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Abstract. In this paper, an analytical method for the Post-buckling response of cylindrical shells with spiral
stiffeners surrounded by an elastic medium subjected to external pressure is presented. The proposed model
is based on two parameters elastic foundation Winkler and Pasternak. The material properties of the shell
and stiffeners are assumed to be continuously graded in the thickness direction. According to the Von
Karman nonlinear equations and the classical plate theory of shells, strain-displacement relations are
obtained. The smeared stiffeners technique and Galerkin method is used to solve the nonlinear problem. To
valid the formulations, comparisons are made with the available solutions for nonlinear static buckling of
stiffened homogeneous and un-stiffened FGM cylindrical shells. The obtained results show the elastic
foundation Winkler on the response of buckling is more effective than the elastic foundation Pasternak. Also
the ceramic shells buckling strength higher than the metal shells and minimum critical buckling load is
occurred, when both of the stiffeners have angle of thirty degrees.
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1. Introduction

The eccentrically stiffened FGM cylindrical shells have more application in modern
Engineering.

In many application, the shell under pressure and may be buckling. Therefore, research on
nonlinear stability of these structures has been of interest to scientists. In fact, used to stiffeners
with low weight to support the structures for bearing Load. Study on nonlinear behavior of these
structures is important of the practical.

Van der Neut (1947) showed the importance of stiffeners in the buckling of isotropic
cylindrical shell under axial load. A careful analysis of post-buckling behavior of eccentrically
stiffened FGM thin circular cylindrical shells is surrounded by an elastic foundation and external
pressure was presented by Shaterzadeh and Foroutan (2015). Dung and Nga (2013) studied the
Post-buckling of eccentrically stiffened FGM cylindrical shells with elastic foundation under
uniform external pressure. Shen, Zhou et al. (1993) studied the Buckling and post-buckling
behavior of complete and incomplete eccentrically stiffened cylindrical shell under external
pressure and axial compression by using boundary layer theory. The mechanical buckling of
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cylindrical shells with functional elastic Pasternak was presented by Bagherizadeh, Kiani et al.
(2011). Li and Shen (2008) analyzed the three-dimensional post-buckling of composite cylindrical
shell under external and axial pressure in the thermal environment. Sadeghifar, Bagheri et al.
(2011) studied the buckling of laminated cylindrical shell with non-uniform stringer stiffeners
based on Love’s first order theory. Jiang, Wang et al. (2008) studied the buckling of eccentrically
stiffened circular cylindrical panels under uniform axial compression by second order differential
element method. Bich, Nam et al. (2011) analyzed the Nonlinear buckling of eccentrically
stiffened functionally graded plates and shallow shells. Post-buckling of shear deformable FGM
cylindrical shells surrounded by an elastic medium was presented by Shen (2009). Boroujerdy, Naj
et al. (2014) studied the buckling of heated temperature dependent FGM cylindrical shell
surrounded by elastic medium. Post-buckling of internal pressure loaded FGM cylindrical shells
surrounded by an elastic medium was analyzed by Shen, Yang et al. (2010). Bagherizadeh, Kiani
et al. (2012) analyzed the thermal buckling of functionally graded cylindrical shells on elastic
foundation. Fan, Chen et al. (2015) studied the buckling of axial compressed cylindrical shells
with stepwise variable thickness. Buckling analysis of filament wound composite cylindrical shell
for considering the filament undulation and crossover presented by Guo, Han et al. (2015).

A review of studies shows that the studies on the analytical solution post-buckling of FGM
cylindrical shells with spiral stiffeners with elastic foundation have not been done. In this paper,
the Post-buckling analysis of FGM cylindrical shells with spiral stiffeners with elastic foundation
under uniform external pressure studied. Suppose that stiffened FGM thin circular cylindrical shell
is simply supported and subjected to uniformly distributed pressure. The material properties of the
shell and stiffeners are assumed to be continuously graded in the thickness direction. The nonlinear
equations using the classical plate theory, smeared stiffeners technique and Galerkin method, is
obtained. The aim of the study is the finding the best arrangement of stiffeners for achieving the
maximum of strength of buckling.

