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Abstract.  In this article, based on the higher-order shear deformation plate theory, buckling analysis of a 

rectangular plate made of functionally graded piezoelectric materials and its effective parameters are 

investigated. Assuming the transverse distribution of electric potential to be a combination of a parabolic and 

a linear function of thickness coordinate, the equilibrium equations for the buckling analysis of an FGP 

rectangular plate are established. In addition to the Maxwell equation, all boundary conditions including the 

conditions on the top and bottom surfaces of the plate for closed and open circuited are satisfied. 

Considering double sine solution (Navier solution) for displacement field and electric potential, an analytical 

solution is obtained for full simply supported boundary conditions. The accurate buckling load of FGP plate 

is presented for both open and closed circuit conditions. It is found that the critical buckling load for open 

circuit is more than that of closed circuit in all loading conditions. Furthermore, it is observed that the 

influence of dielectric constants on the critical buckling load is more than those of others. 
 

Keywords:  buckling; functionally graded piezoelectric; rectangular plate; dielectric constants; 

piezoelectric constants; analytical solution 

 
 
1. Introduction 
 

Functionally graded piezoelectric materials (FGPMs) are a new type of intelligent materials 

which have been used in micro-electro-mechanical systems (MEMs) and smart structures as 

actuators and sensors (2008b). Because of important applications in medical and aerospace 

industry, these materials have attracted attentions in researches. FGPMs have material properties 

which vary spatially from a point to another point continuously. The buckling analysis of plates, 

shells and beams is one of the most important research fields on isotropic, composite materials, 

functionally graded FGMs, piezoelectric materials and FGPMs. 

In the case of isotropic and composite materials many researchers have been considered 

buckling analysis. For example, Kuo and Yau (2012) derived buckling equations of orthotropic 

thin plates using energy approaches. Hosseini-Hashemi et al. (2008a) studied the buckling analysis 
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of in plane loaded isotropic rectangular plates with Levy-type boundary conditions and obtained 
an analytical closed-form solution. Civalek et al. (2010c) using classical plate theory studied the 
buckling analysis of rectangular plates subjected to various uniform and non-uniform distributed 
in-plane compressive loads. The buckling analysis of thin isotropic plates and columns by using 
differential quadrature (DQ) and harmonic differential quadrature (HDQ) was presented by 
Civalek (2004a). Using variable refined plate theory, Kim et al. (2009c) investigated the buckling 
analysis of isotropic and orthotropic simply supported rectangular plates. 

For the buckling analysis of functionally graded rectangular plates, based on classical plate 
theory, Javaheri and Eslami studied the buckling analysis of simply supported plate under 
mechanical (2002a) and thermal (2002b) loadings. Moreover, Shariat and Eslami (2007) presented 
a closed form solution for the buckling analysis of simply supported plate based on higher order 
shear deformation plate theory under mechanical and thermal loadings. The thermal buckling 
analysis of simply supported plates based on first and third order shear deformation theory was 
investigated by Lanhe (2004b) and Javaheri and Eslami (2002b), respectively. The critical 
buckling load for the plate with Levy-type boundary conditions based on classical, first and third 
order shear deformation theory was presented by Mohammadi et al. (2010e), (2010d) and Bodaghi 
and Saidi (2010b), respectively. Based on classical plate theory, Amiri Rad and Panahandeh-
Shahraki (2014d) investigated the critical buckling load of plates containing a crack. Moreover, 
Akgöz and Civalek (2014a) investigated the thermo-mechanical size-dependent buckling analysis 
of functionally graded micro-beams based on the sinusoidal shear deformation beam and modified 
couple stress theories. 

On the other hand, the buckling and post-buckling analysis of piezoelectric plates, have been 
addressed by many researchers and several works have been conducted to investigate the buckling, 
post-buckling and thermal buckling behaviors of smart composite plates. For instance, buckling 
control of laminated composite plates using piezoelectric materials on the basis of the first order 
shear deformation plate theory was studied by Chandrashekhara and Bathia (1993). Based on the 
three-dimensional elasticity theory, the dynamic buckling analysis of a plate with surface bonded 
piezoceramic elements was presented by Batra and Geng (2001a). Varelis and Saravanos (2004c) 
presented the buckling and post-buckling response of composite laminates and plates with piezo-
actuators and sensors due to large displacements and rotations. 

