoplate for
different thermal loadings (p=1, a/h=20)
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Fig. 6 Influence of the shear layer of elastic foundation on the dimensionless frequency of FG nanoplate for
different thermal loadings (p=1, a/h=20)

impact on the dimensionless frequency than Winkler-type foundation.

The non-dimensional frequency of FG nanoplates with arbitrary boundary conditions as a
function of gradient index at AT=100(K) of various temperature rises when pu=2 nm? is plotted in
Fig. 7. According to the former discussions, gradient index has a reducing effect on the natural
frequency of FG nanoplates. Here, it is shown that for all kinds of boundary edges at a specified
contact conditions, the lower values of gradient index have more significant influence on the
reduction of frequency, while the higher values of gradient index have no sensible effect on the
frequency.

Figs. 8 and 9 demonstrate the influence of plate side-to-thickness ratio (a/h) and aspect ratio
(a/b) on the dimensionless frequency of a FG nanoplate with fully simply-supported and fully
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Fig. 7 Influence of material composition on the dimensionless frequency of square FG nanoplate for various
thermal loadings and boundary conditions (u=2, a/h=20, AT=100(K))
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Fig. 8 Influence side-to-thickness ratio on the dimensionless frequency of square FG nanoplate for different
thermal loadings («=2, p=1, AT=100(K))

clamped boundary conditions resting or not on elastic foundation at AT=100(K) and p=2 nm?. In
both cases an increase in the Winkler or Pasternak parameters of elastic foundation supplies higher
stiffness as well as natural frequency. Also, it is seen from the figures that for all types of thermal
loading the dimensionless frequency arises for lower values of a/h and then diminishes with
reducing plate thickness or increasing the value of a/h. While, with the increase of aspect ratio a/b
the dimensionless frequency increases significantly.
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Fig. 9 Influence of aspect ratio on the dimensionless frequency of FG nanoplate for different thermal
loadings (=2, p=1, AT=100(K))

6. Conclusions

The prime aim of the current work is to predict thermal vibration behavior of embedded
temperature-dependent FG nanoplates based on four-variable plate theory. Two types of thermo-
mechanical loading including linear and non-linear temperature rise are assumed. The material
properties of a FG nanoplate are supposed to be temperature-dependent and they are graded
according to Mori-Tanaka homogenization technique. By implementing extended Hamilton’s
principle, the nonlocal governing equations are derived based on a new trigonometric four-variable
shear deformation plate theory. An analytical solution which satisfies various boundary conditions
is then used to solve the equations. Several numerical examples are given to illustrate the impacts
of elastic foundation, temperature-dependency, different thermal loadings, nonlocal parameter,
gradient index, aspect and side-to-thickness ratio on the thermo-mechanical vibration behavior of
FG nanoplates. It is indicated that, the dimensionless frequency of a FG nanoplate tends to zero
near a prescribed temperature, which is known as critical temperature. It was found that a way to
postpone the critical temperature is to increase the elastic foundation parameters. Also, various
thermal loadings estimate different values of natural frequency and branching point so that linear
temperature rise produce smaller natural frequency than non-linear temperature rise.
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