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Abstract.  Sinusoidal shear deformation theory (SSDT) is developed here for dynamic buckling of 

functionally graded (FG) nano-plates. The material properties of plate are assumed to vary according to 

power law distribution of the volume fraction of the constituents. In order to present a realistic model, the 

structural damping of nano-structure is considered using Kelvin-Voigt model. The surrounding elastic 

medium is modeled with a novel foundation namely as orthotropic visco-Pasternak medium. Size effects are 

incorporated based on Eringen’n nonlocal theory. Equations of motion are derived from the Hamilton’s 

principle. The differential quadrature method (DQM) in conjunction with Bolotin method is applied for 

obtaining the dynamic instability region (DIR). The detailed parametric study is conducted, focusing on the 

combined effects of the nonlocal parameter, orthotropic visco-Pasternak foundation, power index of FG 

plate, structural damping and boundary conditions on the dynamic instability of system. The results are 

compared with those of first order shear deformation theory and higher-order shear deformation theory. It 

can be concluded that the proposed theory is accurate and efficient in predicting the dynamic buckling 

responses of system. 
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1. Introduction 
 

Functionally graded materials (FGMs) are a class of composites that have continuous variation 

of material properties from one surface to another and thus eliminate the stress concentration 

found in laminated composites. FGMs are widely used in many structural applications such as 

mechanics, civil engineering, aerospace, nuclear, and automotive. In company with the increase in 

the application of FGM in engineering structures, many computational models have been 

developed for predicting the response of FG plates.  

Mechanical analysis on two dimensional plates was taken up by several researchers lately. 

Amabili (2004) worked on rectangular plates with different boundary conditions. Malekzadeh 

(2008), investigated tapered Mindlin plates with edges elastically restrained against rotation. Li 
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and Cheng (2005) studied orthotropic plates with finite deformation and transverse shear effect. 

Chien and Chen (2006) worked on laminated plates on an elastic foundation.  

None of the above research studies did consider nano-application. A non-local plate model was 

proposed by Lu, Zhang et al. (2007) based on Eringen’s theory of non-local continuum mechanics. 

The bending and free vibration problems of a rectangular plate with simply supported edges are 

solved and the exact non-local solutions are discussed in relation to their corresponding local 

solutions. Narendar (2011) presented the buckling analysis of isotropic nano plates using the two 

variable refined plate theory and nonlocal small scale effects. It can be concluded that the present 

theory, which does not require shear correction factor, is not only simple but also comparable to 

the first-order and higher order shear deformable theory. Ghorbanpour Arani, Mosallaie Barzoki et 

al. (2011) studied Pasternak foundation effect on the axial and torsional waves propagation in the 

embedded double-walled carbon nanotubes (DWCNTs) using nonlocal elasticity cylindrical shell 

theory. The bending behaviors of the nano plate with small scale effects were investigated by 

Wang and Li (2012) using the nonlocal continuum theory. It can be observed that the small scale 

effects are obvious for bending properties of the nano plate. Transverse vibration of orthotropic 

DLGSs embedded in an elastic medium under thermal gradient is studied by Ghorbanpour Arani, 

Kolahchi et al. (2012) using nonlocal elasticity orthotropic plate theory. Lei, He et al. (2013a) 

developed a novel size-dependent beam model made of FGMs based on the strain gradient 

elasticity theory and SSDT. It is established that the present FG micro beams exhibit significant 

size-dependence when the thickness of the micro beam approaches to the material length scale 

parameter. The present model was capable of capturing both small scale effect and transverse shear 

deformation effects of nano beams, and does not require shear correction factors. The small scale 

effect on the bending of nano plates, such as grapheme sheets, embedded in two-parameter elastic 

medium and subjected to hydro-thermo-mechanical loading was studied by Zenkour (2013). A 

new higher order shear deformation theory based on trigonometric shear deformation theory was 

developed by Nami and Janghorban (2013). The effects of different parameters such as nonlocal 

parameter and aspect ratio are investigated on the deflections. In another work, Nami and 

