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Abstract.  A sensitivity analysis estimates the effect of the change in the uncertain variable parameter on 

the probability of the structural failure. A novel fuzzy random reliability sensitivity measure of the failure 

probability is proposed to consider the effect of the epistemic and aleatory uncertainties. The uncertainties of 

the engineering variables are modeled as fuzzy random variables. Fuzzy quantities are treated using the 𝜆-

cut approach. In fact, the fuzzy variables are transformed into the interval variables using the 𝜆-cut approach. 

Genetic approach considers different possible combinations within the search domain (𝜆-cut) and calculates 

the parameter sensitivities for each of the combinations. 
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1. Introduction 
 

It has been well recognized that uncertainty is an integral part of civil engineering problems 

and it needs to be included in structural reliability to obtain credible estimates of failure 

probability. In reliability engineering, uncertainty can be viewed as the difference between the 

present state of knowledge and the complete knowledge (Wang, Lu et al. 2013). Although many 

sources of uncertainty may exist, they may be identified to belong to one of two major categories 

in reliability engineering, aleatory and epistemic (Kiureghian and Ditlevsen 2009, Jahani, 

Muhanna et al. 2014, Lagaros 2014). Aleatory uncertainty is due to natural variability associated 

with a structural system, which referred to as irreducible, objective uncertainty and usually is 

modeled by random variables with Probability Density Function (PDF). The credibility of 

probabilistic theory relies on the availability of sufficient data to describe accurately the 

probabilistic distribution of the uncertain variables. Indeed, reliability estimates are very sensitive 

to small variations of the assumed probabilistic models (Abbasnia, Shayanfar et al. 2014, Jiang, Li 

et al. 2014). In contrast to aleatory uncertainty, epistemic uncertainty is knowledge based and is 

related to our ability to understand, measure, and describe the system under study. There are 

different approaches to model the epistemic uncertainty, such as interval modeling (Wu, Zhao et 

al. 2005, Thacker and Huyse 2007, Pedroni, Zio et al. 2013, Fang, Xiong et al. 2014, Debruyne, 
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Vandepitte et al. 2015), Bayesian modeling (Song, Kang et al. 2010, Yin, Lam et al. 2010, An, 

Choi et al. 2011), chaos theory (Yang, Li et al. 2006, Schoefs, Yáñez‐Godoy et al. 2011), evidence 

theory (Liu, Li et al. 2009, Jiang, Zhang et al. 2014), and fuzzy modeling (Chen, Wei et al. 2006, 

Tutmez, Cengiz et al. 2013, Bedirhanoglu 2014). Fuzzy random reliability has been developed in 

the last two decades (Möller, Graf et al. 2000). Möller et al. (Möller, Graf et al. 2003) introduced a 

methodology to estimate the membership function of the safety index by considering fuzzy 

randomness. 

The reliability sensitivity analysis is a very useful tool to increase the safety level of a structural 

system or identify the crucial design or simplify model which decreases computational time and 

cost. These sensitivities are advantageous because they quantify the importance of distribution 

parameters such as means, standard deviations and correlations. This quantification helps us assess 

the validity of the reliability estimates by considering the assumptions made about the choices of 

the parameter values. Also, it helps us define the roles of the random variables in subsequent 

analyses (e.g., an unimportant random variable can be treated as a constant). The sensitivities also 

play fundamental role in problems involving optimization. Most existing reliability sensitivity 

analysis methods are based on the probability and statistics theories. The methodologies for 

calculating reliability sensitivity based on probability theory have been well established (Ditlevsen 

and Madsen 1996, Saltelli, Tarantola et al. 2004, Cao, Dai et al. 2011). A few investigations (Bae, 

Grandhi et al. 2006, Helton, Johnson et al. 2006) have been conducted to explore sensitivity 

analysis with epistemic uncertainty. Helton et al. (Helton, Johnson et al. 2006) proposed a three-

step sampling-based sensitivity analysis for epistemic uncertainty. Guo and Du (2007) proposed an 

approach to conduct sensitivity analysis with mixture of aleatory and epistemic uncertainties. In 

their method, the most important epistemic variables are captured under the framework of the 

unified uncertainty analysis. A new numerical reliability index has been proposed to cope with the 

reliability model with mixture of random and fuzzy variables (Cui, Lu et al. 2011). It is necessary 

to explore new reliability sensitivity analysis theories and methods for identifying the most 

important variables when fuzzy random uncertainties are presented in the model inputs. In this 

paper, a model with fuzzy random uncertainty is considered and a novel fuzzy random reliability 

sensitivity measure of the failure probability is proposed. 

Here, incomplete knowledge about the distribution parameters is modeled using fuzzy 

numbers. Therefore, the input basic variables are considered fuzzy random variables and 

parameter sensitivities are expressed in terms of fuzzy numbers. Fuzzy random reliability 

sensitivity analysis can be used for inaccuracies and lack of reliability or uncertainty in data, 

usually faced when the available information is insufficient to provide statistical description of the 

required data. 

Different approaches are available to solve the problem with fuzzy numbers (Kaufmann and 

Gupta 1988). The λ-cut approach (Möller, Graf et al. 2000)  is one of the most popular and 

efficient approaches to propagate fuzziness in systems under consideration. In λ-cut approach, a 

variety of methods can be used to attain the bounds of the response quantity for each λ-cut. These 

bounds are usually obtained using search algorithms (Möller and Beer 2008) or Cartesian Product 

(CP) algorithm (Ferson, Kreinovich et al. 2002). In this paper, parameter sensitivities are ranged 

between lower and upper bounds at each λ-cut. 

