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Abstract.  This study aims to present a novel optimization algorithm known as gravitational search 

algorithm (GSA) for structural damage detection. An objective function for damage detection is established 

based on structural vibration data in frequency domain, i.e., natural frequencies and mode shapes. The 

feasibility and efficiency of the GSA are testified on three different structures, i.e., a beam, a truss and a plate. 

Results show that the proposed strategy is efficient for determining the locations and the extents of structural 

damages using the first several modal data of the structure. Multiple damages cases in different types of 

structures are studied and good identification results can be obtained. The effect of measurement noise on 

the identification results is investigated. 
 

Keywords:  damage identification; gravitational search algorithm; vibration data; frequency domain; modal 

assurance criteria 

 
 
1. Introduction 
 

In the last few decades, techniques based on vibration response have received extensive 

attention in the field of structural damage identification and health monitoring. Local damages 

cause changes in structural physical properties, mainly in stiffness and damping at damaged 

locations. It will result in changing structural dynamic characteristics, such as natural frequencies 

and mode shapes, etc. Many researchers made abundant excellent literature in the field of 

vibration-based damage detection. Doebling, Farrar et al. (1998) presented a comprehensive 

review of the damage detection methods by examining changes in the dynamic responses of a 

structure. Housner, Bergman et al. (1997) provided a summary on the most-advanced techniques 

in control and health monitoring in civil engineering structures.  

The usual model-based damage detection methods concentrate on minimizing an objective 

function, usually defined as the discrepancies between the vibration data obtained by modal testing 

and those computed from the analytical data. Traditional optimization methods are gradient-based 

(Hao and Xia 2002). Swarm intelligence algorithms provide different perspective in optimization 

problems. Optimization techniques and their improved versions with strong global searching 
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ability are needed for more accurate and reliable solution. In these years, genetic algorithm (GA) 

as a global optimization method has been widely used for damage detection problem (Buezas, 

Rosales et al. 2011, Chou and Ghaboussi 2001, Hao and Xia 2002, He and Hwang 2006, Sahoo 

and Maity 2007, Vakil-Baghmisheh, Peimani et al. 2008). Apart from GA, particle swarm 

optimization (PSO), as a population-based global optimization, is widely used recently due to its 

simplicity, wide applicability and outstanding performance (Eberhart and Kennedy 1995, Kennedy 

and Eberhart 1995, Poli, Kennedy et al. 2007). PSO was also introduced in damage detection by 

many researchers (Begambre and Laier 2009, Kang, Li et al. 2012, Mohan, Maiti et al. 2013, Vakil 

Baghmisheh, Peimani et al. 2012). More recently, Xu, Ding et al. (2015) presented a structural 

damage detection method based on chaotic artificial bee colony algorithm. Li and Lu (2015) 

developed a multi-swarm fruit fly optimization algorithm for structural damage identification. It 

was verified through beam and planar truss structures.  

All population-based search algorithms provide satisfactory results for some specific problems 

but there is no heuristic algorithm that could provide a superior performance than others in solving 

all optimizing problem. Hence, proposing new high performance heuristic algorithms are welcome 

(Rashedi, Nezamabadi-pour et al. 2009). Rashedi, Nezamabadi-pour et al. (2009) proposed a new 

heuristic search algorithm named Gravitational Search Algorithm (GSA), which is inspired by 

Newton's law of universal gravitation. The convergence analysis is conducted by Ghorbani and 

Nezamabadi-pour (2012), then the stability analysis of the algorithm is completed by Farivarand 

Shoorehdeli (2016). In recently years, the GSA has already been successfully applied to numerous 

real-world problems in engineering (Bahrololoum, Nezamabadi-Pour et al. 2012, Li and Zhou 

2011, Rashedi, Nezamabadi-pour et al. 2011, Sarafrazi, and Nezamabadi-pour et al. 2013, Xu and 

Zhang 2014, Khatibinia and Naseralavi 2014, Su and Wang 2015, Yuan, Chen et al. 2015). But so 

far, no report has been presented on the application of GSA to structural damage detection. In this 

study, the GSA is extended to the field of structural damage identification in civil and mechanical 

engineering. The inverse problem of damage identification is treated as an optimization problem. 