Dynamic buckling of laminated plates with piezoelectric sensors and actuators under thermo-
electro-mechanical loadings was studied by Shariyat (2009d, 2009e). Based on higher order shear 
deformation plate theory, he investigated the forced and free vibration and dynamic buckling of 
rectangular FG plates with piezoelectric sensors and actuators subjected to thermo-electro-
mechanical loading conditions. Three-dimensional thermal buckling analysis of simply-supported 
piezoelectric asymmetric angle-ply laminates with finite layer method studied by Akhras and Li 
(2010a). Yang (1998) obtained equations for the buckling of a thin piezoelectric plate and showed 
that the effect of piezoelectricity on the buckling load is of the order of the electro-mechanical 
coupling factor which is not small when the material has a strong piezoelectric coupling. Based on 
the higher order shear deformation plate theory, Shen (2005, 2009f) presented the thermal post-
buckling analysis of a simply supported laminated plate with piezoelectric actuators subjected to 
the thermo-electrical and the thermo-electro-mechanical loads. He (2001b) studied the post-
buckling analysis of simply supported, symmetric FG plates with fully covered or embedded 
piezoelectric actuators subjected to the thermo-electro-mechanical loads. Moreover, he presented a 
fully nonlinear compressive post-buckling and thermal post-buckling analysis for FG hybrid plates 
with PFRC actuators (2001c). A three-dimensional exact piezoelasticity solution for buckling of 
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simply-supported symmetrically laminated hybrid plates with piezoelectric layers was presented 
by Kapuria and Achary (2006b). Using three-dimensional state-space formulations, influence of 
weak interfaces on the buckling of simply supported orthotropic piezoelectric laminates with inter-
laminar bonding imperfections was investigated by Kim and Lee (2008b). Moreover, Jadhav and 
Bajoria (2013b) based on the first order shear deformation plate theory investigated the stability 
analysis of FGM plate with two piezoelectric layers using finite element method. 

The buckling delamination problem of a simply supported sandwich plate-strip with a 
piezoelectric face and elastic core layers was studied by Akbarov and Yahnioglu (2013a). In order 
to investigate the effect of stored voltage in actuators, Panahandeh-Shahraki et al. (2014c) 
presented fully coupled electromechanical buckling analysis of thin to thick active laminated 
composites. Fereidoon et al. (2014b) introduced an analytical approach for buckling analysis of 
two layered FGMs that were integrated with surface-bonded piezoelectric actuators subjected to 
thermo-electro-mechanical loads. Mirzavand and Eslami (2011a) presented a close-form solution 
for the thermal buckling of functionally graded plates with piezoelectric actuators subjected to 
thermo-electrical loadings.  

Finally, buckling analysis of thick functionally graded piezoelectric rectangular plates was 
investigated based on the higher-order shear and normal deformable plate theory by Abdollahi et 
al. (2015). They considered two cases consisting of closed and open–closed circuits as electrical 
conditions.  

Contrary to functionally graded and piezoelectric materials, there are not so many researches on 
the buckling analysis of functionally graded piezoelectric plates. Although some studies achieved 
on the buckling of FGPMs referred to buckling analysis of cylindrical shells (2010f) and thick 
plates (2015), but analysis of the effect of piezoelectric constants on buckling behavior of plates 
and shells is still an open area and needs more attentions. 

According to the all-around literature review, it can be found that there is no work on the 
investigation of piezoelectric constants effect on the buckling behavior of a rectangular plate made 
of FGPM. In this study, based on third order shear deformation plate theory, the buckling analysis 
of simply supported rectangular functionally graded piezoelectric plates for both open and closed 
circuited electrical conditions are investigated. Assuming the function of electric potential is a 
combination of parabolic and linear functions of thickness coordinate z, the Maxwell equation and 
all boundary conditions including the conditions on the top and bottom surfaces of the plate for 
closed and open circuited are satisfied. 

Considering the principle of minimum total potential energy, the equilibrium equations of the 
plate are derived. By using double series solution, six coupled governing partial differential 
equations are solved and the accurate critical buckling load is obtained. Verifying the accuracy of 
the present solution a comparison is performed for a special case of the functionally graded 
piezoelectric plate without piezoelectric effects. Finally, the effects of plate thickness, piezoelectric 
constants, piezoelectric index, loading conditions and circuited electrical conditions for some 
different FGPMs are comprehensively investigated. 
 
 
2. Geometry and material properties 
 

Consider a flat rectangular plate with the length a, width b, thickness h. The plate is made of 
FGPM with material properties varying spatially through the thickness direction continuously 
according to a power law distribution expressed as 
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   
n

b t b
1 z

Θ z Θ Θ Θ
2 h

     
 

                          (1) 

where n is the material power law index and Θb and Θt denote the material property of the bottom 

 z=- 2
h  and top  z= 2

h  surfaces of the plate, respectively. In this study, Θ demonstrates FGPM 

properties such as the elastic (Cij), piezoelectric (eij) and dielectric constants (Ξij). It should be 
mentioned that FGP is polarized perpendicular to the mid-plane in the direction of the z-axis. 