This paper is organized as follows: Section 2 gives a brief description of the fuzzy sets, and 

then the reliability in the presence of epistemic and aleatory uncertainties is discussed. The 

sensitivity analysis is introduced in Section 3, and a novel fuzzy sensitivity measure is illustrated 

in detail in section 4. Three examples are employed to validate the reasonability of the derivative 
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sensitivity measure and the efficiency of the proposed method in Section 5. Finally, conclusions 

are drawn in Section 6. 

 

 

2. Fuzzy random reliability 
 

2.1 Fuzzy sets 
 

Fuzzy set theory is employed to model the epistemic uncertainties. Potentialities of fuzzy set 

theory in several fields of civil engineering have been underlined in several papers (Ayyub 1991, 

Valliappan and Pham 1995). Initially, fuzzy sets were considered an effective tool for accounting 

for subjective information obtained from experienced engineers in structural engineering decision 

and, if necessary, for merging subjective and objective information (Blockley 1979, Brown and 

Yao 1983). A fuzzy set A  in a universe of discourse X is a set of ordered pairs 

     
 A= x,μ (x) ,         x X 

A


 
(1) 

The membership function μA(x) for a fuzzy set A can be defined as 

     
 μ (x):  X 0,1

A


 
(2) 

The membership degree μA(x) quantifies the grade of membership of the element x to the fuzzy 

set A . A key difference between the classical (crisp) and fuzzy sets is that the membership degree 

of the crisp sets can take only two values (0 or 1), whereas a fuzzy set can have an infinite number 

of membership degrees between 0 and 1. If the shape of the membership function is triangular, the 

fuzzy set is called as triangular fuzzy number, and can be expressed in the following form 

     [ , , ]A a b c  
(3) 

Where a and c are, respectively, the lower and upper x values of the triangle at μ=0, and b is the 

x value that corresponds to μ=1. It is possible to evaluate fuzzy sets using λ-cuts or membership 

levels. The λ-cut of a fuzzy set A can be defined as 

     
   ( ) ,     for 0,1AA x X x      

 
(4) 

That the λ-cut of a fuzzy set A is the crisp set that contains all elements of the universal set 

whose membership grades in A are greater than or equal to the specific value of λ. At each λ-cut 

level, the variation of the fuzzy variable is defined by a lower bound XL(λ) and upper bound XU(λ).  

 

 

 

Fig. 1 𝜆 -cut of a fuzzy variable 
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(a) Fuzzy probability density 

function 

(b) Membership degree (c) Fuzzy cumulative distribution 

function 
 

Fig. 2 The fuzzy distribution functions of the fuzzy random variable 

 

 

A fuzzy number X  and its λ-cut of the membership function are shown in Fig. 1. 

 

2.2 Fuzzy random variables 
 

Randomness and fuzziness are usually two alternative representations of uncertainties (Wang, 

Huang et al. 2012). Randomness has been considered due to the probability theory in many 

studies. However, fuzziness in the randomness exists in most of the engineering problems because 

of the lack of sufficient data, data with fuzziness, and unknown or non-constant reproduction 

conditions (Wang, Huang et al. 2012). The first ideas and definitions relating to the theory of fuzzy 

random variables have been discussed in (Kwakernaak 1978, Kwakernaak 1979, Puri and Ralescu 

1986). Fuzzy random variable has attracted more attention, for its capacity of uncertainty 

representation when engineering problems are handled (Möller, Liebscher et al. 2008, Debruyne, 

Vandepitte et al. 2015). A fuzzy random variable is a random variable for which the statistical 

parameters of its distribution (mean and standard deviation) are considered fuzzy numbers. 

Therefore, there are families of distribution with different membership degrees for each fuzzy  

random variable. Fig. 2 shows a fuzzy random variable X with fuzzy cumulative distribution 

function ( )F X  and the fuzzy probability density function ( )f X . Based on the use of fuzzy  

random variables as the basic variables for the reliability problem, the main idea of fuzzy random 

reliability is appeared.  

 

 

3. Sensitivity analysis  
 

Sensitivity analysis studies how small variations of parameters around a reference point change 

the value of the output. Reliability sensitivity is usually measured by the partial derivative of 

failure probability with respect to the distribution parameter of the basic random variable as it can 

objectively describe the effect of distribution parameters on the failure probability. Based on the 

main idea of the parameter sensitivities, we can illustrate a novel fuzzy reliability sensitivity 

measure of failure probability in the presence of epistemic and aleatory uncertainties. 

 

3.1 Construct the approximate hyperplane g(x)=0 
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Reliability sensitivities with fuzzy random uncertainties using genetic algorithm 

Let g(x) denote the implicit limit state function with n-dimension normal basic random vector 

X. The approximate linear limit state function gL(x) is obtained using Taylor’s series expansion of 

linearized safety margin g(x) where 

     1 2( ) ( , , , x )ng x g x x
 

(5) 

It should be noted that when the basic variables are non-normal, an equivalent normal 

distribution at design point can be obtained, using the Rosenblatt, Nataf or a similar transformation 

technique (Melchers 1999). 