An objective function for damage detection is established using the natural frequencies and mode 

shapes of the structure. Three different types of structures are studied to illustrate the correctness 

and efficiency of the proposed method. Results show that the proposed strategy is efficient on 

determining the locations and the extents of structural damages. The measurement noise seems to 

have little effect on the identification results. 

 

 

2. Theory for structural damage identification 
 

2.1 Parameterization of local damage 
 

The eigenvalue equation for a finite element model of anintact structure can be expressed 

2( ) 0j j  K M                                        (1) 

where K and M denote the structural stiffness matrix and mass matrix respectively. ωj is the jth 

natural frequency and ϕj is the corresponding mode shape. 

When a local damage occurs in a structure, it causes the loss in stiffness, while the loss in mass 

is usually negligible. The damaged stiffness of a structure with nel elements can be expressed by a 

set of damage parameters di (i=1,2,...,nel) in the form of the following equation 
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where Kd 
is the stiffness matrix of the damaged system, and e

ik  presents the ith elemental stiffness 

matrix. The positive parameter di with value range between 0 and 1 refers to the damage extent of 

the ith element. When di=0, it means no damage. While di=1, it represents the complete damaged 

status. Therefore, detection of the local damages in a structure is implemented by quantification of 

the values of the damage parameter vector {d}. In this paper, di ranges between 0 to 0.99. 

 

2.2 Objective function in frequency domain 
 

It is aforementioned that the changes instructure properties will lead to changes in the dynamic 

characteristics, such as natural frequencies and mode shapes. In the context of damage detection, 

the task is to minimize the objective function using the discrepancies between the measured modal 

data and the calculated ones. 

The objective function for damage detection is defined in terms of natural frequencies and 

modal assurance criteria (MAC) 

2

1 1

(1 )
NF NM

j j j j

j j

f w w MAC 
 

                                                 (3) 

where wω j
 
is a weight factor corresponding to jth natural frequency, while wϕ j

 
corresponding to jth 

MAC. NF and NM are the numbers of natural frequencies and mode shapes used in calculation, 

respectively. 

The mathematical expression of the differences of natural frequencies in Eq. (3) is expressed as 

C M

j j

j M

j

 





                                              (4) 

where
C

j and
M

j are the jth calculated and measured natural frequencies, respectively. 

The expression of MAC in jth modein Eq. (3) is 

2
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where 
C

j and 
M

j are thejth calculated and measured mode shapes, respectively. Eq. (5) indicates 

that value of MAC  is 1 when the calculated mode shape equals to the measured one. 

It can be observed that Eq. (3) is a function with respect to the damage index {d}. Given a 

particular damage condition, if one damage index enables the objective function to achieve 

minimum, theoretically, which is 0, the damage index represents the true damage status. 

 

 

3. An introduction to gravitational search algorithm (GSA) 
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In the GSA (Rashedi, Nezamabadi-pour et al. 2009), inspired by the lawofuniversal gravitation 

and Newton’s second lawofmotion, particles or agents update their locations in a similar way. 

Their performances are measured by their masses. Good performances as good solutions mean 

heavy masses. In other words, the heavier the mass is, the larger force it will apply on others, and 

the smaller acceleration it will be obtained for motion. In GSA each agent (mass) has four 

properties: its position, its inertial mass Mi, its active mass Ma and its passive mass Mp. Inertial 

mass is a measure of resistance ability for an agent to change its state of motion when a force is 

applied. Active mass is a measure of strength of gravitational field produced by the agent itself. 

Passive mass means measure of strength of an agent interaction with global gravitational field. 

And the position of the mass represents a solution of the problem. The gravitational and inertial 

masses are determined by the fitness function. 

For an artificial system with N agents (masses), the position of the ith agent is expressed as 

1( ,..., ,..., ) 1,2,....d D

i i i iX x x x for i N 
                                         

(6) 

where d

ix means the position of the ith agent in the dth dimension, while D is the global dimension 

of search space. At time t, the force applying on mass i from mass j is written as 

( ) ( )
( ) ( ( ) ( ))

( )

pi aid d d

ij j i

ij

M t M t
F G t x t x t

R t 


 


                                       

(7) 

where Maj
 
is the active gravitational mass related to agent j, Mpi is the passive gravitational mass of 

agent i, G(t) represents gravitational constant at time t, ε is a small constant to guarantee that the 

denominator is not zero. Rij (t) means Euclidian distance between the agents i and j. 