 
 

3. Equilibrium and stability equations 
 

Considering the third-order shear deformation plate theory (2010b) and the von-Karman 
hypothesis for non-linear relation of strain–displacement (2010b), the linear constitutive relations 
describing the electrical and mechanical interaction of FGPMs in the plane stress state can be 
written as (2010f) 
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                 (2) 

Where [C] is the reduced stiffness matrix at constant electric field, [e] is the reduced matrix of 
piezoelectric constants, [Ξ] is dielectric constants matrix, {E} is the electric field and {D} is 
electric displacement field. In order to satisfy the Maxwell equation and the electrical conditions 
for open and closed circuits, the transverse distribution for electric potential is proposed as 

       
2

2

4
Φ , , 1 , , ,

z
x y z x y A x y z B x y

h


 
     
 

                  (3) 

Where ϕ is the electric potential on the mid-surface of the FGP layer and A and B are 
determined through satisfying the electrical boundary conditions on the surfaces of FGP plate. 
Moreover, based on the linear piezoelectricity, the electric field is the gradient of electric potential 
as 

, , ,Φ ,        Φ ,        Φx x y y z zE E E                            (4) 

when both surfaces of the plate are short-circuited, the electrical boundary conditions for a closed 
circuit piezoelectric layer are represented as 
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 Φ , , / 2 0x y h                                (5) 

On the other hand, when the inner surface of the plate is held at zero voltage and the outer 
surface is in contact with a low permittivity medium such as air or vacuum (open circuit 
condition), the following surface boundary conditions are assumed 

   Φ , , / 2 0,  , , / 2 0zx y h D x y h                       (6) 

Applying the principle of minimum total potential energy, the equilibrium equations are 
obtained as 

, , 0xx x xy yN N   

, , 0xy x yy yN N   

 , , , , 0xx x xy y xz xx x xy y xM M Q P P R        

 , , , , 0xy x yy y yz xy x yy y yM M Q P P R        

   , , , , , , ,

, , ,

2

2 0

xz x yz y xx xx xy xy yy yy x x y y
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Q Q P P P R R

N w N w N w

      

   
             (7) 

where subscripts (,) denotes the differentiation with respect to the Cartesian coordinate and 
β=3α=4/h2 and Ni, Mi, Pi (i=xx, yy, xy)  are the resultant forces, moments and higher-order 
moments, respectively, and Qi, Ri (i=xz, yz) are the shear and higher-order shear forces, 
respectively, defined by following relations (2010b)  

   
/2

3

/2

, , 1, , ,
h

i i i i
h

N M P z z dz


   (i=xx, yy, xy) 

   
/2

2

/2

, 1, ,
h

i i i
h

Q R z dz


   (i=xz, yz)                      (8) 

According to the adjacent equilibrium criterion for obtaining the stability equations of 
buckling, a neighboring state of equilibrium is considered as an increment in the displacement 
field (1979, 2006a, 2011b). Therefore, the displacement field can be written as 

0 1,u u u   0 1 0 1,v v v w w w     0 1
x x x     0 1

y y y           (9) 

where the arrow is read “be replaced by” and superscripts “0” and “1” refer to equilibrium and 
neighboring states, respectively. Moreover, w is the transverse displacement and ψx and ψy are 
rotation functions of the middle surface in the x and y directions, respectively, and u and v are the 
mid-plane displacements of the plate in the x and y directions, respectively. 

 Substitution of the relations (9) into (8), the expressions for stress resultants related to the 
equilibrium and neighboring states are obtained as follows 

     0 0 0 1 1 1, , , , , , ,i i i i i i i i iN M P N M P N M P    (i=xx, yy, xy) 

         0 0 1 1, , , ,i i i i i iQ R Q R Q R      (i=xz, yz)                  (10) 
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where the terms with superscripts 0 related to the equilibrium conditions and those with 
superscripts 1 are linear parts of the stress resultants increments corresponding to the neighboring 
state. Substituting relations (10) into Eqs. (7), the terms in the resulting equations with superscript 
0 are omitted because of satisfying the equilibrium conditions. Moreover, the non-linear terms 
with superscript 1 are ignored because of the smallness of the incremental displacement compared 
to the linear terms. The remaining terms form the stability equations as 

1 1
, , 0xx x xy yN N   

1 1
, , 0xy x yy yN N   

 1 1 1 1 1 1
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 1 1 1 1 1 1
, , , , 0xy x yy y yz xy x yy y yM M Q P P R        