Using Taylor’s series expansion about the design point X*=( **
2

*
1 ,...,, nxxx ) results in 

 

22

1 2 2
1 1

(x x )
( ) (x , x , , x ) ( ) (x x ) ( )

2

n n
i i

n i i

i ii iX X

g g
g x g

x x 


   

 

 
    

 
 

 

(6) 

Recall that ( )
X

i

g

x





 means that 

i

g

x




 is evaluated at X*. 

Retaining only the linear terms, gL(x) is defined as follows 

     

1 2

1

( ) (x , x , , x ) ( ) (x x )
n

L n i i

i i X

g
g x g

x 

   




  




 

(7) 

The linear approximation limit state function can be described by gL(x)=g(x)=0 as written 

below 

0

1

( ) 0
n

i i

i

g x a a x


  
 

(8) 

Where (a0,a1) are coefficients determined through the Eq. (7). Since it is a linear function, the 

mean (μ) and standard deviation (σ) of g are readily determined. When xi is Normal distributed and 

mutually independent, it is well-known that these are 

     0

1

.
i

n

g i X

i

a a 


   (9) 

and 

     

2 1 2

1

[ (a ) ]
i

n

g i x

i

 


 
 

(10) 

Where the 
ix are the mean values and the 

ix are the standard deviations respectively for the 

random variables xi. For mutually independent xi, the relationship of failure probability and 

reliability index can be denoted as 

     
( ) ( )f g gP        

 
(11) 

where ϕ(·) is the cumulative distribution function of the standard normal random variable. With 

417



 

 

 

 

 

 

Parinaz Jafari and Ehsan Jahani 

the equivalent hyperplane and the corresponding probability of failure, the sensitivities can be 

estimated using the FORM approach. As will be seen, this involves estimating the change in 

failure probability resulting from a change in parameter value, for the given equivalent hyperplane 

(Melchers and Ahammed 2004). 
 

3.2 Sensitivity measure of failure probability  

 

The sensitivity measure ∂Pf /∂θ can reflect the effect of the parameter   (mean, standard 

deviation…) on the failure probability at the reference point which is generally fixed at the design 

point u*. The parameter sensitivity by differentiating Eq. (11) respect to the distribution parameters 

of the basic random variables and using the chain function derivative rule can be represented as 

     

f f

i i

P P 

  

  


  
 

(12) 

Mean and standard deviation of the basic variables are the most interest statistical parameters.  

The parameter sensitivities of mean and standard deviation are /
if xP    and /

if xP   ,  

respectively. If the random variables are mutually independent, it is easily shown that: 

     
( ) ( )

i i i

f

X X X

P     

   

     
 

   
 (13) 

And  

     
( ) ( )

i i i

f

X X X

P     

   

     
 

   
 (14) 

Where 

     

2

2

1

2

1

2

1
dx

2( ) 1

2

x

e

e



 

  

 

 

 
 

     
 


 

(15) 

The partial derivatives of 
iX








 

and 
iX








 

can be calculated as 

     

0

1

1 2

2

1

.

( ) (a )

i

i

i i i

n

i X

i

n
g

i X

ig i

X X X g

a a

a








   





 
 
 
  
         

  




 

(16) 

And  
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0

1

1 2

2

2

1

3

.

( ) (a )

i

i

i

i i i

n

i X

i

n
g

i X

i i g Xg

X X X g

a a

a






 

   





 
 
 
  
          

  




 

(17) 

Respectively. Then the reliability sensitivities /
if xP    and /

if xP   , respectively, can 

be determined by substituting Eqs. (15) and (16) into Eq. (13) and Eqs. (15) and (17) into Eq. (14). 

     

21
exp[ ( ) ]

22
i

gf i

x gg

P a 

 


  


 

(18) 

     

2

2

3

1
exp[ ( ) ]

22

i

i

i x g gf

x gg

aP   

 


  


 

(179) 

Eqs. (18) and (19) provide the accurate reliability sensitivities of the linear limit state function 

with normal basic random variables. 

 

3.3 Gradients  

 

In the standard FORM theory, gradients of Pf (this is, the sensitivity of Pf to the components in 

X) are an automatic byproduct of the calculation procedure. In the standard normal space u, it 

follows directly from the FORM theory that the gradients αi are given by: 

     

ii x

i

i g

a

u







 


 

(20) 

In the FORM theory, the gradients are evaluated at the design point u*. However, for the special 

case of normal random variables, a hyperplane in x space transforms to a hyperplane in u space 

and in this case, αi is invariant.  

 

 

4. Fuzzy random sensitivity analysis 
 

Suppose there is a model g(x) where X=(x1, x2,...,xn) (n is the number of input variables) is the 

set of uncertain input variables. The uncertainties of these input variables are represented by fuzzy 

probability distributions.  

Failure probability Pf is a function of the basic fuzzy-valued distribution parameter θ=(θ1, θ2,..., 

θn) given by Pf=ψ(θ1, θ2,..., θn). 