2
( ) ( ), ( )ij i jR t X t X t                                                        (8) 

The resultant force acting on agent i in dimension d is a randomly weighted sum of dth 

component of the force from Kbest agents 

,
( ) ( )d d

i j ijj Kbest j i
F t rand F t

 
                                              (9) 

where rand j
 
is a random number between 0 and 1. Kbest means the set of first K agents with best 

fitness value and biggest mass. The concept of Kbest set is introduced here to efficiently balance 

exploitation and exploration. The exploration is the ability to expand search space, while 

exploitation to find the optimum solution. With the lapse of iteration, exploration must fade out 

and exploitation must fade in. The Kbest, as a function of time, starts with the initial value K0 and 

decreases with time, i.e., all agents apply force at the very beginning, then decrease linearly, and in 

the end, only the biggest mass is retained. 

According to the law of motion, the acceleration of the agent i at time t in dimension d is 

expressed as 

( )
( )

( )

d
d i
i

ii

F t
a t

M t


                                                          

(10) 

where Mii 
is the initial mass of the ith agent. The next velocity and position of the agent are 

calculated as 
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( 1) ( ) ( )d d d

i i i iv t rand v t a t   
                                            

(11) 

( 1) ( ) ( 1)d d d

i i ix t x t v t   
                                               

(12) 

where rand i is a random number between 0 and 1. 

The gravitational constant G is initialized at the beginning and it will decrease with the lapse of 

time, with the similar concept of the decreasing weight factor in PSO (Shi and Eberhart 1998). It is 

expressed as 

0( )
t

TG t G e



                                                           

(13) 

where G0 
is an initial constant and T is the total number of iteration. 

The gravitational and inertia masses are simply calculated by the fitness value of each agent. As 

mentioned above, the heavier mass means better fitness evaluation and slower change on its 

position. For the simplicity, an assumption is made on the equality of the gravitational and inertia 

mass. The values of masses are calculated in the following forms 

, 1,2,...,ai pi ii iM M M M i N   
                                         

(14) 
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(16) 

where fiti (t) indicates the fitness value of the agenti at time t. The worst(t) and best(t) are defined 

as follows. 

For minimization problems: 

{1,..., }

{1,..., }

( ) ( )min

( ) ( )max

j
j N

j
j N

best t fit t

worst t fit t










                                                 

(17) 

For maximization problems: 

 

{1,..., }

{1,..., }

( ) ( )max

( ) ( )min

j
j N

j
j N

best t fit t

worst t fit t










                                                

(18) 

Damage identification based on the GSA is accomplished in the following steps: 

Step 1: Initialize the population (generate a random population of N solutions) in search space. 

Set boundary values (for damage detection problem, di∈[0, 0.99]). 

Step 2: Evaluate the fitness value in Eq.(3) for each agent using Eqs.(1)~(5). 

Step 3: Update G(t), best(t), worst(t), and Mi (t) for i=1,2,...,N. 

Step 4: Calculate the total force in different directions for each agent. 
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Fig. 1 Sketch of a simply supported beam and cross section (①, ②, …, denote node number of the FEM; 

1,2,…,20 denote element number) (Dimensions not scaled) 

 
 

Step 5: Calculate the acceleration and velocity for each agent. 

Step 6: Update the position for each agent. 

Step 7: Repeat Steps 2 to 6 until the stop criterion is met. 

 

 

4. Numerical simulation 
 

4.1 Parameters setting for GSA 
 

The constant G0 
and α in Eq. (13)are taken as 100 and 20, respectively, same as the parameter 

setting in (Rashedi, Nezamabadi-pour et al. 2009). The population N the maximum iteration 

number Tare taken 100 and 250, respectively. The dimensional boundary is set to be di∈[0, 0.99], 

i=1,2,...,D. Both wω j and wϕ j
 
in Eq. (3) are set to be 1. The final identification results are the 

average values of 20 independent runs.  

 

4.2 A simply supported beam 
 

A simply supported beam studied by Kang, Li et al. (2012) is used as a numerical simulation to 

compare identification results from proposed method with those from IEPSO presented in Kang, 

Li et al. (2012). 