2. Formulation
2.1 FGM power law properties
In this paper, the structure is made of functionally graded materials that varying continuously

through the thickness direction of shell. The inside and outside surfaces are ceramic and metal,
respectively. Also the stiffeners attached to inside of the shell skin. The volume-fraction to be

given by a power law (Shen 2003)
2z +h )
v.v. ()= "

V, =V, (2)=1-V (z)

which h is the thickness of shell, k>0 is the volume-fraction index, z is the thickness coordinate,
footnotes ¢ and m shows ceramic and metal respectively.

Effective properties (Pres) of FGM shells by linear combination law is as follows (Sofiyev
2011)

Pr, =Pr. (2)V, (2)+Pr,(2)V,(2) 2
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Fig. 1 Configuration of stiffened cylindrical shell surrounded with foundation

According to the mentioned law, The Young’s modulus of the shell and stiffeners can be
expressed in the following form

2z+h\¢  h
E(Z):Eme+ECVC :Em+(Ec_Em) oh , —ESZS

N| o

)

S

ko
E-E+(E -g) 2N b,y
2h ) 2 T2

which E, E. are the Young’s modulus of the metal and ceramic, respectively, Es is the Young’s
modulus of stiffeners, k>0 is the volume-fraction of stiffeners.

FGM cylindrical thin shell is assumed with length L, radius R, which is surrounded by an
elastic foundation. Material properties of stiffeners are assumed FGM (Fig. 1). Original
coordinates, x,y,z are in the axial, circumferential, and inward radial directions respectively.

The strains across the shell thickness at a distance z from the mid-surface are represented by

_ 0 _ 0 _.0
& =& ~LK, & =& ~LK,, Yy =Ve LKy 4)

where gf,g;’ are normal strains, yfy is the shear strain at the mid-surface, z,, 7, . z,, are the change

of curvatures and twist of shell.
2.2 Displacement-strain-stress relations

According to the von Karman nonlinear strain-displacement relations (Brush and Almroth
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1975) the strain components at the mid-surface of cylindrical shells as

s ou 1 awj2
g =—+=| —
ox 2\ OX

2
ggza_v_ﬂJrl ow (5)
oy R 2 oy
s Ou Ov owow o*'w o*w o*w
Yoy =t K =y, Ky =, Ky =2

= IKX 1 1
oy ox ox oy ox? Y eyt Y oxoy

where u=u(x,y), v=v(x,y), w=w(X,y) are displacements along x,y,z axes, respectively.
According to Eqg. (5), compatibility equation be expressed in the following form

s %8 Oy 1w (dw ) oW ow ©)
oy? ox® oxoy R ox? |oxoy ox? oy?
The stress-strain relationship for FGM cylindrical shells can be written as follows
o = f_(‘z/z (Ex +ve, )
.« E(
o) = 1—(1/2) (gy +ve, ) (7)
sh _ E (Z)

v T 04v)

the Poisson’s ratio (v) is assumed to be constant, o' o3 normal stress in x,y coordinates,
respectively, rjg is shear stress on the un-stiffened shell.
By rotation of the strain tensor, the stress-strain relations of the spiral stiffeners are obtained.

With the transformation of strains from the xy -axis to the 1'2' -axis and 1"2" -axis (Fig. 2), Egs.

A 4
x

Fig. 2 Rectangular coordinates rotation
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Fig. 3 View a rhombic stiffener grid

(8) and (9) can be made (Yen 1979).

& =&, 08”0 +2y, sindcosd +¢, sin* 0

& =¢,sin’ 0—2y, sinfcosf+¢, cos’ O ®)
& =&, C0s* B2y, sinBcos B +¢, sin’ B )
&, =¢&,sin’ B+2y, sin fcos B+¢, cos® B
According to the uniaxial Hooke’s law
G (10)

“ThaE, " heE,

where d is the width of stiffeners, p’, p"” are stiffener loads in the 1’2" -axis and 1"2" -axis,
respectively and 9, £ are the angle of the stiffeners.
According to Fig. 3, the length of the stiffener grid is

S
I, =6+ (11)

where s is the stiffener spacing.
The stress-strain relations for FGM spiral stiffeners a
. P cos@ P "cos S
o, = - - + - -
I,h(sin@+sinB) 1h(sin@+sin B)

_P'cosf+Pcosp_hdE, (£0050+¢ cos )

" Lh(sing+sing)  I.h,  (sin@+sin B) (12)
_ h,dE, (&c0s0+5c0sB)
~ sh,  (sin@+sinB) sin(0+4)

