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Abstract.  Sinusoidal shear deformation theory (SSDT) is developed here for dynamic buckling of
functionally graded (FG) nano-plates. The material properties of plate are assumed to vary according to
power law distribution of the volume fraction of the constituents. In order to present a realistic model, the
structural damping of nano-structure is considered using Kelvin-Voigt model. The surrounding elastic
medium is modeled with a novel foundation namely as orthotropic visco-Pasternak medium. Size effects are
incorporated based on Eringen’n nonlocal theory. Equations of motion are derived from the Hamilton’s
principle. The differential quadrature method (DQM) in conjunction with Bolotin method is applied for
obtaining the dynamic instability region (DIR). The detailed parametric study is conducted, focusing on the
combined effects of the nonlocal parameter, orthotropic visco-Pasternak foundation, power index of FG
plate, structural damping and boundary conditions on the dynamic instability of system. The results are
compared with those of first order shear deformation theory and higher-order shear deformation theory. It
can be concluded that the proposed theory is accurate and efficient in predicting the dynamic buckling
responses of system.
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1. Introduction

Functionally graded materials (FGMSs) are a class of composites that have continuous variation
of material properties from one surface to another and thus eliminate the stress concentration
found in laminated composites. FGMs are widely used in many structural applications such as
mechanics, civil engineering, aerospace, nuclear, and automotive. In company with the increase in
the application of FGM in engineering structures, many computational models have been
developed for predicting the response of FG plates.

Mechanical analysis on two dimensional plates was taken up by several researchers lately.
Amabili (2004) worked on rectangular plates with different boundary conditions. Malekzadeh
(2008), investigated tapered Mindlin plates with edges elastically restrained against rotation. Li
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and Cheng (2005) studied orthotropic plates with finite deformation and transverse shear effect.
Chien and Chen (2006) worked on laminated plates on an elastic foundation.

None of the above research studies did consider nano-application. A non-local plate model was
proposed by Lu, Zhang et al. (2007) based on Eringen’s theory of non-local continuum mechanics.
The bending and free vibration problems of a rectangular plate with simply supported edges are
solved and the exact non-local solutions are discussed in relation to their corresponding local
solutions. Narendar (2011) presented the buckling analysis of isotropic nano plates using the two
variable refined plate theory and nonlocal small scale effects. It can be concluded that the present
theory, which does not require shear correction factor, is not only simple but also comparable to
the first-order and higher order shear deformable theory. Ghorbanpour Arani, Mosallaie Barzoki et
al. (2011) studied Pasternak foundation effect on the axial and torsional waves propagation in the
embedded double-walled carbon nanotubes (DWCNTSs) using nonlocal elasticity cylindrical shell
theory. The bending behaviors of the nano plate with small scale effects were investigated by
Wang and Li (2012) using the nonlocal continuum theory. It can be observed that the small scale
effects are obvious for bending properties of the nano plate. Transverse vibration of orthotropic
DLGSs embedded in an elastic medium under thermal gradient is studied by Ghorbanpour Arani,
Kolahchi et al. (2012) using nonlocal elasticity orthotropic plate theory. Lei, He et al. (2013a)
developed a novel size-dependent beam model made of FGMs based on the strain gradient
elasticity theory and SSDT. It is established that the present FG micro beams exhibit significant
size-dependence when the thickness of the micro beam approaches to the material length scale
parameter. The present model was capable of capturing both small scale effect and transverse shear
deformation effects of nano beams, and does not require shear correction factors. The small scale
effect on the bending of nano plates, such as grapheme sheets, embedded in two-parameter elastic
medium and subjected to hydro-thermo-mechanical loading was studied by Zenkour (2013). A
new higher order shear deformation theory based on trigonometric shear deformation theory was
developed by Nami and Janghorban (2013). The effects of different parameters such as nonlocal
parameter and aspect ratio are investigated on the deflections. In another work, Nami and
Janghorban (2014) investigated the bending analysis of rectangular nano plates subjected to
mechanical loading. It was established that by increasing the gradient coefficient, the deflections
will decrease for both thin and thick rectangular nanoplates. Based on a nonlocal elasticity theory,
Karli¢i¢ (2014) structured nonlocal elasticity theory which was widely used for the analytical and
computational modeling of stiffness coefficients of the elastic mediums and the number of layers
on the natural frequencies and buckling load. Chakraverty and Behera (2015) studied free
vibration of non-uniform embedded nanoplates based on classical plate theory in conjunction with
nonlocal elasticity theory. The thermal effect on free vibration characteristics of FG size-dependent
nanobeams subjected to various types of thermal loading was investigated by Ebrahimi and Salari
(2015) presenting a Navier type solution and employing a semi analytical differential transform
method (DTM) for the first time.