Based on the main idea of the FORM theory, we can define a novel fuzzy random sensitivity 

measure of failure probability in the presence of epistemic and aleatory uncertainties. The main 

idea of fuzzy random reliability sensitivity is based on the use of fuzzy random variables which 

can reflect aleatory and epistemic uncertainties. When the fuzzy set theory is employed, assigned 
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Fig. 3 Flowchart of the proposed algorithm 

 

 

membership function (MF) is used to model the epistemic uncertainty. Firstly, the bounds of the 

distribution parameters at each λ-cut are obtained by corresponding membership function. In other 

words, the fuzzy random space is transformed into an interval random space; hence there are 

intervals for parameters 
j

i  (jth distribution parameter of ith random variable). Each 
j

i can 
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reach any value in its interval ( ), ( ) ( 1,2,..., ; 1,2)j j
iL iU i n j    

 
   then all input variables are 

sampled randomly from their probability distributions and the model output is calculated for each 

set of input parameters. In order to find the interval of the model output for the considered λ, the 

genetic algorithm as one of the well-developed approaches is selected for searching its maximum 

and minimum. Consequently, the bounds of sensitivity measures (( ) , ( ) )f f
L U

i i

P P

 

 

 
 at various λ-

cut can be calculated. Finally, the fuzzy random sensitivity measure is assembled from the 

resulting intervals at each λ-cut. Details of the proposed method for calculating the fuzzy random 

sensitivity measures are shown in Fig. 3. 

 

 

5. Examples 
 

In this section, both numerical and engineering examples are used to demonstrate the proposed 

algorithm. To calculate the fuzzy random sensitivity as mentioned in section 4, the FORM method 

is used. All the limit state functions are given in the original x space. λ-cut is used for mapping of 

the fuzzy space to interval random space. In the examples 1 and 2, λ varies from 0 to 1 by 0.1 steps 

and in example 3, it varies from 0 to 1 by 0.2 steps. It should be noted that in all examples, the 

probability of mutation and crossover for the GA are considered 0.1 and 0.9 respectively. In order 

to validate the reasonability of the fuzzy random sensitivity measure, the CP method is utilized to 

calculate the exact solution for design point sensitivities in example 1.  

 

5.1 Example 1 
 

Consider a non-linear limit state function with 3 fuzzy random variables that was previously 

considered by Melchers (Melchers and Ahammed 2004) only for random variables. In the 

Melchers’ method (Melchers and Ahammed 2004), the approximate hyperplane was estimated 

from 11,751 points falling in the failure domain to give 

gL(x)=−1309.84+47.44x1+27.19x2−0.9876x3 (Melchers and Ahammed 2004). The mean and 

standard deviations of the basic variables are considered triangular fuzzy numbers and are 

presented in Table 1. The λ-cut method is used for mapping of this fuzzy space to the interval 

random space. Membership degree λ varies from 0 to 1 by step 0.1. At each Membership degree λ, 

an interval is obtained for each random variable parameter, thus, permissible domain for 

distribution parameters can be easily obtained. The search goals of the proposed algorithm are the 

lowest and largest sensitivity measures which are the left ( )f

L

P






 and right ( )f

R

P






 bounds for λ 

level, respectively. Therefore, ( )f

L

P






and ( )f

R

P






can be obtained for all λ levels. Finally, the 

membership function of the sensitivity parameter is attained by assembling these intervals.  

The fuzzy mean value sensitivities 

1 2 3

( , , )f f f

x x x

P P P

  

  

  
, the fuzzy standard deviation sensitivities 

1 2 3

( , , )f f f

x x x

P P P

  

  

  
 and the fuzzy design point sensitivities (α1, α2, α3) are computed by using the  
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Table 1 Fuzzy random variables and their parameters for the limit state function g(x)=X1X2−X3=0 

Variables Mean Standard deviation Distribution 

X1 [36.0,40.0,44.0] [4.5,5.0,5.5] Normal 

X2 [45.0,50.0,55.0] [2.0,2.5,3.0] Normal 

X3 [900.0,1000.0,1100.0] [180.0,200.0,220.0] Normal 

 
Table 2 Fuzzy mean value sensitivity  

  

X1 X2 X3 

1

( )f
L

x

P





  
1

( )f
R

x

P





  
2

( )f
L

x

P





  
2

( )f
R

x

P





  
3

( )f
L

x

P





  
3

( )f
R

x

P





  

0 -1.6433×10-2 -4.5954×10-7 -9.5091×10-3 -2.6115×10-7 9.2663×10-9 3.4363×10-`4 

0.1 -1.3385×10-2 -1.1504×10-6 -7.6806×10-3 -6.8605×10-7 2.4760×10-8 2.8009×10-4 

0.2 -1.0534×10-2 -2.8827×10-6 -6.0324×10-3 -1.6719×10-6 6.0354×10-8 2.1988×10-4 

0.3 -8.2107×10-3 -6.8454×10-6 -4.6920×10-3 -3.8159×10-6 1.4009×10-7 1.6726×10-4 

0.4 -6.1507×10-3 -1.4707×10-5 -3.5248×10-3 -8.4259×10-6 3.0411×10-7 1.2759×10-4 

0.5 -4.5045×10-3 -3.0829×10-5 -2.5756×10-3 -1.7747×10-5 6.5661×10-7 9.3639×10-5 

0.6 -3.2217×10-3 -6.0567×10-5 -1.8439×10-3 -3.5526×10-5 1.2648×10-6 6.6107×10-5 

0.7 -2.1905×10-3 -1.1695×10-4 -1.2605×10-3 -6.6047×10-5 2.4118×10-6 4.5419×10-5 

0.8 -1.4712×10-3 -2.0939×10-4 -8.5005×10-3 -1.1938×10-4 4.3584×10-6 3.0539×10-5 

0.9 -9.5095×10-4 -3.6031×10-4 -5.4818×10-4 -2.0678×10-4 7.5431×10-6 1.9899×10-5 

1 -5.9739×10-4 -5.9739×10-4 -3.4239×10-4 -3.4239×10-4 1.2436×10-5 1.2436×10-5 

 
Table 3 Fuzzy standard deviation sensitivity 

  