=7, [gx (cos®@+cos® B)+2y,, (sin@cos® @—sin Bcos’ B)+e, (sin® Ocosd +sin’ ,Bcosﬁ)]

where
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_ hdE, sin(6+p)

z 13
' oshy (sin@+sin B) (13
similarly
Sin@+¢, sin
o, = hdE, (gl 4 ﬂ)sin(¢9+ﬂ)
sh,  (cos@+cos B)
=7, [gx (sin @ cos® 6 +sin Bcos’ B)+2y,, (sin® Ocos@ —sin” Bcos B)+ &, (sin® 0 +sin® ﬂ)} 14)
. hdE,, . ..
Ty = K(é‘l —El)Sln(e-l-ﬂ)
=7, [gx (cos® @—cos® B)+2y,, (sin@cos@+sin Bcos B)+&, (sin’ 0 —sin’ ﬁ)]
where
L _hdE, _sin(0+5)
L=
h
sh, (cos@+cos j3) (15)

Z, :h;(:%sin(eﬂﬁ)

S

o,,0, is the normal stress of stiffeners. z; , A4 are shear stress and thickness of the stiffeners,

respectively. s is length of the stiffener grid, @, g are the spiral angle of stiffeners. To consider
the effect of stiffeners on the shell used the smeared stiffeners technique. By integrating the stress-
strain equations and calculating the resultant forces and moments for stiffened FGM cylindrical
shells will be (Najafizadeh et al. 2009, Shen 1998)

N, =B,&l + 81283 -B,k, —Bysk,
N, =B,z +B,& —Byk, —Byk, (16)
N,, = B33yfy —2Byk,,
M, =Byé& +Be) =B,k —B K,
M, =B,z +Byés —Byk, —Byk, (17)
M, = B36yfy —2Bgk;,,

Bij are components of the extensional, bending and coupling stiffeners of FGM cylindrical shell.

Ny, Ny, Ny, are in-plane normal force and shearing force intensities, respectively. M,, My, M,, are
bending moment and twisting moment intensities, respectively.

E E . .
B, = — 5 +Z,E, (cos® 0+cos® ), By, = —5+Z,E,, (sin’ Ocos 0 +sin” fcos )
1-v 1-v
E E . .
B, =—2;+Z,E, (cos’ 0+cos’ B), By == L7, (sin” @cos @ +sin” Bcos B)
1-v 1-v
Ev

. . E . .
B, = +2,E,, (sin@cos’ 0+sin Bcos’ B), B,, :1—12+ZZEls (sin® 0 +sin® B)
— -V

VZ
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E . . E, . .
Bu=1"7 : +Z ,E, (sin@cos® 0+sin Bcos’ ), B =t ZEs (sin® 6 +sin° B)
E,
o= +2Z,E, (sin@cos@+sin fcos B), By, = ——2—+2Z,E,, (sinf@cosd+sin Scos B)
2(1+v) 2(1+V)
E, E . .
By =—25+Z,E, (cos’0+cos’ ), B By =—2+Z,E, (sin” @cos 0 +sin” Bcos )
—v? 1-v
E E . .
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B = 2(1+ )+223E35 (sin@cosd+sin Scos )

where
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Sort by Eq. (16) in terms of the strain as follows
3 :A;2Nx _AI*ZN y +Bl*le +B;2Ky
3 =A N y -A N +Bk, +Bz*21<y (20)
7/Sy —A3*3+2835
where
A, . A
A=ALA, —ALA,, A, = i ’A“:f
« A « A . 1 « A
Ay =f' Ay :f, Ay = A » B =A_zz (21)

B, =ALA, —ALA,, B, =ALAL—ALA,
B, =A A, —ALA,, B, =A A -A A,

Substituting Eq. (20) in Eq. (17) can be written
M, =B;N, +B;N, —D;x —Dyx,

M, =B;N, +B,N, —Djx, —Dyx, (22)
Mxy = BB6N Xy _2D36ny
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where