The geometry of the beam is shown in Fig. 1. The total number of elements and nodes are 20 

and 21, respectively. Young’s modulus, E=70 GPa, while density ρ=2.70×10
3
 kg/m

3

 
and Poisson 

ratio μ=0.33. Two study cases in Kang, Li et al. (2012) are re-examined. The parameters used in 

PSO method are same as the those in reference literature (Kang, Li et al. 2012), i.e., pr=0.05, 

pv=0.25, sp=1.8, b=5. The first 3 natural frequencies and mode shapes are utilized in these two 

cases same with reference cases. The natural frequencies are contaminated with 1% noise and 10% 

noise isadded to the modal displacement to simulate the noise contaminated measurements (Kang, 

Li et al. 2012). 

 

4.2.1 Damage case 1 
This case presents multiple severe damage cases with the assumption that element 1 and 

element 9 have 50% and 87.5% reduction in elemental stiffness, respectively.  

Both the conditions with and without noise are considered. Fig. 2 shows the identification 

results for both noise-free and noise-contaminated conditions, using GSA and PSO, respectively. 

In noise-free condition, the results from GSA and PSO converge to the true values quickly and  
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Fig. 2 Comparison on damage detection results for case 1 of the beam 

 
Table 1Damage detection result fora beam structure 

Case Element Identification result (%) True value (%) Error (%) 

Case 1 

1 
GSA  47.36 

50 
2.64 

PSO  48.85 1.15 

9 
GSA  87.37 

87.5 
1.1 

PSO  87.30 1.6 

Case 2 

2 8.15 10 1.85 

9 6.21 10 3.79 

16 12.00 15 3.0 

6
* 

1.12 0 1.12 

8
* 

2.49 0 2.49 

a
* 
denotes false alarm, the same below. 

 

 

accurately. In noise-contaminated condition, the damage detection results and relative errors are 

demonstrated in Table 1. The maximum identification error is 2.4% for GSA in element 1. The 

final converged fitness value is 8.64×10
-4

 for GSA, while 0.0151 for PSO. The evolution processes 

of damage extent in elements 1 and 9 in noise condition are shown in Fig. 3(a), (b), respectively. It 

can be observed in both subplots of Fig. 3, the identified results from both PSO and GSA converge 

to the true damage extents. But the convergence speed of PSO seems be faster than that of GSA in  
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Fig. 3 The evolutionary process of damaged element for case 1 of the beam 

 

 

Fig. 4 Evolutionary process of fitness value for case 1 of the beam 

 

 

this case. In the early stage, the damage indices from GSA fluctuate between boundaries with the 

decreasing amplitude with the lapse of iterations. The evolutionary process of fitness value is 

shown in Fig. 4. These results indicate the correctness and effectiveness of proposed approach.  
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Table 2 Statistical results of the evaluation fitness  

Fitness value GSA PSO(Kang et al. 2012) 

Best 0.000864 0.0151 

worst 0.00251 0.0533 

Mean 0.00097 0.0324 

Mean iterations 200 50 

 

 

Fig. 5 Comparison on damage detection results from GSA and PSO for case 2 of the beam 

 

 

Table 2 shows the detailed statistical results of the evaluation fitness for each corresponding 

algorithm. 

 

4.2.2 Damage case 2 
The second case assumes that element 2 and element 9 have both 10% reduction in stiffness 

meanwhile element 16 has 15%, i.e., d2=0.1, d9=0.1 and d16=0.15. Both the conditions with and 

without noise are considered. Damage detection results are shown in Fig. 5 using both GSA and 

PSO. In noise-free condition, the identified results from GSA converge to the true value fast and 

accurately. But due to the premature convergence of PSO, it fails to identify the damaged 

elements. In the same noise-contaminated condition, GSA identified all three damages successfully 

with two false alarms. The evolutionary processes in noise condition of damaged elements are 

illustrated in Fig. 6. Relative errors are listed in Table 1 with maximum identified error 3.79% at 

element 9. And the evolution process of fitness value in noise condition is shown in Fig. 7. The 

final converged fitness value in noise condition is 8.13×10
-4

. 
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Fig. 6 Evolutionary processes of damaged elements by GSA for case 2 of the beam 

 

 

Fig. 7 Process of evolution of fitness value for case 2 of the beam 

 

 

4.3 A truss structure 
 

A 31-bar truss structure shown in Fig. 8 is studied as an example. The length of each 

exteriorbar is l=1 m, and length of each interior bar is 1.41 m. The section area of each bar is  
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Fig. 8A 31-bar truss structure 

 

 

Fig. 9 Damage detection results for case 1 of the truss structure 

 

 

A=0.004 m
2
. Young’s modulus E=200 GPa, and density ρ=7800 kg/m

3
.Total number of elements 

and nodes are 31 and 14, respectively. The first 5 natural frequencies and modal shapes are 

adopted in the damage identification. The natural frequencies are contaminated with 1% uniform 

noise and 10% uniform noise is added to the modal displacement to simulate the noise 

contaminated measurement. 