   1 1 1 1 1 1 1 0 1
, , , , , , , ,

0 1 0 1
, ,

2

2 0

xz x yz y xx xx xy xy yy yy x x y y xx xx

xy xy yy yy

Q Q P P P R R N w

N w N w
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 
      (11) 

where  0 , , ,iN i xx xy yy  can be replaced by the pre-buckling forces obtained from equilibrium 

conditions. The above equations formed the stability equations of the plate subjected to the in-
plane edge loading. Besides mentioned equations, the variables should also satisfy the Maxwell 
equation which requires that the divergence of the electric flux density vanishes at any point 
within the media. In order to satisfy this condition, the integration of the electric flux divergence 
across the thickness of the piezoelectric layers must be zero for any x and y as (2009a) 
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                         (12) 

Substituting relations of displacement and strains into Eqs. (10) and (11) the governing stability 
equations are obtained as 
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        (13) 

where Ai, Bi, Di and Fi (i=1 to 9) are introduced in the Appendices A and B for open and closed 
circuit conditions, respectively. Eq. (13) is six highly coupled partial differential equations in 
terms of neighboring displacement components and mid-plane electrical potential function. 

 
 

4. Buckling analysis 
 

In this study, a rectangular plate with length a and width b subjected to in-plane loads is 
considered as shown in Fig. 1. The pre-buckling forces can be obtained using the equilibrium 
conditions as 

0
1 젨,xxN P   0

2 젨,yyN P   0 0xyN                         (14) 

where P1 and P2=RP1 are the forces per unit length and R is the load ratio. With this definition, 
uniaxial loading in x-direction and baiaxial compressive loading in the x and y-directions are 
determined by R=0 and R=1, respectively while and R=−0 presents a plate under compressive in 
the x-direction and tensile loading in the y-direction.  

The electrical and mechanical boundary conditions for a simply supported rectangular plate 
which its edges are covered with electrodes and electrically is under zero applied electric field 
(grounded to zero potential), can be expressed as follows 

 
 

Fig. 1 Full simply supported rectangular plate subjected to the in-plane loads. 

277



 
 
 
 
 
 

M.A. Ghasemabadian and M. Kadkhodayan 

1 1 1 1 1 0y xx xxv w M P              at 0,x a  

1 1 1 1 1 0x yy yyu w M P              at 0,y b                (15) 

The differential Eq. (13) and boundary conditions (15) for simply-supported rectangular FGPM 
plate may be satisfied by double trigonometric expansions of the following forms 
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Where μ=πq/b and η=πp/a and p and q are the integer number of half-waves in the x and y 
directions of buckling mode shape, respectively. Substituting Eqs. (16) into (13), provides a set of 
homogenous algebraic equations in terms of coefficients and pre-buckling load P1 which may be 
condensed in the following form 
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Where kij (i,j=1 to 6)  are introduced in the Appendix C. Non-trivial solution of the system 
may be obtained when the determinant of the sixth order coefficient matrix is set equal to zero for 
the buckling loads which results the characteristic equation. To evaluate the buckling load of FGP 
plate the characteristic equation has to be solved. The critical buckling load is the minimum value 
among all these P1 and denoted by Pcr. 

 
 

5. Verification of results 
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In order to validate the accuracy of the present formulations, a comparison has been made with 
the previously published results. The first comparison carried out with the buckling analysis of 
FGM plates. For this purpose, aluminum (E=70 GPa) and silicon carbide (E=380 GPa) considered 
as bottom and top surface materials. Furthermore, the components of electric and dielectric matrix 
of piezoelectric material set equal to zero and elastic matrix components set equal to following 
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where E(z) is Young modulus that follow from Eq. (1). These considerations lead to FGPM  
 
 
Table 1 Comparison of the critical buckling loads for a functionally graded plate with (2010b) 

n R a/b 

h/b 

0.1 0.2 

(2010b) Closed Open (2010b) Closed Open 

0 

0 

0.5 2079.721(1) 2079.758(1) 2079.758(1) 12162.119(1) 12164.991(1) 12164.991(1)

1 1437.361(1) 1437.390(1) 1437.390(1) 9915.620(1) 9916.193(1) 9916.193(1)

1.5 1527.903(2) 1527.994(2) 1527.994(2) 10044.721 (2) 10044.962(2) 10044.962(2)

1 

0.5 1663.777(1) 1663.807(1) 1663.807(1) 9729.999(1) 9731.990(1) 9731.990(1)

1 718.692(1) 718.695(1) 718.695(1) 4957.888(1) 4958.097(1) 4958.097(1)

1.5 526.861(1) 526.862(1) 526.862(1) 3772.877(1) 3772.964(1) 3772.964(1)

-1 

0.5 2772.980(1) 2773.011(1) 2773.011(1) 16216.712(1) 16219.981(1) 16219.981(1)