B _A A A AlS' BZl _A11A15 A;2A14
BlZ = A22A24 _A21A251 Bzz = A11A25 _A1*2A24
Dl*1 = Bl*lA B A=A D = B*A —B;ZA15 -A, (23)
D;l = Bl*lA24 - 821A25 A51v Dzz - B12A24 Bz*zAzs _Asz
D::G = A36A;6 —Ag
Non-linear equations thin circular cylindrical shell based on the classical shell theory follow as
(Darabi, Darvizeh et al. 2008, Sofiyev and Schnack 2004, Ghiasian, Kiani et al. 2013)

oN
aN_X_{__Xy:O
OX oy
oN,, +6Ny o
OX oy
2 M, GZM
6M2X+2 Nxazvz+2ny—62W +Nyﬂ+iNy+q0 k,w +k; 52W+82V\2 =0
X 6X8y oy’ OX ox oy oy° R ox? oy

(24)

In Eq. (24) k,, is Winkler foundation modulus, ks is shear stiffness layer based on Pasternak, qq is
external pressure.
According to the first two of Eq. (24), a stress function F may be defined as
2 2
N, = LN 6F' X __OF
8y 2 y aX 2 y ax ay

(25)

substituting Eq. (20) in to Eq. (6) and Eqg. (22) in to the third of Eq. (24) and according to the Eq.
(5) and (25)

. 0'F « « .\ O'F . 0'F . o'w . . .y ow
All@)(_4+(A33_A12+A21)6X zayz T A2 ay4 +821 ox* +(Bll+822_2836)6)(2—3)/2
2 (26)
+B*a"w 1a?w ow _a?w ow |
2oyt TR ax? || oxoy ox? oy?
4 4 4
Dflz;(l4+(D D] +4D36)68‘\’8"y +D;, ‘2;\"2 —BZZX—i—(BZ+B;—ZB;6)8X62—;W—B; Zy'j
(27)

_1OF PFow , OF ow  O°F oW w k[a?w a?w]
O ayz

— +
Rox2 oy?ox? oxoy oxdy ox2 oyl
Egs. (26) and (27) are a non-linear equation system in terms of two unknown parameter F and w.

3. Buckling analysis

Suppose the stiffened FGM cylindrical shell is simply supported. The deflection of cylindrical
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shells consider the three-term as follows (Huang and Han 2010, VVolmir 1972)

ny

. omux ., Mnx
w :f0+flsstm?+f23|n

(28)

in which fy is pre-buckling uniform unknown amplitude, f; is linear unknown amplitude, f;, is

. . . mnx . ny ., MmX
nonlinear unknown amplitude, sstm?, sin

, m, n are linear buckling shape,

nonlinear buckling shape, the number of half wave and full wave in the axial and circumferential
direction, respectively. It should be noted that Eq. (28) does not satisfy the condition of problem.
Volmir has stated that cylindrical shells are generally insensitive to this condition (Volmir 1967).

Substituting Eq. (28) in Eg. (26) and solving it, obtained the equation for the unknown function
F as follows

2
F=F coszanX+ F, cos%—ﬁsin%sinﬂwt F, sin Smnx sin%—aoyh X? (29)

o,, Is the average circumferential stress and the coefficients F; as follows

n2a? ., (44L-16A,m’n%)

YT RAm RA M C
m2n2 )

F=eres—5f
32A,,n°A (30)
B m?2n2g®1?

F3 =Kf1 +Tflf2
m?n2n®1?

Fo= e,

where

A=4 m'n* +(A3*3 —-4,-4, )mznznzﬂz +A,n* 2t
2

* 4 4 * * * 2.2 2192 * 494 L 2.2
B =B, m'n' +(B,, + B, ~ 2B, |m’n*x’ A* + B,,n* A - m'n

- “ e s o L

4_4 2.2 242 494 2.2
B, =By, m'n" + (B, + B,, ~ 2B, |m'n’n* A’ + B,;n* A - —m'n
D =D, m'z* + (D, + D, + 4D, )m*n’n’ A* + D,,n* 1*
G =814, m*r* +9(A;3 —-4,-4, )mznznzﬁz +A4,n* 2"
L

A==
R

(31)

Substituting Eq. (28) and (29) in to Eq. (27) and by applying the Galerkin method in the ranges
0<x<L and 0<y<2zR

R 1
Oy :F(qO_Ekw(fZ_ZfO)j (32)
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m2n?n?i® B
—+ <
A A 4Am2n?