 
4.3.1 Damage case 1 
Damages are assumed to locate in element 6, 17 and 23, with a reduction of 30%, 15% and 

20% in each stiffness parameter, respectively. Both the conditions with and without noise are 

considered. The identified results are shown in Fig. 9. When the measurement noise is free, all 

damages have been identified successfully with no identified error and no false alarms. In noise-

contaminated condition, the three damaged elements have been located successfully with a 

maximum identified error of 2.6% at element 23. And there are three false alarms at elements 21, 

25 and 29. The relative errors for the identification are shown in Table 3. Meanwhile, the evolution 

processes of element damage indices in noise condition are illustrated in Fig. 10. In the noise-

polluted environment, final converged fitness value is 0.0015.  
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Table 3 Damage detection results for a truss structure 

Case Element Identification results (%) True value (%) Error (%) 

Case 1 

6 29.37 30 0.9 

17 15.98 15 1.2 

23 17.39 20 2.6 

21
* 

2.72 0 2.7 

25
* 

6.46 0 6.46 

29
* 

3.21 0 3.21 

Case 2 

2 30.56 30 0.56 

10 42.29 40 2.29 

17 21.16 20 0.84 

18 20.65 25 4.35 

23 34.09 35 0.91 

28 20.41 23 2.59 

12
* 

3.25 0 3.25 

29
* 

4.42 0 4.42 

 

 

Fig. 10 Evolutionary processes of damaged elements for case 1 of the truss structure 

 

 

4.3.2 Damage case 2 
In this case, 6 damages are assumed to locate at elements 2, 10, 17, 18, 23 and 28, with 

reduction in stiffness by 30%, 40%, 20%, 25% 35% and 23%, respectively. Element 17 and 18 are  
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Fig. 11 Identified results for case 2 of the truss structure 

 

 

Fig. 12 Evolutionary processes of damaged elements for case 2 of the truss structure 

 

 

two adjacent elements. The detection results are shown in Fig. 11 for both noise-free and noise-

contaminated conditions. When the measurement noise is free, the identified results converge to 

the true values without false alarms. In noise condition, the six damages have been identified 

successfully with maximum identified error of 4.35% at element 18. The relative identified errors  
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Fig. 13 Process of evolution of fitness value in case 2 of the truss structure 

 

 

Fig. 14 Sketch of a four-edge simply supported plate ((1), (2), …, (63) denote node number of the FEM; 

1,2,…,48 denote element number) (Dimensions not scaled) 
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Fig. 15 The damage detection results in the plate 

 

 

are listed in Table 3. Fig. 12 shows the evolution processes of all damaged elements in noise 

condition. In the same noise-polluted environment, evolution process of fitness value is 

demonstrated in Fig. 13 with final converged fitness value 0.0018.  

 

4.4 A four-edge simply supported plate 
 

Fig. 14 shows a thin plate with four edges simply supported and with dimensions of 4 m×3 

m×0.1 m. The physical material properties of the plate are: Young’s modulus E=210 GPa, mass 

density ρ=7850 kg/m
3
 and Poisson’s ratio υ=0.3. In the finite element model, the plate was 

discretized into 48four-node Kirchhoff plate elements. 

Seven damages are assumed to locate at elements 1, 12, 19, 24, 27, 38 and 45 with reduction in 

stiffness by 15%, 30%, 16%, 23%, 30%, 15% and 18%, respectively. The first 10 natural 

frequencies and mode shapes are used in the damage identification. They are also polluted by 1% 

and 10% uniform noise, respectively. The identified results are shown in Fig. 15(a), (b) for both 

noise-free and noise-contaminated conditions. Again, when the measurement noise is free, the 

identified results converge to the true values and without false alarm. In noise condition, these 

seven damages have been identified successfully with maximum identified error of 4.66% at  
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Table 4 Damage detection result for a plate structure 

Element Identification results (%) True value (%) Error (%) 