Janghorban (2014) investigated the bending analysis of rectangular nano plates subjected to 

mechanical loading. It was established that by increasing the gradient coefficient, the deflections 

will decrease for both thin and thick rectangular nanoplates. Based on a nonlocal elasticity theory, 

Karličić (2014) structured nonlocal elasticity theory which was widely used for the analytical and 

computational modeling of stiffness coefficients of the elastic mediums and the number of layers 

on the natural frequencies and buckling load. Chakraverty and Behera (2015) studied free 

vibration of non-uniform embedded nanoplates based on classical plate theory in conjunction with 

nonlocal elasticity theory. The thermal effect on free vibration characteristics of FG size-dependent 

nanobeams subjected to various types of thermal loading was investigated by Ebrahimi and Salari 

(2015) presenting a Navier type solution and employing a semi analytical differential transform 

method (DTM) for the first time. 

However, to date, no report has been found in the literature on dynamic stability of viscoelastic 

nano-plate subjected to biaxial harmonic load based on SSDT. Motivated by these considerations, 

in order to improve optimum design of nanostructures, we aim to present a realistic model for 

dynamic instability of nano-plates resting on orthotropic visco-Pasternak medium considering the 

viscoelastic property of the nano-plates. Nano-plates are subjected to biaxial harmonic load and 

modeled by SSDT.DQM is used in order to calculate the DIR of visco-nano-plates. To confirm the 

validity of the present research, the results are compared with those reported in the literature. The 

effects of the nonlocal parameter, orthotropic visco-Pasternak foundation, power index of FG  
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Fig. 1 Schematic of viscoelastic FG nano-plate embedded in orthotropic visco Pasternak foundation 

 

 

plate, structural damping and boundary conditions on the dynamic instability of visco-system are 

elucidated. 

 

 

2. Theoretical formulations 
 

A schematic figure of viscoelastic FG plate resting on orthotropic visco-Pasternak foundation is 

shown in Fig. 1.  

Based on the SSDT, the displacement field of system can be written as (Zenkour 2009) 
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The kinematic relations can be obtained as follows 
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where 
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2.1 Constitutive equations 

 

The material properties of FG nano-plate are assumed to vary continuously through the 

thickness of the plate in accordance with a power law distribution as 
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where P represents the effective material property such as Young’s modulus and mass density. 

Subscripts M and C represent the metallic and ceramic constituents, respectively; and p is the 

volume fraction exponent. The value of p equal to zero represents a fully ceramic nano-plate, 

whereas infinite p indicates a fully metallic nano-plate. Since the effects of the variation of 

poison’s ratio on the response of FG nano-plates is very small. Based on Eringen’s nonlocal theory, 

the linear constitutive relations of a FG nano-plate can be written as (Eringen 1983) 
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(6) 

where C11 are elastic constants and e0a represents the size effects. All materials exhibit some 

viscoelastic response.According to Kelvin-Voigt (Lei, Adhikari et al. 2013b) at real life, nano 

structure mechanical properties depend on the time variation. This model represents,as the stress is 

released, the material gradually relaxes to its undeformed state.By considering this model,we have 

     1  ,ij ijC C g
t
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where g is structural damping constant. 

 
2.2 Equations of motion 

 

Hamilton’s principle is used herein to derive the equations of motion. The principle can be 

stated in analytical form as 
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       ,0
0

dtKWU
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    (8) 

where δU is the variation of potential energy; δW is the variation of external works; and δK is the 

variation of kinetic energy. The variation of strain energy of the FGM viscoelastic nano-plate is 

calculated by 
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where N, M, and Q are the stress resultants which may be defined as 
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The variation of external works can be expressed as 

     dAUqW
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where q is transverse loads due to orthotropic elastic foundation which is (2012) 
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where angle θ describes the local ξ direction of orthotropic foundation with respect to the global x-

axis of the plate; k, Gξ and Gη are Winkler foundation parameter, shear foundation parameters in ξ 

and η directions, respectively. 