n’A* (AL —4B,m’n’)
21 m2n2n2a? - f,

202,292 2,2,_2192 4_4 4174
+mnn/1+mnrc/1 f1f22+m7z;+n/1* T D+BBl f,
A G 16A,, 16A, A

— 0, INPL22%, 4 LK+ Lk [ (An )+ (m)* ] =0
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2 2
men (22 2o
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) o(ma)' 1 mnY](AL -4B;m?e)
+44D;, | == | |48, | — | —=| — | F——5—{f,
L L R\ L 4A11m s
o, h 3 mn\’
+ (IJ:; _qo+kw(zf2+fo)+ksf2(Tj =0

In addition, cylindrical shell must be satisfy the circumferential close conditions as

2mRL o, 27R L w 1(ow 2
[0 =T33 o

0

Using Eqgs. (20), (25), (28) and (29), can be written
Aoy h ot (F, 4 2f ) L to0
11~ 0y R 2 0 4 R 1

According to Eq. (33)

2
(au +a,f, +a,f,) —oyh %L“ +L%,, +L%k, ((ﬂn ) +(mn)’ )]
f 2
' a,
Substituting Eqg. (33) into Egs. (36) and (37), we have

mrm

2
a,f 2 +a,f’f, +[a23 +%kw J{Tj kstz =0

fo =a,0+a,f, +a,f’

where
BB B n’A*(AL -4B;m*n?)
=D+—1 a,=-'m’n’n’2’ - -
% A AT 4A; M’
_m?n’n?A? . m’n’nx’2*> _ m'n" 2’

= - — + —_—
: A G B 16A,, 16A

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)
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48 ( J i(mj EE(mjz(ﬂf
. RUL 16A11m o 2ALL J(R
aﬂ:%mz : uz(mﬂz ey
4 AL —4B,;m%n
w5 o) -3 ) )
L L R L 4A; Mm%

_ R?A; 1 n?
8R (1+k,RA;)

Substituting Eqg. (32) into Egs. (33) and (39) as follows

mm
(a23+ k +( 3 j ksjf2

2
q=a,+ a42f 2t a43f 2 +a44f 0 ale i azsz ,

where

a1+L4kW+L2kS((/1n)2+(mn)2) n2L4
= ,T =
B Ta, a,R

1(Tk, a, a,
p=—| -+ | ay=——, 3, =k
42 T( 2 34] 43 Ta4 44 w

Substituting Eg. (32) into Eq.(37) and Eq.(37) into Egs. (36) and (38), we have
f12 =ay a5, , +a53f22 +a5,
fo =850 +a,f, +a63f22 +8g,

mn
(a23+ k +( . ) ks)f2

R (e, +ayTf, ) (1-agdy)

where

—R?(1+k,R?A}) a1+L4kW+L2kS((/1n)2+(mn)2)

a, =

R®(1+k,R?A},)+8n? Ta,
_ RYL4Kk,RPAL) [—2Ra,-n?L'k, T (K,RPA;-1)
e = R*(1+k,R?A;,)+8Tn? 2Ra, ! 2(1+k,R?A;,)
-R*(1+k,R?A}) (asJ
853 = — 2 x
R°(1+k,R’A};)+8Tn’ (3,
L R°(1+k,RA}) n2|_4_ TR2A;,
¥ R(1+k,RA;)+8Tn? (1+k,R%A})
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(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)
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Table 1 The critical buckling loads (q) for cylindrical shell under external pressure

Present Baruch and Singer Reddy and Stames  Shen
Un-stiffened 103.327 (4)" 102 93.5 100.7
Stringer stiffened (6=0°, f=0°) 104.494 (4) 103 94.7 102.2
Ring stiffened (6=90°, =90°) 379.694 (3) 370 357.5 368.3
Orthogonal stiffened (§=0°, f/=90°)  387.192 (3) 377 365 374.1
*The numbers in the parenthesis denote the buckling modes (n).
300 T T T T T
— Present study
250+ > Huang and Han (2010) T
200+ _
g
x 150 .
o
100+
50+ 4
% 2 4 6 8 10
Wmax/h
Fig. 4 Post-buckling curve of un-stiffened FGM shells
851 =8y T 85585, 85y = 83 83385, (49)
Bgg = Q353,85 =8y
a41 + a44a64 a42 + a62 a43 +a63
=, ad, = , Gy = 50
" 1_a44a61 " 1_a44a61 © 1_a’44a61 ( )

If f=W.« then according to Eq. (28) it is obvious that the maximal deflection of the shells is

f=f,+f, +f,

(51)

It should be noted the exact solutions despite all benefits include restrictions such as the kind of

boundary conditions and geometric shape of structure.