However, to date, no report has been found in the literature on dynamic stability of viscoelastic
nano-plate subjected to biaxial harmonic load based on SSDT. Motivated by these considerations,
in order to improve optimum design of nanostructures, we aim to present a realistic model for
dynamic instability of nano-plates resting on orthotropic visco-Pasternak medium considering the
viscoelastic property of the nano-plates. Nano-plates are subjected to biaxial harmonic load and
modeled by SSDT.DQM is used in order to calculate the DIR of visco-nano-plates. To confirm the
validity of the present research, the results are compared with those reported in the literature. The
effects of the nonlocal parameter, orthotropic visco-Pasternak foundation, power index of FG
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Fig. 1 Schematic of viscoelastic FG nano-plate embedded in orthotropic visco Pasternak foundation

plate, structural damping and boundary conditions on the dynamic instability of visco-system are
elucidated.

2. Theoretical formulations

A schematic figure of viscoelastic FG plate resting on orthotropic visco-Pasternak foundation is
shown in Fig. 1.
Based on the SSDT, the displacement field of system can be written as (Zenkour 2009)
u,(X,Y,Z,T)=U(X,Y,T)-Z W, _ ¢ OW,
oX oX

U,(X.Y,Z,T)=V(X,Y,T)—z Mo _ § W (1)
N oy

U,(X,Y,Z,T)=W,(X,Y,T)+W,(X,Y,T)

where
f=2- (ﬁsin E) 2
T h
The kinematic relations can be obtained as follows
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oW,
Yvz oY
=0 3)
{7 Xz } oW,
oX
where
df 7z
g=1- - cos(T) (@)

2.1 Constitutive equations

The material properties of FG nano-plate are assumed to vary continuously through the
thickness of the plate in accordance with a power law distribution as

P@) =Ry +(R—R)G+2)" ©)

where P represents the effective material property such as Young’s modulus and mass density.
Subscripts M and C represent the metallic and ceramic constituents, respectively; and p is the
volume fraction exponent. The value of p equal to zero represents a fully ceramic nano-plate,
whereas infinite p indicates a fully metallic nano-plate. Since the effects of the variation of
poison’s ratio on the response of FG nano-plates is very small. Based on Eringen’s nonlocal theory,
the linear constitutive relations of a FG nano-plate can be written as (Eringen 1983)

T ox| [Cy, C, 0 0 0 7[en
o oyl lc, C, 0 0 0|ls, ©)
on r—(€a)?*Viol, t=[ 0 0 C, 0 0 [e,
o sl 10 0 0 Cy 0|
o oy | L 0 0 0 0 Cgllrx

where Cy; are elastic constants and eqja represents the size effects. All materials exhibit some
viscoelastic response.According to Kelvin-Voigt (Lei, Adhikari et al. 2013b) at real life, nano
structure mechanical properties depend on the time variation. This model represents,as the stress is
released, the material gradually relaxes to its undeformed state.By considering this model,we have

0 ()
Cij = Cij (14‘ g aj )
where g is structural damping constant.
2.2 Equations of motion

Hamilton’s principle is used herein to derive the equations of motion. The principle can be
stated in analytical form as
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t
0= (U +3W —K)dt, (8)
where oU is the variation of potential energy; dW is the variation of external works; and JK is the
variation of kinetic energy. The variation of strain energy of the FGM viscoelastic nano-plate is
calculated by

oU = L (OxxOexx + Oy Oy +OyxyOyyy + 0yvz0¥y; + Oxz07x, )AAdZ

L N, O e Oy OO0 OV, s O°OW,
X * X2 * ox? Yoy Y ov? b ooy? (9)
o ooJ b ol Mb o? W
+— [—-2M -2M; dA
( oY  oX ] Y oXoY ) G\ 4 Qyz aY QXZ }
where N, M, and Q are the stress resultants which may be defined as
h
NGMPME =[5 L2, F)odZ, (=% y,x) (10)
2
n
= [% hodz, i(xy,y2) (11)
2
The variation of external works can be expressed as
W = —jA qaUdA (12)

where g is transverse loads due to orthotropic elastic foundation which is (2012)
q=kU, —Gg(cos2 A, +2cosfsin U, +sin® A, yy)

' ’ ’ 13

—Gﬂ(sinzaszxx—Zsin HcosaJsvnyrcosZGUgvyy), 3

where angle @ describes the local ¢ direction of orthotropic foundation with respect to the global x-
axis of the plate; k, G: and G, are Winkler foundation parameter, shear foundation parameters in ¢
and n directions, respectively.