The variation of kinetic energy of the nano-plate can be written as 
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where the mass inertias can be defined as 
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Substituting the expressions for δU, δW, and δK from Eqs. (9)-(14) into Eq. (8) yields the 

following motion equations 
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By substituting Eqs. (6) and (7) into Eqs. (10) and (11) the stress resultants are obtained as 
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(20) 

By substituting Eqs. (17)-(19)into Eq. (16), the equations of motion can be expressed as 
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3. DQM 
 

In this method, the differential equations are changed into a first order algebraic equation by 

employing appropriate weighting coefficients. Because weighting coefficients do not relate to any 

special problem and only depend on the grid spacing. In other words, the partial derivatives of a 

function (say w here) are approximated with respect to specific variables (say x and y), at a 

discontinuous point in a defined domain (0<x<Lx and 0<y<Ly) as a set of linear weighting 

coefficients and the amount represented by the function itself at that point and other points 

throughout the domain. The approximation of the nth and mth derivatives function with respect to 

x and y , respectively may be expressed in general form as (Ghorbanpour Arani, Kolahchi et al. 

2012) 
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 (25) 

where Nx and Ny, denotes the number of points in x and ydirections, f(x,y) is the function and Aik, 

Bjl are the weighting coefficients defined as  
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where M and P are Lagrangian operators defined as 
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The weighting coefficients for the second, third and fourth derivatives are determined via 

matrix multiplication 
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Using the following rule, the distribution of grid points in domain is calculated as 
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Let the in-plane load P be periodic and may be expressed as 

(30)        ( ) cos( t),cr crP t P P     

where ω is the frequency of excitation, Pcr is the static buckling load, α and β may be defined as 

static and dynamic load factors, respectively. Now Eq. (26) can be written as  

         ],0[]][[]][[]][)cos([  dMdCdKtPKPK GcrGcr


 

(31) 

In order to determinate the boundaries of dynamic instability regions, the method suggested by 

Bolotin (1964) is applied. Hence, the components of {d} can be written in the Fourier series with 

period 2T as 

(32)           
1,3,...

sin cos  ,
2 2k k

k

k t k t
d a b

 



 
  

 
  

According to this method, the first instability region is usually the most important in studies of 

structures. It is due to the fact that the first DIR is wider that other DIRs and structural damping in 

higher regions becomes neutralize (Lanhe, Hongjun et al. 2007). Substituting Eq. (32) into Eq. 

(31) and setting the coefficients of each sine and cosine as well as the sum of the constant terms to 

zero, yields 

(33)               
2

0 .
2 2 4

L NL cr crG G
K K P K P K C M

  


 
     

 
 

Solving the above equation based on eigenvalue problem, the variation of ω with respect to α 

can be plotted as DIR. 

 

 

4. Results and discussion 
 

In this section, the nano-plate is composed of aluminum (as metal) and alumina (as ceramic). 

The Young’s modulus and density of aluminum are Em=70 Gpa and ρm=2702 kg/m3 respectively, 

and those of alumina are Ec=380 Gpa and ρc=3800 kg/m3 respectively.  
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Table 1 Comparison of this work with Hosseini-Hashemi et al. (2011a, 2011b) 

a/h Method 
Power law index (p) 

0 0.5 1 2 5 8 10 
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FSDT, (2011a) 

TSDT, (2011b) 
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Fig. 2 Dimensionless pulsation amplitude versus dimensionless pulsation frequency for different 

nonlocal parameters 

 

 

To the best of the authors’ knowledge no published literature is available for viscoelastic FGM 

nano-plate embedded in an orthotropic visco-Pasternak foundation based on SSDT. Since, no 

reference to such a work is found to-date in the literature, its validation is not possible. However, 

in an attempt to validate this work as far as possible, a simplified analysis of this paper is carried 

out without considering the nonlocal parameter, orthotropic visco-Pasternak foundation and 

viscoelastic property of system. Present results are compared with the work of Hosseini-Hashemi, 

Fadaee et al. (2011a, 2011b) based on Third-order shear deformation theory (TSDT) and First-

order shear deformation theory (FSDT), respectively. Considering the material properties the same 

as Hosseini-Hashemi, Fadaee et al. (2011a, 2011b) and dimensionless frequency as 

CC Eh /  , the results of comparison are shown in Table 1.As can be seen, present results 

are in good agreement with Hosseini-Hashemi, Fadaee et al. (2011a, 2011b), indication validation 

of this work.  
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Fig. 3 Dimensionless pulsation amplitude versus dimensionless pulsation frequency for different 

structural damping constants 

 

 

Generally, in all of the following figures, in order to show the DIR, the pulsation frequency is 

plotted against pulsation amplitude. In these figures, the regions inside and outside the boundary 

curves correspond to unstable (parametric resonance) and stable regions, respectively.  