1 2772.980(2) 2773.011(2) 2773.011(2) 16216.712(2) 16219.981(2) 16219.981(2)

1.5 2772.980(3) 2773.011(3) 2773.011(3) 16216.712(3) 16219.981(3) 16219.981(3)

1 

0 

0.5 1028.412(1) 1028.449(1) 1028.449(1) 6270.298(1) 6272.425(1) 6272.425(1)

1 702.304(1) 702.251(1) 702.251(1) 4955.431(1) 4955.484(1) 4955.484(1)

1.5 748.920(2) 748.988(2) 748.988(2) 5067.219(2) 5068.084(2) 5068.084(2)

1 

0.5 822.738(1) 822.759(1) 822.759(1) 5016.384(1) 5017.940(1) 5017.940(1)

1 351.124(1) 351.126(1) 351.126(1) 2477.589(1) 2477.742(1) 2477.742(1)

1.5 256.776(1) 256.776(1) 256.776(1) 1871.038(1) 1871.101(1) 1871.101(1)

-1 

0.5 1371.653(1) 1371.265(1) 1371.265(1) 8360.541(1) 8363.233(1) 8363.233(1)

1 1371.653(2) 1371.265(2) 1371.265(2) 8360.541(2) 8363.233(2) 8363.233(2)

1.5 1371.653(3) 1371.265(3) 1371.265(3) 8360.541(3) 8363.233(3) 8363.233(3)

2 

0 

0.5 780.097(1) 780.228(1) 780.228(1) 4692.542(1) 4695.029(1) 4695.029(1)

1 534.441(1) 534.835(1) 534.835(1) 3746.054(1) 3746.732(1) 3746.732(1)

1.5 569.751(2) 569.825(2) 569.825(2) 3819.109(2) 3820.079(2) 3820.079(2)

1 

0.5 624.158(1) 624.182(1) 624.182(1) 3754.274(1) 3756.023(1) 3756.023(1)

1 267.416(1) 267.418(1) 267.418(1) 1873.190(1) 1873.366(1) 1873.366(1)

1.5 195.714(1) 195.715(1) 195.715(1) 1418.120(1) 1418.193(1) 1418.193(1)

-1 

0.5 1040.519(1) 1040.304(1) 1040.304(1) 6257.811(1) 6260.038(1) 6260.038(1)

1 1040.519(2) 1040.304(2) 1040.304(2) 6257.811(2) 6260.038(2) 6260.038(2)

1.5 1040.519(3) 1040.304(3) 1040.304(3) 6257.811(3) 6260.038(3) 6260.038(3)
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Table 2 Comparison of the critical buckling loads for a functionally graded piezoelectric plate with Ref. 
(2015) for open and closed circuit boundary conditions 

a/b h/b  
Closed circuit condition Open circuit condition 

R=1 R=0 R=−1 R=1 R=0 R=−1 

0.5 

0.1 
(2015) 2.73338 3.41669 4.55561 2.77165 3.46453 4.61935 

present 2.77848 3.47310 4.63081 2.81912 3.52390 4.69854 

0.2 
(2015) 1.95581 2.44476 3.25968 2.01841 2.52301 3.36402 

Present 2.05334 2.56668 3.42222 2.13065 2.66331 3.55109 

1 

0.1 
(2015) 1.19144 2.38288 4.55561 1.20086 2.40165 4.61935 

Present 1.20009 2.40018 4.63081 1.20968 2.41937 4.69854 

0.2 
(2015) 1.01122 2.02242 3.25968 1.03073 2.06147 3.36402 

Present 1.03608 2.07215 3.42222 1.05756 2.11512 3.55109 

1.5 

0.1 
(2015) 0.87518 2.52655 4.55561 0.88101 2.55058 4.61935 

Present 0.87987 2.55124 4.63081 0.88581 2.57608 4.69854 

0.2 
(2015) 0.77327 2.03767 3.25968 0.78524 2.08622 3.36402 

Present 0.78774 2.10295 3.42222 0.80056 2.15821 3.55109 

 
Table 3 Material properties of some common piezoelectric materials 

Dielectric constants (C/Vm)Electric constants (C/m2)Elastic constants (GPa) 
Materials 

33  11  15e  13e33e13
EC12

EC55
EC  33

EC  11
EC  

5.841 e-97.124e-9 10.54.1 14.173 71 26 115 132 PZT-4 

7.35 e-9 8.11 e-9 12.35.4 15.875.475.921.1 111 121 PZT-5A 

3.42 e-9 3.60 e-9 4.600.9 7.1084.284.735.5 163 168 PZT-6B 

13.0 e-9 15.1 e-9 17.06.5 23.383.979.123.0 117 126 PZT-5H 

2.08 e-9 4.07 e-9 9.202.1 9.5081.376.125.3 131 148 PZT-7A 

5.14 e-9 7.97 e-9 10.44.0 17.571.169.931.3 123 137 PZT-8 

8.190 e-99.837 e-9 11.979.52 15.1463.963.119.6 100.4 107.6 PIC-151 

5.622 e-96.463 e-9 12.75.2 15.174.377.825.6 115 139 PZT(NEPEC6) 