The variation of kinetic energy of the nano-plate can be written as

XK = L (U,80; +U,80, +U,30,) p(2)dAdz
-, {1o[U8U +VaV + (W, +W, )W, +W,)]
~ |{U OOy o5 OO, OOW, o oW, |2]

+oU S 4+V S+ oV
oX oX oY oY

_J{ OO, oW, O, av\\(/s N Iz(awb oW, _ oo, awb]

S+ oV
oX oX oY 0 oX oX oY oY
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K AW, GO, +aa\/\'/s AW,
oX oX oY oY

) . ) . . . . ) 14
] OW,, O, N O, oW, N oW, O, N O, oW, dA (14)
oX oX oX oX oY oY oY oY
where the mass inertias can be defined as
h
(Io,1;, |2,Jl,32,|<,_,)=jzh L2, §,2f,22, 1%) p(z)dz (15)
2

Substituting the expressions for U, oW, and 6K from Egs. (9)-(14) into Eq. (8) yields the
following motion equations

aN .o ..
:aNX +— =i - 1awb -J; W, (16a)

X oY X X

aN aN .o ..
Dy By gy, Wy O (16b)

X oY oY oY

M 0°MS, 5°MS 0

S:8M2X+2 Yo 2y+aQXZ+ QyZ+q
X oxXey oy X oY

(16¢)

ou oV .. ..
— 1, (W, +W,) +J (a_x+a_vj J,VAW, — K, VAW,

2nn b 62Mb aZMb
OMy T My

b ax? oxoy - avr

oU oV .
=1, (W, +W,) + (x O_Y] 1L,VAW, — J,VAW, (16d)

By substituting Eqgs. (6) and (7) into Egs. (10) and (11) the stress resultants are obtained as
oW, |

)
{[An(zw AM(Z)]( . } {( sin —)[Am (2)+ Azo(Z)]( e } {[Aso (2) + Ay (Z)](%}

aYz )}—{[AM(ZHA

= I(Cngxx +Cpéyy)dz = {[Am (2)+ Ay (Z)](Z%)} - {[Au(z) +A

Yf} {( sin )[A30(2)+A40(2)]( }

)

}+ {[Ago(a + Ay (Z)]%)}

—{[AM(ZHA

Nyy =

(Cpexx +Cpéyy)dz = {[Am (2) + Ay (Z)](%)} {[An(z) + Ay (Z)]

NH"—""‘S

{[AH(ZHAM a;’v} {( sin Z){A(2) + A
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oW,
ox 2

- {[Aﬂ(Z) A @IS )} {[Aﬂ(Z) AN )} . {(“sin ) Aa@)+ A
7 h
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(@ @IS {0 Dl 0+ A @U@+ A0 @)

oW, AW,
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)}+{(2sm )l @)+ A NS 2 }
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— =

S —_
MXY_
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oW,
- 2{[A131f (Z) + Ay 8X6Y } {[Aisu (Z) + Ay (Z)](aan )} + 2{( sin )[A131f (2) + Ay 8X6Y }

where

N

A c“Mz dz K =012 Ag = [CauZ fdz K =01
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||
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2

N

1 Z
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|
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h h
2 2
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h
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ol |5
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Agkst =
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AlOKff

h

—_— T N

[Comz" 1202, Ao - j (Cssc Cas )3

2

A it

AlZKff

N‘é_’—.'\)‘j N‘j

1 z
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By substituting Egs. (17)-(19)into Eq. (16),

(A10+A20)(8X2U) (A + Ay )(6X3W b) + (

V)= (A + A 07

6X6Y
o°
6X6Y 2

+ (Ao + Aw) (=0 aanz

+(Aggr + Aue o om W) + (Ago + A14o)(

- 2(A131 A141)(

8X6Y 2
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(8X6T2 )+

)+

-(1-(ea)’V ){l (aTz

CeemZ " fdZ,

Wo) = (As + An)( 7

aY?