1 11.16 15 3.84 

12 26.64 30 3.36 

19 16.61 16 0.61 

24 18.34 23 4.66 

27 27.27 30 2.73 

38 13.53 15 1.47 

45 23.82 28 4.28 

2
* 

3.11 0 3.1 

6
* 

2.33 0 2.3 

7
* 

4.98 0 5.0 

18
* 

6.26 0 6.3 

30
*
 3.98 0 4.0 

44
*
 3.35 0 3.4 

 

 

Fig. 16 Evolutionary processes of damaged elements in the plate 
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Fig. 17 Evolutionary process of fitness value for the plate 

 

 

element 24. Relative errors of elements are listed in Table 4. Fig. 16 illustrates the processes of 

evolution of damaged elements in noise condition. The process of evolution of fitness value is 

shown in Fig. 17. This example further illustrates the correctness and robustness of the proposed 

method. 

 

 

5. Conclusions 
 

A damage identification method based on vibration data using gravitational search algorithm is 

proposed in this study. An objective function based on natural frequencies and mode shapes is 

established for structural damage identification. Three different structures are studied to illustrate 

correctness and efficiency of the proposed methods. Good identification results can be obtained 

even with noise-contaminated measurement data. Study shows that the proposed method is not 

sensitive to measurement noise. The advantage of the proposed method is that it is easy to 

implement as only the first few modal data are needed in the identification.  

 

 

Acknowledgements 
 

This work is supported by the National Natural Science Foundation of China (11272361, 

745



 

 

 

 

 

 

J.K. Liu, Z.T. Wei, Z.R. Lu and Y.J. Ou 

11572356), the Guangdong Province Science and Technology Program (2014A020218004), and 

Guangdong Province Natural Science Foundation (2015A030313126). Such financial aids are 

gratefully acknowledged. 

 
 
Reference 
 
Bahrololoum, A., Nezamabadi-Pour, H., Bahrololoum, H. and Saeed, M. (2012), “A prototype classifier 

based on gravitational search algorithm”, Appl. Soft Comput., 12(2), 819-825. 

Begambre, O. and Laier, J.E. (2009), “A hybrid Particle Swarm Optimization-Simplex algorithm (PSOS) for 

structural damage identification”, Adv. Eng. Softw., 40(9), 883-891. 

Buezas, F.S., Rosales, M.B. and Filipich, C.P. (2011), “Damage detection with genetic algorithms taking into 

account a crack contact model”, Eng. Fract. Mech., 78(4), 695-712. 

Chou, J.H. and Ghaboussi, J. (2001), “Genetic algorithm in structural damage detection”, Comput. Struct., 

79(14), 1335-1353. 

Doebling, S.W., Farrar, C.R. and Prime, M.B. (1998), “A summary review of vibration-based damage 

identification methods”, Shock Vib. Dig., 30(2), 91-105. 

Eberhart, R.C. and Kennedy, J. (1995), “A new optimizer using particle swarm theory”. Proceedings of the 

sixth International Symposium on Micro Machine and Human Science, New York, NY. 

Farivar, F. and Shoorehdeli, M.A. (2016), “Stability analysis of particle dynamics in gravitation search 

optimization algorithm”, Inform. Sci., 337-338, 25-43. 

Ghorbani, F. and Nezamabadi-pour, H. (2012), “On the convergence analysis of gravitational search 

algorithm”, J. Adv. Comput. Res., 3(2), 45-51.  

Hao, H. and Xia, Y. (2002), “Vibration-based damage detection of structures by genetic algorithm”, J. 

Comput. Civil Eng., 16(3), 222-229. 

He, R.S. and Hwang, S.F. (2006), “Damage detection by an adaptive real-parameter simulated annealing 

genetic algorithm”, Comput. Struct., 84(31), 2231-2243. 

Housner, G.W., Bergman, L.A., Caughey, T., Chassiakos, A., Claus, R., Masri, S. and Yao, J.T. (1997), 

“Structural control: past, present, and future”, J. Eng. Mech., 123(9), 897-971. 

Kang, F., Li, J.J. and Xu, Q. (2012), “Damage detection based on improved particle swarm optimization 

using vibration data”, Appl. Soft Comput., 12(8), 2329-2335. 

Kennedy, J. and Eberhart, R. (1995), “Particle swarm optimization”, Proceedings of IEEE International 

Conference on Neural Networks, Perth, Australia. 