12.6 e-9 11.2 e-9 11.64.4 18.678 77 43 162 166 BaTiO3 

 
 
becomes FGM and comparable with (2010b). As it can be seen from the Table 1, the results 
obtained using this method coincides with the previous results (2010b) and therefore its merits and 
accuracy are verified. Other comparison has been made with (2015). For this purpose, PZT-4 and 
PZT-5H considered as bottom and top surface materials, respectively. From results shown in Table 
2, it can be seen that accuracy of this method is verified. 

 
 

6. Results and discussion 
 

In order to present the following new results, it is assumed that the FGP plate is made of a 
mixture of BaTiO3 and PZT-7A as the bottom and top surfaces of the plate, respectively. The  
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Table 4 The critical buckling load of a functionally graded plate for various electrical conditions 

n R h/b 

a/b 

0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5 

Closed Open Without piezoelectric effect

0 

0 
0.1 538.2492 373.8301 396.7853 555.4326 379.4843 404.7503 421.4200 298.2318 314.9580

0.2 3143.443 2559.500 2589.840 3345.881 2671.422 2725.276 2286.695 1969.789 1960.785

1 
0.1 430.5993 186.9151 137.1919 444.3461 189.7421 138.7410 337.1360 149.1159 109.8496

0.2 2514.755 1279.750 975.6022 2676.704 1335.711 1010.131 1829.356 984.8945 760.3378

-1 
0.1 717.6655 717.6655 717.6655 740.5768 740.5768 740.5768 561.8933 561.8933 561.8933

0.2 4191.258 4191.258 4191.258 4461.174 4461.174 4461.174 3048.926 3048.926 3048.926

1 

0 
0.1 559.5527 388.0333 412.0753 592.6676 408.5036 434.5867 496.7678 346.9205 367.7324

0.2 3261.033 2662.141 2693.231 3494.909 2831.985 2874.175 2808.771 2347.729 2359.595

1 
0.1 447.6421 194.0167 142.3422 474.1340 204.2518 149.6460 397.4143 173.4602 127.4315

0.2 2608.826 1331.071 1014.430 2795.927 1415.993 1075.833 2247.017 1173.864 899.0207

-1 
0.1 746.0702 746.0702 746.0702 790.2234 790.2234 790.2234 662.3571 662.3571 662.3571

0.2 4348.043 4348.043 4348.043 4659.878 4659.878 4659.878 3745.028 3745.028 3745.028

2 

0 
0.1 581.6098 401.3359 426.7912 612.8203 421.7752 448.8709 515.6971 358.1183 380.1927

0.2 3440.002 2778.398 2820.729 3637.017 2932.617 2980.616 2969.308 2448.826 2471.614

1 
0.1 465.2879 200.6679 147.0701 490.2563 210.8876 154.4687 412.5577 179.0591 131.3927

0.2 2752.001 1389.199 1055.614 2909.614 1466.308 1112.847 2375.446 1224.413 934.5010

-1 
0.1 775.4798 775.4798 775.4798 817.0938 817.0938 817.0938 687.5962 687.5962 687.5962

0.2 4586.669 4586.669 4586.669 4849.356 4849.356 4849.356 3959.077 3959.077 3959.077

 
 

Poisson ratio of the plate is assumed to be constant through the thickness and equal to 0.3. The 
material properties of various piezoelectric materials are listed in Table 3. 

Table 4 shows a comparison between the critical buckling loads of open, closed and “without 
piezoelectric effect” conditions. For “without piezoelectric effect” condition, the reduced matrix of 
piezoelectric constants [e] and the dielectric constants matrix [Ξ] are considered to be zero. In this 
condition only stiffness of FGP plate is considered. In this Table, the critical buckling loads have 
been tabulated for the FGP plate under three loading conditions, some material power law indices 
and different thickness-side (h/b) and different aspect ratios (a/b). From the results presented in 
the Table, it is concluded that the “without piezoelectric effect” condition has the critical buckling 
loads less than closed and open circuit conditions. 

That means the piezoelectric effect leads to increase the critical buckling load. Moreover, for 
all mentioned loading conditions, the critical buckling load increased as thickness-side ratio 
increased. Furthermore, increasing in thickness-side ratio leads to increase the number of half-
waves in the critical buckling mode shape. 