W ) + 2(A131F + A141F )(
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C44MZ f2dz, Aok = I(C44C C44M)( + h) Z"dz,

—| >

o] L
| L

1 Z
(Caac —Cuaam )(E +F)PZ Kf24z

csmz f2dz,

—

o L

h

2
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'—.N\:-

Alle
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1 z
(Cssc —Cssm )(E+F)PZ Kf2dz

o_,m:r

N4
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ceﬁMszZdz,

'—,N\:‘

A13Kff

L

(Ceec _CGGM)( +*) z* fdz,

'—.N\:r

N4

the equations of motion can be expressed as

Ast Ay )(ax3w)+(A“F +A21F)(8X3 )

6X6Y 2 W)

) (21)

3

oXoY?
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3
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(A130 A140)(6X6Y U) (A130 + A140)(8X 2 V) 2(A131 A141)(6Yax 2 W ) + 2(A131F + A:l41F )(6Y6X 2 )
_2(A131 Aicu)(aYaXzW) (A70+A80)(8Y2V) (A71 ABl)(ang) (A71+A81)(6Y3 s)
+ (A + Aglp)(aYaxzvvm(Aso+Aﬁo>(aanU> (At A W) + (A + A W)
) o° o° _
+(1-(ea)°V ){ | (a_l_2 )+ aYa_I_ZWb+J1.6Ya_|_zws}_0
_(A12+A22)(ax4 s)+2((A131+A141)(aYzaxU)+(An+Aal)( V)+(A31+A“)(8X26Y )
+4(FF(A131+AM)(aY aX2w5>+(FF(/«71+A81)(8Y26X2w5)) (A + Am)(ayzax )+
2((A131+A141)8X26YV) (A, + 42)(8Y26X2 W) - (A72+Asz)(aY4 W) - 4(A132+A142)(6Y 20K 2 W;)
62
_4(A132 Auz)(aY 6X2W)+FF(A31+A41)(8Y 5X2 s) (&2 Aﬁz)(aY axz h) (GYZ b WWS)
_(A12+A”)(ax4 W) (A, + 42)(5Ya ZW)+FF<AM+A21)(6X4WS) (A, + Aez)(aY o)
2v72 62
7(A72+Asz)(6Y4W )+(A11+A21)( U)+(1f(eoa) ) (FCOS(QT)(ETZWI) +WWS
+Pcos(wT)(WWb ;{2 W)+ kW, +W,) -G, (cos OW, +W;) ., +2cos€sin0(\Nb+WS)‘yX+sin2:9(\Nb+Ws)lw)
- . R o o*
fGW(sm OW, +W,) , —2sin #cosOW, +W,) ,, +cos” (W, +WS)'W)+|2'(6T 6X2Wb+aT28Y2Wb)
o o 0? 0? o°
o Gragxa W+ Gragye W) ~ o (G Wo + 5 W) = (G Y G o7 axv))}
(A + Ao T2 0)+ (B AW~ (B + Ay )W) -
30F 40F ax 8YZ 10 20 axz s 1F 41F 6Y axz b

(A + Amp)(aY O )~ (Ay + Amp)(aY?;XZ W)~ 8 + A ) o)

A )W)+ PR (A + A )W) (A + A ) W)+

«ASOF+A4OF)(§Y 68X22V)+FF(A70F+ABOF)(66YA4 W)= (e + AN W)

FE (A + A ) oW (A + A ) 5)+(A50F+A60F)(6Y2;XU)

2B+ A )TV + PR (g A) G W)+ (s + A V)

K T+ an;Tzwb)—(A1F+Am)(£(4w)+(A10F+A20F)(af; ) (e + A ) )
PR (A + A ) o W)+ (g + A0S 2 W) + - 20V KO, +)

—G5(<:os2 OW, +W,) ,, +2cos@sin W, +W,) , +sin 0(\Nb +WS)VW)
—Gv(sin 2OW, +W,) ,, —2sin §cos OW, +W,) , +cos” OW, +WS)YW)

(22)

(23)
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0 0 02 02

+ PCOS(wT)(aYisz +WWS)2 - |0(ﬁWb + ﬁws)
0? 0? 0 0 o 0 (24)
+Fcos(QT)(—W, +—W)-J,(——U+——V |=0
( )(ax2 *oX? :) 1(ax oT? " oX oT?

3. DQM

In this method, the differential equations are changed into a first order algebraic equation by
employing appropriate weighting coefficients. Because weighting coefficients do not relate to any
special problem and only depend on the grid spacing. In other words, the partial derivatives of a
function (say w here) are approximated with respect to specific variables (say x and y), at a
discontinuous point in a defined domain (0O<x<L, and O<y<L,) as a set of linear weighting
coefficients and the amount represented by the function itself at that point and other points
throughout the domain. The approximation of the n™ and m™ derivatives function with respect to
xXand vy, respectively may be expressed in general form as (Ghorbanpour Arani, Kolahchi et al.