X1 X2 X3 

1

( )f
L

x

P





  
1

( )f
R

x

P





  
2

( )f
L

x

P





  
2

( )f
R

x

P





  
3

( )f
L

x

P





  
3

( )f
R

x

P





  

0 1.6710×10-6 1.9752×10-2 2.4481×10-7 3.5201×10-3 2.9427×10-8 3.4509×10-4 

0.1 4.0725×10-6 1.6891×10-2 6.0673×10-7 3.0143×10-3 7.2026×10-8 2.9302×10-4 

0.2 9.7213×10-6 1.4409×10-2 1.4597×10-6 2.5282×10-3 1.7119×10-7 2.5011×10-4 

0.3 2.1822×10-5 1.2017×10-2 3.2789×10-6 2.0725×10-3 3.7717×10-7 2.0702×10-4 

0.4 4.4891×10-5 9.6872×10-3 6.9724×10-6 1.6810×10-3 7.7986×10-7 1.6833×10-4 

0.5 9.1302×10-5 7.6142×10-3 1.4132×10-5 1.2965×10-3 1.5717×10-6 1.3092×10-4 

0.6 1.7064×10-4 5.7354×10-3 2.7076×10-5 9.7284×10-4 2.9993×10-6 9.9429×10-5 

0.7 3.0655×10-4 4.1749×10-3 4.9619×10-5 7.1209×10-4 5.3098×10-6 7.3415×10-5 

0.8 5.2651×10-4 2.9967×10-3 8.6545×10-5 5.0148×10-4 9.2082×10-6 5.1972×10-5 

0.9 8.6405×10-4 2.0557×10-3 1.4115×10-4 3.3969×10-4 1.5018×10-5 3.5606×10-5 

1 1.3609×10-3 1.3609×10-3 2.2353×10-4 2.2353×10-4 2.3592×10-5 2.3592×10-5 

 

 

approach outlined in section 4. In the GA approach (Krishnamoorthy 2001), 100 populations and 

300 generations are used for each Membership degree λ. The obtained results for f

ix

P






, f

ix

P






 and  
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Table 4 Fuzzy design point sensitivity  

  
X1 X2 X3 

(α1)L

 
(α1)R

 
(α2)L

 
(α2)R

 
(α3)L

 
(α3)R

 
0 0.6771 0.8142 0.1582 0.2815 -0.5453 -0.7022 

0.1 0.6849 0.8084 0.1635 0.2746 -0.5533 -0.6943 

0.2 0.6928 0.8023 0.1688 0.2672 -0.5614 -0.6870 

0.3 0.7001 0.7962 0.1744 0.2603 -0.5693 -0.6794 

0.4 0.7076 0.7900 0.1799 0.2537 -0.5772 -0.6817 

0.5 0.7149 0.7837 0.1856 0.2469 -0.5853 -0.6640 

0.6 0.7222 0.7772 0.1912 0.2405 -0.5932 -0.6562 

0.7 0.7294 0.7707 0.1970 0.2339 -0.6013 -0.6485 

0.8 0.7365 0.7640 0.2030 0.2275 -0.6091 -0.6407 

0.9 0.7435 0.7573 0.2090 0.2212 -0.6170 -0.6328 

1 0.7505 0.7505 0.2151 0.2151 -0.6249 -0.6249 

 
Table 5 Fuzzy design point sensitivity (comparison with exact solution) 

  
Proposed Method Exact Value (CP) Proposed Method Exact Value (CP) 

(α1,PM)L

 
(α1,PM)R

 
(α1,CP)L

 
(α1,CP)R

 
(α2,PM)L

 
(α2,PM)R

 
(α2,CP)L

 
(α2,CP)R

 
0 0.6779 0.8141 0.6770 0.8144 0.1584 0.2809 0.1581 0.2817 

0.2 0.6926 0.8021 0.6924 0.8025 0.1694 0.2665 0.1688 0.2775 

0.4 0.7078 0.7898 0.7074 0.7901 0.1803 0.2532 0.1798 0.2538 

0.6 0.7227 0.7771 0.7221 0.7773 0.1918 0.2398 0.1912 0.2405 

0.8 0.7367 0.7638 0.7365 0.7641 0.2035 0.2275 0.2030 0.2276 

1 0.7505 0.7505 0.7505 0.7505 0.2151 0.2151 0.2151 0.2151 

 

 

αi are presented in Tables 2-4, respectively. The results of the proposed method for λ=1 which can 

be seen in the last row of Tables 2-4 for different parameters are close to those of melchers’method 

(Melchers and Ahammed 2004) with a very good approximation. 