4. Numerical results

In this section, the stiffened and un-stiffened FGM cylindrical shells by an elastic foundation
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are considered with R=60.643 mm, L=387.35 mm. The combination of materials consists of
Aluminum E,,=70 GPa and Zirconia E.=380 GPa. The Poisson’s ratio is chosen to be 0.3. The
height of stiffeners is 0.076 mm and width is 1.27 mm. Each of the stiffener system includes 15
stiffeners distributed regular.

In order to verify the formulation, in Table 1 the critical buckling loads (q) for stiffened and un-
stiffened cylindrical shell under external pressure to compared with the results given by Baruch
and Singer (1963), Reddy and Stames (1993), Shen (2009). In Fig. 4 post-buckling curve of un-
stiffened FGM cylindrical shell compared with the results of the analysis Huang and Han (2010).
As can be seen, good agreement is obtained in this comparison.

Fig. 5 shows the effects of stiffeners with various angles on the curve of post-buckling of
cylindrical shells. In previous works, only stringer and ring stiffeners are investigated that buckling
load of stringer stiffeners is lower than ring stiffeners and this subject in the present work is
confirmed. According to Fig. 5 for the mid-states have been chosen the stiffeners with various
angle that can be observed the effects of them on the post-buckling behavior. As can be seen of
Fig. 5 maximum buckling load related to the shell with ring stiffeners and minimum of the
buckling load when the angle of both series stiffeners together is 30°.

80
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50

q (kpa)

40
4

307

20

(0] 10 20 30 40

Wmax/h
(b) p=15°
75 75 i
70 70 e 6=45
65 65 —&— 6=60 A
60
— 55
S
= 50
o

454
40
35
30

25

(c) p=30° (d) p=45°

Fig. 5 Post-buckling curves of cylindrical shells with various angle of stiffeners
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Fig. 6 The effect of elastic foundation Winkler and Pasternak on stiffened FGM cylindrical shells

The obtained results from Fig. 6. show that when the buckling load-bearing capacity of shell
increased 6.6 percent, the Pasternak index is about 1000 times increases, but the buckling load-
bearing capacity of shell increased 29.4 percent, when the Winkler index is about 10 times
increases. This results show the effect of elastic foundation Winkler on the response of buckling is
more than the elastic foundation Pasternak.

According to Fig. 7 can be achieved interesting results. Ceramic and metal shells have the
highest and lowest resistance to buckling, respectively. The use of steel/ceramic stiffeners leads to
increase/decrease the load-bearing capacity of shell than the FGM stiffeners. Therefore, the
ceramic cylindrical shell with steel spiral stiffeners is the best choice.

In Fig. 8 the curve of maximum radial deflection along circumferential and along of the
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stiffened FGM cylindrical shells for different parts of the length and m=1 is showed. In Fig. 8
maximum deflection for x=200 (the middle of the cylinder), It can be seen. Mode number of
buckling is 7 that is clearly identified in Fig. 8.
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Fig. 8 Maximum radial deflection along circumferential of the cylindrical shells
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5. Conclusions

The exact analytical method for FGM cylindrical shells with spiral stiffeners with elastic
foundation under uniform external pressure is presented. The proposed model is based on Winkler
and Pasternak elastic foundation parameters. According to the Von Karman nonlinear equations
and the classical plate theory (CPT) of shells, strain displacement relations are obtained. The
smeared stiffeners technique and Galerkin method, used for solving nonlinear problem. With
considering three terms approximation for the deflection shape, the relation for non-linear buckling
obtained.

Some conclusions are obtained from this study

» When both of the stiffeners have angle of 30° critical buckling load is minimum.

* The effect of elastic foundation Winkler on the response of buckling is more than the elastic

foundation Pasternak.

» Ceramic shells have the greatest resistance to buckling load and metal shells have the lowest

resistance to buckling load.

* The ceramic cylindrical shells with steel stiffeners is the best choice.

» Maximum deflection is arisen the middle of length of cylindrical.
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