In Fig. 2 the critical buckling load for FGP plate has been shown versus the electrical boundary 
conditions. The plate is subjected to biaxial compression and tension along x and y directions, 
respectively. It is seen that the critical buckling load of open circuit condition is higher than that of 
closed and “without piezoelectric effect” condition. Therefore, by changing electrical boundary 
condition from closed to open circuit condition, one can easily change the critical  
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Table 5 Various case studies for investigation of piezoelectric material constants effect 

Case No. Elastic constants Piezoelectric constants Dielectric constants 
1 Changed Fixed Fixed 

2 Fixed Changed Fixed 

3 Fixed Fixed Changed 

4 Changed Changed Fixed 

5 Changed Fixed Changed 

6 Fixed Changed Changed 

7 Changed Changed Changed 
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Fig. 2 The critical buckling load for an FGP plate (a/b=0.5, n=2, R=−1) 
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Fig. 3 The critical buckling loads of an FGP plate versus the thickness to side ratio under different 
kinds of loading conditions for open circuit condition (a/b=1, n=1) 
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Fig. 4 The critical buckling loads of an FGP plate versus the thickness to side ratio subjected to 
biaxial compression with some material power law indices for closed circuit condition (a/b=1.5) 
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Fig. 5 The critical buckling load of an FGP plate versus material power law index for open and 
closed circuit conditions (a/b=0.5, h/b=0.2, R=−1) 

 
 
buckling load without altering material properties. In the vibration absorbing and harvest energy 
from vibrating structures, this phenomenon is known as piezoelectric shunting (2009b). Besides, 
the critical buckling load and difference between the critical buckling load of closed and open 
circuit condition increases as the thickness to side ratio increases i.e., the growth rate of the critical 
buckling load of open circuit condition is more than that of closed circuit condition. 

Fig. 3 shows the critical buckling loads of an FGP plate versus the thickness to side ratio under 
different kinds of loading conditions for open circuit condition. It can be seen that the highest and 
lowest values of the critical buckling load are related to biaxial compression and tension (R=−1)  
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Fig. 6 The critical buckling load of different piezoelectric materials for open circuit condition 
under biaxial compression loading (a/b=1, n=0) 

 
 

and biaxial compression (R=1), respectively. The critical buckling loads of an FGP plate versus the 
thickness to side ratio subjected to biaxial compression with some material power law indices for 
closed circuit condition depicted in Fig. 4. It is observed that the critical buckling load increases 
with the increase of material power law indices.  

Fig. 5 presents the critical buckling load of an FGP plate subjected to biaxial compression and 
tension loading versus material power law index for open and closed circuit conditions. As shown 
before, increasing of the material power law index leads to increase of the critical buckling load. 
Moreover, in smaller material power law indices the change of the critical buckling load is more 
obvious for both open and closed circuit conditions.  

The critical buckling load of different piezoelectric materials for open circuit condition under 
biaxial compression loading is shown in Fig. 6. For this purpose, the material power law index of 
FGP is set to zero to make it a homogeneous material. Furthermore, material properties of the top 
(z=h/2) surfaces of the plate is changed to every specified piezoelectric material. As the figure 
shows, the least and the most values of critical buckling loads are related to PZT-5A and BaTio3, 
respectively. 

To investigate the effect of the difference between the top and bottom piezoelectric material, 
the parameter δ which varies between zero and one is introduced. The material properties of the 
bottom surface of plate varies from PZT-7A to BaTio3 as δ varies from zero to one, wheras the 
material properties of the top surface plate are fixed at BaTio3. Fig. 7 shows the critical buckling 
load of FGP plate versus δ for both open and closed condiotions. It is seen that the critical 
buckling load increases as δ increases that means the critical buckling load of pure BaTio3 plate is 
greater than FGP plate that made of PZT-7A and BaTio3. Moreover, difference between the 
critical buckling load of open and closed circuit condition decreases as δ increases.  

Some other studied cases are shown in Table 5. In this table “changed” means that related 
variables varies as δ varies i.e., Θ(z) changes to δΘ(z) where δ varies as before. Cases Nos. 1, 2 
and 3 are related to variation in elastic, piezoelectric and dielectric constants of FGP plate, 
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Fig. 7 The critical buckling load of an FGP plate versus δ for open and closed conditions (a/b=0.5, 
h/b=0.2, R=−1, n=2) 
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Fig. 8 The critical buckling load of an FGP plate versus δ for case No. 1 under open and closed 
circuit conditions (a/b=1, h/b=0.2, R=0) 

 
 

respectively. In cases Nos. 4 to 6 two sets of constants vary and in the case No. 7 all constants 
vary. In the Figs. 8 to 14 the critical buckling loads of FGP plates versus δ for various cases under 
open and closed circuit conditions at R=0 are presented. It is observed that the critical buckling 
load of case No. 1 is increased linearly when δ increases, Fig. 8. 