In order to validate the reasonability of the fuzzy random sensitivity measure, the genetic 

algorithm with 30 populations and 50 generations is used, and the Cartesian Product (CP) 

algorithm is then utilized to calculate the exact solution for sensitivity measures at each 

Membership degree λ. Although CP approach can be used to calculate the sensitivity parameters 

for different combinations of the basic variables, it obtains the exact solution just for the convex 

problems and also will be impractical for big problems. Since Eq. (20) is a simple problem, the 

membership function of the design point sensitivity parameter can be exactly calculated. The 

results of the CP approach and the GA approach for two design point sensitivities are compared in 

Table 5. Table 5 shows that the results for two design point sensitivities α1 and α2 by the proposed 

method and the CP method are almost the same, thus, it demonstrates the correctness of the 

proposed method. 

Figs. 4-5 show

1

f

x

P






 and

1

f

x

P






 respectively, for three different cases of the GA method. It can  

423



 

 

 

 

 

 

Parinaz Jafari and Ehsan Jahani 

-0.018 -0.016 -0.014 -0.012 -0.01 -0.008 -0.006 -0.004 -0.002 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

11

P
f
 /

x
1

M
em

b
er

sh
ip

 d
eg

re
e

 

 

10pop-10gen

20pop-30gen

100pop-300gen

 

Fig. 4 The fuzzy mean value sensitivity of X1 
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Fig. 5 The fuzzy standard deviation sensitivity of X1 
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Fig. 6 The fuzzy design point sensitivity of X1 

 

 

be seen that the accuracy of the sensitivity parameters are raised by increasing the number of 

generations of the algorithm. 

In Fig. 6, for the GA method, two different cases are considered and compared with the exact 

solution which shows the accuracy of the design point sensitivity is raised by increasing the  
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Fig. 7 Circular section cantilever beam 

 

 

number of generations of the algorithm, such as with 50 generations, the exact solution is achieved 

in proposed method. 

 
5.2 Example 2 
 

Consider a non-linear limit state function of the model of circular section beam under torsion 

moment and bending moment (Yanfang, Yanlin et al. 2011). The model of beam is shown in Fig. 

7. The maximum torsion stress τ and bending stress σ of the beam can be written as follows 

     
3

16T

d





 
(21) 

     
3

32M

d





 
(22) 

Where T, M and d are the torsion moment, the bending moment and the section diameter of the 

beam, respectively. Based on Fourth strength theory, complex stress s of torsion stress τ and 

bending stress σ can be written as follow 

     

2 2 2 2

3

16
3 4 3s M T

d
 


   

 
(23) 

Limit state function of the beam based on stress-strength interface model considering stress 

failure mode can be defined as 

     ( )g x r s   (24) 

Where r is the material strength of the beam. The approximate hyperplane can be estimated 

using the Taylor’s series expansion around design point. 

     
4 5X ( 782.49, 1.43 10 , 1.32 10 , 11.97)r T M dX X X X          

 
(18

5) 

Using these values, the linear limit state function can be obtained as follows 

     
4 3

( ) 2357.79 4.80 10 5.91 10 196.91Lg x r T M d
 

       
 

(19

6) 

The mean and standard deviation of the basic variables are considered triangular fuzzy numbers 

and are presented in Table 6. The λ-cut method is used for mapping of this fuzzy space to the 

interval random space. Membership degree λ varies from 0 to 1 by step 0.1. At each Membership 

degree λ, an interval is obtained for each random variable parameter, hence permissible domain for  
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Table 6 Fuzzy random variables and their parameters for the limit state function g(x)=r−s=0 

Variables Mean Standard deviation Distribution 

r (MPa) [800,820,840] [31,32,33] Normal 

T (N.mm) [14200,14300,14400] [1200,1300,1400] Normal 

M (N.mm) [113400,113500,113600] [9150,9200,9250] Normal 

d (mm) [11,12,13] [0.059,0.06,0.061] Normal 

 
Table 7 Fuzzy mean value sensitivity  

  

r T M d 

( )f
L

r

P





  
( )f

R

r

P





  
( )f

L

T

P





  
( )f

R

T

P





  
( )f

L

M

P





  
( )f

R

M

P





  
( )f

L

d

P





  
( )f

R

d

P





  
0 -2.4453×10-3 -9.2822×10-12 4.3953×10-15 1.1789×10-6 5.4043×10-14 1.4440×10-5 -4.7938×10-1 -1.7904×10-9 

0.1 -2.1471×10-3 -1.1974×10-10 5.7595×10-14 1.0341×10-6 6.7872×10-13 1.2718×10-5 -4.2172×10-1 -2.3076×10-8 

0.2 -1.8658×10-3 -1.2570×10-9 5.9630×10-13 8.9074×10-7 7.5082×10-12 1.1027×10-5 -3.6599×10-1 -2.4859×10-7 

0.3 -1.6118×10-3 -1.1470×10-8 5.3891×10-12 7.7388×10-7 6.6538×10-11 9.4718×10-6 -3.1669×10-1 -2.1894×10-6 

0.4 -1.3657×10-3 -8.6079×10-8 4.1274×10-11 6.6114×10-7 5.0092×10-10 8.1092×10-6 -2.6955×10-1 -1.6973×10-5 

0.5 -1.1584×10-3 -5.4301×10-7 2.6417×10-10 5.5748×10-7 3.1898×10-9 6.8652×10-6 -2.2861×10-1 -1.0638×10-4 