Khatibinia, M. and Naseralavi, S.S. (2014), “Truss optimization on shape and sizing with frequency 

constraints based on orthogonal multi-gravitational search algorithm“, J. Sound Vib., 333(24), 6349-6369. 

Li, C. and Zhou, J. (2011), “Parameters identification of hydraulic turbine governing system using improved 

gravitational search algorithm”, Energy Convers. Manag., 52(1), 374-381. 

Li, S. and Lu, Z.R. (2015), “Multi-swarm fruit fly optimization algorithm for structural damage 

identification”, Struct. Eng. Mech., 56(3), 409-422. 

Mohan, S., Maiti, D.K. and Maity, D. (2013), “Structural damage assessment using FRF employing particle 

swarm optimization”, Appl. Math. Comput., 219(20), 10387-10400. 

Poli, R., Kennedy, J. and Blackwell, T. (2007), “Particle swarm optimization”, Swarm Intel., 1(1), 33-57. 

Rashedi, E., Nezamabadi-pour, H. and Saryazdi, S. (2009), “GSA: a gravitational search algorithm”, Inform. 

Sci., 179(13), 2232-2248. 

Rashedi, E., Nezamabadi-Pour, H. and Saryazdi, S. (2011), “Filter modeling using gravitational search 

algorithm”, Eng. Appl. Artif. Intel., 24(1), 117-122. 

Sahoo, B. and Maity, D. (2007), “Damage assessment of structures using hybrid neuro-genetic algorithm”, 

Appl. Soft Comput., 7(1), 89-104. 

Sarafrazi, S. and Nezamabadi-pour, H. (2013), “Facing the classification of binary problems with a GSA-

SVM hybrid system”, Math. Comput. Model., 57(1), 270-278. 

746

http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=3&SID=Q1g5ofDASbMXrMrnDyW&page=1&doc=5
http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=3&SID=Q1g5ofDASbMXrMrnDyW&page=1&doc=5


 

 

 

 

 

 

Structural damage identification using gravitational search algorithm 

Shi, Y.H. and Eberhart, R. (1998), “A modified particle swarm optimizer”, Evolutionary Computation 

Proceedings of the IEEE World Congress on Computational Intelligence, 69-73. 

Su, Z.K. and Wang H.L. (2015), “A novel robust hybrid gravitational search algorithm for reusable launch 

vehicle approach and landing trajectory optimization“, Nerocomput., 162, 116-127. 

Vakil-Baghmisheh, M.T., Peimani, M., Sadeghi, M.H. and Ettefagh, M.M. (2008), “Crack detection in 

beam-like structures using genetic algorithms”, Appl. Soft Comput., 8(2), 1150-1160. 

Vakil Baghmisheh, M.T., Peimani, M., Sadeghi, M.H., Ettefagh, M.M. and Tabrizi, A.F. (2012), “A hybrid 

particle swarm-Nelder-Mead optimization method for crack detection in cantilever beams”, Appl. Soft 

Comput., 12(8), 2217-2226. 

Xu, H.J., Ding, Z.H., Lu, Z.R. and Liu, J.K. (2015), “Structural damage detection based on Chaotic Artificial 

Bee Colony algorithm”, Struct. Eng. Mech., 55(6), 1223-1235. 

Xu, B.C. and Zhang, Y.Y. (2014), “An improved gravitational search algorithm for dynamic neural network 

identification”, Int. J. Automat. Comput., 11(4), 434-440.  

Yuan, X.H., Chen, Z.H. Yuan, Y.B. (2015), “A strength Pareto Gravitational Search Algorithm for multi-

objective optimization problems”, Int. J. Patt. Recog. Artif. Intel., 29(6), 1559010.  

 
 
CC 

747

http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=2&SID=Q1g5ofDASbMXrMrnDyW&page=4&doc=33
http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=2&SID=Q1g5ofDASbMXrMrnDyW&page=4&doc=33
http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=3&SID=Q1g5ofDASbMXrMrnDyW&page=10&doc=100
http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=3&SID=Q1g5ofDASbMXrMrnDyW&page=10&doc=100
http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=2&SID=Q1g5ofDASbMXrMrnDyW&page=3&doc=25
http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=2&SID=Q1g5ofDASbMXrMrnDyW&page=3&doc=25