2012)

N,
fx(n) (Xi ) yi) = ;A(n)ik f (Xk 1Y )

NY
£,y =D B™af(x,y,), (25)
=1
Nx Ny
fxy(n+m) (Xi ) yi) = kZ_I: |Z—1: A(n)ik B(m)il f (Xk ) y.),

where Ny and Ny, denotes the number of points in x and ydirections, f(x,y) is the function and Aj,
B;i are the weighting coefficients defined as

AD M(x;) ,
(Xi_xj)M(Xj) (26)

BY, = P(y) ,
(Vi —yIM(y;)

where M and P are Lagrangian operators defined as
NX
M(Xi) ZH(Xi _Xj)’ i # ]

. 27)

POD=TTO-y)). 1%,

The weighting coefficients for the second, third and fourth derivatives are determined via
matrix multiplication
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NX
AP —ZA( K AD Ay _ZA(Z)lkA K, (4)ij=ZA(3)ikA(l)kj, L j=12,..,N,,

(28)
B®; => BYBY, BV => BPuBY, BW;j=> B¥BY, i,j=12..,N
j ; Z Z i,
Using the following rule, the distribution of grid points in domain is calculated as
L 7

x. = —=[1-cos(—)],

=5 Bcos(P)]
(29)

5 cos( A
=5 [1 cos(N )IB

y

Let the in-plane load P be periodic and may be expressed as
P(t) = aP, + SP, cos(wt), (30)

where o is the frequency of excitation, P, is the static buckling load, « and g may be defined as
static and dynamic load factors, respectively. Now Eg. (26) can be written as

{K - aP, K, - P, cos(et)K J[d]+[CI[d] + [MI[d]}=[0], (31)

In order to determinate the boundaries of dynamic instability regions, the method suggested by
Bolotin (1964) is applied. Hence, the components of {d} can be written in the Fourier series with
period 2T as

d ot kot
12 [ sm7+{‘b}k cosT} , (32)

According to this method, the first instability region is usually the most important in studies of
structures. It is due to the fact that the first DIR is wider that other DIRs and structural damping in
higher regions becomes neutralize (Lanhe, Hongjun et al. 2007). Substituting Eqg. (32) into Eqg.
(31) and setting the coefficients of each sine and cosine as well as the sum of the constant terms to
zero, yields

k

0. (33)

Solving the above equation based on eigenvalue problem, the variation of @ with respect to «
can be plotted as DIR.

4. Results and discussion
In this section, the nano-plate is composed of aluminum (as metal) and alumina (as ceramic).

The Young’s modulus and density of aluminum are E,=70 Gpa and p,=2702 kg/m?® respectively,
and those of alumina are E.=380 Gpa and p=3800 kg/m® respectively.
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Table 1 Comparison of this work with Hosseini-Hashemi et al. (2011a, 2011b)

Power law index (p)
0 0.5 1 2 5 8 10

FSDT, (2011a) 3.4409 2.9322 2.6473 2.4017 2.2528 2.1985 2.1677

5 TSDT, (2011b) 3.4412 2.9347 2.6475 2.3949 2.2272 2.1697 2.1407
present 3.4416 2.9350 2.6478 2.3948 2.2260 2.1688 2.1403

FSDT, (2011a) 3.6518 3.0983 2.7937 2.5386 2.3998 2.3504 2.3197

10 TSDT, (2011b) 3.6518 3.0990 2.7937 2.5364 2.3916 2.3411 2.3110
present 3.6519 3.0991 2.7937 2.5364 2.3912 2.3408 2.3108

FSDT, (2011a) 3.7123 3.1456 2.8352 2.5777 2.4425 2.3948 2.3642

20 TSDT, (2011b) 3.7123 3.1458 2.8352 25771 2.4403 2.3923 2.3619

a’h Method

present 3.7123 3.1458 2.8353 25771 2.4401 2.3922 2.3618
05 T % T X LA Q@ 3 T Y LA
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Fig. 2 Dimensionless pulsation amplitude versus dimensionless pulsation frequency for different
nonlocal parameters