0.6 -9.7414×10-4 -2.8560×10-6 1.3842×10-9 4.6492×10-7 1.6978×10-8 5.7629×10-6 -1.9211×10-1 -5.6757×10-4 

0.7 -8.1075×10-4 -1.2960×10-5 6.2239×10-9 3.8725×10-7 7.6606×10-8 4.7555×10-6 -1.5928×10-1 -2.5498×10-3 

0.8 -6.6486×10-4 -4.9749×10-5 2.3777×10-8 3.1942×10-7 2.9464×10-7 3.9267×10-6 -1.3046×10-1 -9.7390×10-3 

0.9 -5.4193×10-4 -1.6032×10-4 7.6771×10-8 2.6093×10-7 9.4566×10-7 3.2027×10-6 -1.0680×10-1 -3.1604×10-2 

1 -4.3820×10-4 -4.3820×10-4 2.1048×10-7 2.1048×10-7 2.5884×10-6 2.5884×10-6 -8.6284×10-2 -8.6284×10-2 

 

 

distribution parameters can be easily obtained.  

The fuzzy mean value sensitivities ( , , , )f f f f

r T M d

P P P P

   

   

   
, the fuzzy standard deviation 

sensitivities ( , , , )f f f f

r T M d

P P P P

   

   

   
 and the fuzzy design point sensitivities (αr, αT, αM, αd ) are 

computed by using the approach outlined in section 4. For the GA method, 100 populations and 

100 generations are used for each Membership degree λ. The obtained results are presented in 

Tables 7-9.

  
 

5.3 Example 3 
 

A roof truss is shown in Fig. 8; the top boom and the compression bars are reinforced by 

concrete, and the bottom boom and the tension bars are steel. Assume that the uniformly 

distributed load q is applied on the roof truss and the uniformly distributed load can be 

transformed into the nodal load p=qL/4. Taking the safety and applicability into account, the 

perpendicular deflection ΔC of the peak of structure node C not exceeding 2.8 cm is taken as the 

constraint condition and the performance response function can be constructed by g(x)=0.028−ΔC, 

where ΔC is the function of the basic random variables, and 
2

3.81 1.13
( )

2
C

C C S S

ql

A E A E
   , AC, AS, EC, 
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Table 8 Fuzzy standard deviation sensitivity 

  

r T M d 

( )f
L

r

P





  
( )f

R

r

P





  
( )f

L

T

P





  
( )f

R

T

P





  
( )f

L

M

P





  
( )f

R

M

P





  
( )f

L

d

P





  
( )f

R

d

P





  

0 2.9018×10-11 1.6974×10-3 2.5569×10-16 1.6798×10-8 3.0247×10-13 1.6766×10-5 2.1262×10-9 1.2273×10-1 

0.1 3.3852×10-10 1.5932×10-3 3.2058×10-15 1.5549×10-8 3.5485×10-12 1.5705×10-5 2.4895×10-8 1.1492×10-1 

0.2 3.3503×10-9 1.4642×10-3 3.1905×10-14 1.4288×10-8 3.5021×10-11 1.4506×10-5 2.6203×10-7 1.0596×10-1 

0.3 2.8392×10-8 1.3297×10-3 2.6575×10-13 1.2843×10-8 2.9311×10-10 1.3191×10-5 2.0962×10-6 9.6439×10-2 

0.4 2.0056×10-7 1.2016×10-3 1.8168×10-12
 1.1559×10-8 2.0337×10-9 1.1889×10-5 1.4607×10-5 8.6376×10-2 

0.5 1.1547×10-6 1.0719×10-3 1.0802×10-11 1.0192×10-8 1.1843×10-8 1.0575×10-5 8.4179×10-5 7.7206×10-2 

0.6 5.6110×10-6 9.4058×10-4 5.2110×10-11 8.9430×10-9 5.7014×10-8 9.3498×10-6 4.0948×10-4 6.7949×10-2 

0.7 2.2745×10-5 8.1842×10-4 2.1125×10-10 7.7432×10-9 2.2798×10-7 8.1490×10-6 1.6523×10-3 5.9068×10-2 

0.8 7.6581×10-5 7.0474×10-4 7.1830×10-10 6.6325×10-9 7.7688×10-7 7.0333×10-6 5.6269×10-3 5.0907×10-2 

0.9 2.1652×10-4 5.9831×10-4 2.0202×10-9 5.6241×10-9 2.1693×10-6 5.9849×10-6 1.5758×10-2 4.3402×10-2 

1 5.0333×10-4 5.0333×10-4 4.7178×10-9 4.7178×10-9 5.0491×10-6 5.0491×10-6 3.6591×10-2 3.6591×10-2 