Fig. 2 demonstrates the graph of DIR for different the nonlocal parameters. It can be found that 

the frequency of the system decreases as the nonlocal parameter is increased. It means that with 

increasing nonlocal parameter, DIR of system happens in lower frequencies. This is because 

increasing the nonlocal parameter implies decreasing interaction force between nano-plate atoms 

leads to a softer structure. In addition, with increasing nonlocal parameter, the instability region of 

system becomes smaller. 

Fig. 3 demonstrates the DIR for different structural damping constant. As can be seen, the DIR 

and natural frequency of visco-nanoplate are lower than those of non-visco-nanoplate (i.e., g=0). 

This remarkable difference show that considering the nature of FGM nanoplate as viscoelastic can 

yield the accurate results with respect to non-visco-nanoplate. The reason is that assuming 

viscoelastic nano-plate means induce of damping force which results in more absorption of 

vibration energy by the nano-plate.  

The influences of the viscoelastic medium type on the DIR of system are shown in Fig. 4. As 

can be seen considering elastic medium increases the frequency of FGM visco-nanoplate. This is 

due to the fact that considering elastic medium leads to a stiffer structure. The frequency predicted 

by visco-Pasternak-type is higher than the visco-Winkler-type. It is perhaps due to the fact that the 

Winkler-type is capable to describe just normal load of the elastic medium while the Pasternak-

type describes both transverse shear and normal loads of the elastic medium.  

The effect of power index of FG model on the DIR of the nano structure is shown in Fig. 5. It is 

obvious that with increasing power index of FG model, the instability region happens in higher 

pulsation frequencies.   

In realizing the influence of boundary conditions, Fig. 6 shows how the pulsation frequency 

changes with respect to pulsation amplitude. It is found that the frequency of the system for CCCC  
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Fig. 4 Dimensionless pulsation amplitude versus dimensionless pulsation frequency for different 

elastic medium 
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Fig. 5 Dimensionless pulsation amplitude versus dimensionless pulsation frequency for different 

power index of FG model 
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Fig. 6 Dimensionless pulsation amplitude versus dimensionless pulsation frequency for different 

boundary conditions 
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and SSSS boundary conditions is maximum and minimum, respectively. It is due to the fact that 

the stability of system if maximum in CCCC boundary condition case. 

 

 

5. Conclusions 
 

Dynamic response of nano-plates has applications in designing many NEMS/MEMS devices. 

Biaxial harmonic load induced dynamic instability of FGM nano-plates considering structural 

damping and orthotropic viscoelastic foundation was the main contributions of the present paper. 

The FGM nano-platesare simulated by SSDT and size effects were considered using Eringen’s 

nonlocal theory. Bolotin method in conjunction with DQM were used for calculating the DIR of 

the viscoelastic FGM nano-plates so that the effects of nonlocal parameter, orthotropic visco-

Pasternak foundation, power index of FG model, structural damping and boundary conditions were 

discussed. Results depict that considering the nature of FGM nano-plate as viscoelastic can yield 

the accurate results with respect to non-visco-nanoplate. Furthermore, the frequency of the system 

decreases as the nonlocal parameter was increased. In addition, with increasing power index of FG 

model, the instability region happens in higher pulsation frequencies. The results of this study 

were in good agreement with those reported by Hosseini-Hashemi, Fadaee et al. (2011a, 2011b). 

The results presented in this work can be useful for the study and design of the next generation of 

nano/micro structures that make use of the nonlocal dynamic instability of viscoelastic FGM nano-

plate embedded in viscoelastic medium. 
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