To the best of the authors’ knowledge no published literature is available for viscoelastic FGM
nano-plate embedded in an orthotropic visco-Pasternak foundation based on SSDT. Since, no
reference to such a work is found to-date in the literature, its validation is not possible. However,
in an attempt to validate this work as far as possible, a simplified analysis of this paper is carried
out without considering the nonlocal parameter, orthotropic visco-Pasternak foundation and
viscoelastic property of system. Present results are compared with the work of Hosseini-Hashemi,
Fadaee et al. (2011a, 2011b) based on Third-order shear deformation theory (TSDT) and First-
order shear deformation theory (FSDT), respectively. Considering the material properties the same
as Hosseini-Hashemi, Fadaee et al. (2011a, 2011b) and dimensionless frequency as

@ =wh,/p. | E. , the results of comparison are shown in Table 1.As can be seen, present results

are in good agreement with Hosseini-Hashemi, Fadaee et al. (2011a, 2011b), indication validation
of this work.
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Fig. 3 Dimensionless pulsation amplitude versus dimensionless pulsation frequency for different
structural damping constants

Generally, in all of the following figures, in order to show the DIR, the pulsation frequency is
plotted against pulsation amplitude. In these figures, the regions inside and outside the boundary
curves correspond to unstable (parametric resonance) and stable regions, respectively.

Fig. 2 demonstrates the graph of DIR for different the nonlocal parameters. It can be found that
the frequency of the system decreases as the nonlocal parameter is increased. It means that with
increasing nonlocal parameter, DIR of system happens in lower frequencies. This is because
increasing the nonlocal parameter implies decreasing interaction force between nano-plate atoms
leads to a softer structure. In addition, with increasing nonlocal parameter, the instability region of
system becomes smaller.

Fig. 3 demonstrates the DIR for different structural damping constant. As can be seen, the DIR
and natural frequency of visco-nanoplate are lower than those of non-visco-nanoplate (i.e., g=0).
This remarkable difference show that considering the nature of FGM nanoplate as viscoelastic can
yield the accurate results with respect to non-visco-nanoplate. The reason is that assuming
viscoelastic nano-plate means induce of damping force which results in more absorption of
vibration energy by the nano-plate.

The influences of the viscoelastic medium type on the DIR of system are shown in Fig. 4. As
can be seen considering elastic medium increases the frequency of FGM visco-nanoplate. This is
due to the fact that considering elastic medium leads to a stiffer structure. The frequency predicted
by visco-Pasternak-type is higher than the visco-Winkler-type. It is perhaps due to the fact that the
Winkler-type is capable to describe just normal load of the elastic medium while the Pasternak-
type describes both transverse shear and normal loads of the elastic medium.

The effect of power index of FG model on the DIR of the nano structure is shown in Fig. 5. It is
obvious that with increasing power index of FG model, the instability region happens in higher
pulsation frequencies.

In realizing the influence of boundary conditions, Fig. 6 shows how the pulsation frequency
changes with respect to pulsation amplitude. It is found that the frequency of the system for CCCC
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Fig. 4 Dimensionless pulsation amplitude versus dimensionless pulsation frequency for different

elastic medium

Fig. 5 Dimensionless pulsation amplitude versus dimensionless pulsation frequency for different

Dimensionless amplitude

power index of FG model

Fig. 6 Dimensionless pulsation amplitude versus dimensionless pulsation frequency for different

boundary conditions
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and SSSS boundary conditions is maximum and minimum, respectively. It is due to the fact that
the stability of system if maximum in CCCC boundary condition case.

5. Conclusions

Dynamic response of nano-plates has applications in designing many NEMS/MEMS devices.
Biaxial harmonic load induced dynamic instability of FGM nano-plates considering structural
damping and orthotropic viscoelastic foundation was the main contributions of the present paper.
The FGM nano-platesare simulated by SSDT and size effects were considered using Eringen’s
nonlocal theory. Bolotin method in conjunction with DQM were used for calculating the DIR of
the viscoelastic FGM nano-plates so that the effects of nonlocal parameter, orthotropic visco-
Pasternak foundation, power index of FG model, structural damping and boundary conditions were
discussed. Results depict that considering the nature of FGM nano-plate as viscoelastic can yield
the accurate results with respect to non-visco-nanoplate. Furthermore, the frequency of the system
decreases as the nonlocal parameter was increased. In addition, with increasing power index of FG
model, the instability region happens in higher pulsation frequencies. The results of this study
were in good agreement with those reported by Hosseini-Hashemi, Fadaee et al. (2011a, 2011b).
The results presented in this work can be useful for the study and design of the next generation of
nano/micro structures that make use of the nonlocal dynamic instability of viscoelastic FGM nano-
plate embedded in viscoelastic medium.
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