 
Table 9 Fuzzy standard deviation sensitivity  

  
r T M d 

(αr)L

 
(αr)R

 
(αT)L

 
(αT)R

 
(αM)L

 
(αM)R

 
(αd)L

 
(αd)R

 
0 0.4847 0.5125 -0.0088 -0.0106 -0.8385 -0.8552 0.1791 0.1893 

0.1 0.4861 0.5111 -0.0090 -0.0105 -0.8395 -0.8544 0.1796 0.1887 

0.2 0.4875 0.5098 -0.0090 -0.0104 -0.8402 -0.8535 0.1801 0.1882 

0.3 0.4890 0.5083 -0.0091 -0.0103 -0.8411 -0.8527 0.1806 0.1877 

0.4 0.4903 0.5070 -0.0092 -0.0102 -0.8419 -0.8519 0.1811 0.1872 

0.5 0.4917 0.5056 -0.0093 -0.0102 -0.8428 -0.8510 0.1816 0.1867 

0.6 0.4932 0.5042 -0.0094 -0.0101 -0.8436 -0.8502 0.1821 0.1862 

0.7 0.4946 0.5029 -0.0095 -0.0100 -0.8444 -0.8494 0.1826 0.1857 

0.8 0.4959 0.5015 -0.0096 -0.0099 -0.8453 -0.8486 0.1831 0.1851 

0.9 0.4973 0.5001 -0.0096 -0.0098 -0.8461 -0.8478 0.1836 0.1846 

1 0.4987 0.4987 -0.0097 -0.0097 -0.8469 -0.9469 0.1841 0.1841 

 

 

ES, l respectively are sectional area, elastic modulus, length of the concrete and steel bars. The 

approximate hyperplane can be estimated using the Taylor’s series expansion around design point 

     

4 4

2 10 10

X ( 2.16 10 , 12.04, 9.37 10 ,

3.68 10 , 9.54 10 , 1.96 10 )

s

c s c

q L A

A E E

X X X

X X X

    

   

     

     
 

(20

7) 

Using these values the following function can be obtained: 

     

2 6 3 1
( ) 2.8 10 1.29 10 4.65 10 21.09 2.24 10

13 13
2.07 10 4.19 10

L S C

S C

g x q L A A

E E

   
         

 
  

 

(21

8) 
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Fig. 8 The schematic diagram of a roof truss 

 
Table 10 Fuzzy random variables and their parameters for the limit state function g(x)=0.028−ΔC=0 

Variables Mean Standard deviation Distribution 

q (N/m) [18000,20000,22000] [1260,1400,1540] Normal 

L (m) [10.8,12,13.2] [0.108,0.12,0.132] Normal 

As (m
2) [8.84×10-4,9.82×10-4,1.1×10-3] [5.30×10-5,5.892×10-5,6.48×10-5] Normal 

Ac (m
2) [0.036,0.04,0.044] [0.0043,0.0048,0.0053] Normal 

Es (N/m2) [9×1010,1×1011,1.1×1011] [5.4×109, 6×109,6.6×109] Normal 

Ec (N/m2) [1.8×1010,2×1010,2.2×1010] [1.08×109,1.2×109,1.32×109] Normal 

 
Table 11 Fuzzy design point sensitivity  

λ 
q  AS

 
ES

 

(αq)L

 
(αq)R

 
( )

SA L
 

( )
SA R

 
( )

SE L
 

( )
SE R

 
0 -0.6457

 
-0.6310 0.4295 0.4431 0.4295 0.4432 

0.2 -0.6440
 

-0.6326
 

0.4308 0.4418 0.4309 0.4418 

0.4 -0.6427
 

-0.6339
 

0.4322 0.4405 0.4322 0.4404 

0.6 -0.6412
 

-0.6353
 

0.4336 0.4391 0.4336 0.4390 

0.8 -0.6397
 

-0.6368
 

0.4350 0.4377 0.4350 0.4377 

1 -0.6383
 

-0.6383
 

0.4363 0.4363 0.4363 0.4363 

  
L

 
AC

 
EE

 

(αL)L

 
(αL)R

 
( )

CA L
 

( )
CA R

 
( )

CE L
 

( )
CE R

 
0 -0.1996

 
-0.1924 0.3709 0.3833 0.1736

 
0.1802

 

0.2 -0.1988
 

-0.1930
 

0.3720 0.3821 0.1743
 

0.1795
 

0.4 -0.1982
 

-0.1938
 

0.3733 0.3808 0.1749
 

0.1789
 

0.6 -0.1975
 

-0.1945
 

0.3746 0.3795 0.1756
 

0.1782
 

0.8 -0.1967
 

-0.1952
 

0.3758 0.3783 0.1762
 

0.1775
 

1 -0.1960
 

-0.1960
 

0.3771 0.3771 0.1769
 

0.1769
 

 

 

The mean and standard deviation of independent normal basic variables are considered 

triangular fuzzy numbers and are presented in Table 10. Sensitivity parameters are obtained using 

the approach outlined in section 4 with 100 populations and 100 generations in the GA approach 

for each membership degree λ. Membership degree λ varies from 0 to 1 by step 0.2. The results of 

design point sensitivities are presented in Table 11.  
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6. Conclusions 
 

In this article, the aleatory and epistemic uncertainties of the distribution parameters are 

considered. The effect of the fuzzy random parameters on the structural failure probability is 

investigated. In the presence of aleatory and epistemic uncertainties, the sensitivity parameters are 

expressed in fuzzy form. A new approach is proposed to calculate the fuzzy random sensitivity 

measures. In the proposed approach, the fuzzy space is transformed into an interval random space 

using λ-cuts and then the bounds of the fuzzy random sensitivity measures are obtained using the 

search algorithm (the GA method). Finally, the fuzzy sensitivity parameters are formed by 

assembling these bounds.  
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