In order to explain this phenomenon, the scalar version of piezoelectric constitutive 
relationships is referred as follows (2009b) 
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    σ Cε eE,                                 (19a) 

    D eε ΞE.                                 (19b) 

Substituting (19b) into (19a) gives 

    
2

σ C ε
Ξ Ξ

e e
D

 
    
 

                             (20) 

For open circuit condition, electric displacement field is zero, hence Eq. (20) is reduced to 

    
2

σ C ε
Ξ

e 
   
 

                                (21) 

Introducing 
2

C
Ξ

e
  as equivalent stiffness of open circuit condition, it can be seen that by 

increasing C stress increases linearly. Similarly in the case No. 2 by increasing δ, the critical 
buckling load increases quadratic, Fig. 9.  

Moreover, the critical buckling load decreases as hyperbolic function due to the existence of 
dielectric constant in the denominator, Fig. 10. Comparing Figs. 8 to 10 and considering the 
variation range of the critical buckling load (vertical axis), it may be concluded that the effect of 
dielectric constants variation on the critical buckling load is more than that of two others.  

In Fig. 11, piezoelectric and elastic constants are increased simultaneously. According to 
greater values of elastic constants, these constants have a dominant effect on critical buckling load. 
Thus, the variation of critical buckling load versus δ has linear behavior instead of quadratic ones. 
Refer to Fig. 12 it is concluded that, in the lower values of δ, the effect of dielectric constants is 
dominant thus the critical buckling load behaves as hyperbolic whereas in the higher values of δ, 
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Fig. 9 The critical buckling load of an FGP plate versus δ for case No. 2 under open and closed 
circuit conditions (a/b=1, h/b=0.2, R=0) 
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Fig. 10 The critical buckling load of an FGP plate versus δ for case No. 3 under open and closed 
circuit condition (a/b=1, h/b=0.2, R=0) 
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Fig. 11 The critical buckling load of an FGP plate versus δ for case No. 4 under open and closed 
circuit conditions (a/b=1, h/b=0.2, R=0) 

 
 

dominant effect of elastic constants leads to linear behavior of critical buckling load.  
In the case No. 6, the critical buckling load increases as δ increases, Fig. 13. It seems that the 

piezoelectric constants are more effective than dielectric ones on the critical buckling load. 
The effects of all constants on the critical buckling load are studied in Fig. 14. Due to the linear 

behavior of diagram, it is found that the elastic constants have a dominant effect on the critical 
buckling load in this case. Furthermore, according to Figs. 9, 11, 13 and 14, in lower values of δ 
the critical buckling load of open and closed circuit conditions are the same because of weak 
coupling between the mechanical and electrical fields due to lower values of piezoelectric 
constants. 
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Fig. 12 The critical buckling load of an FGP plate versus δ for case No. 5 under open and closed 
circuit conditions (a/b=1, h/b=0.2, R=0) 
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Fig. 13 The critical buckling load of an FGP plate versus δ for case No. 6 under open and closed 
circuit conditions (a/b=1, h/b=0.2, R=0) 

 
 

In Fig. 15 the critical buckling load for an FGP plate has been plotted versus the aspect ratio of 
plate for electrical boundary conditions. The plate is subjected to uniaxial compression. It can be 
seen that the critical buckling load decreases by increasing the aspect ratio for all electrical 
boundary conditions. Moreover, the critical buckling load of closed circuit condition is less than 
that of open circuit condition and greater than “without piezoelectric effect” condition. Moreover, 
it can be observed that by increasing the aspect ratio the critical mode number of buckling is 
increased. According to these results, it can be concluded that the piezoelectric phenomenon has  
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Fig. 14 The critical buckling load of an FGP plate versus δ for case No. 7 under open and closed 
circuit conditions (a/b=1, h/b=0.2, R=0) 
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Fig. 15 The critical buckling load of an FGP plate versus the aspect ratio under uniaxial 
compression (h/b=0.1, n=0) 

 
 

no effect on the critical mode number of buckling. 
 
 
7. Conclusions 
 

In the present article, an analytical method was developed for buckling analysis of FGP 
rectangular plates. Based on the higher-order shear deformation plate theory, the stability and 
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equilibrium equations were derived. Six coupled stability equations were solved using double sine 
series solution. The critical buckling loads for fully simply-supported boundary condition and 
closed and open circuit electrical boundary conditions were presented. From the numerical results 
the following conclusions are emphasized: 

1. The electrical effect of FGPM increases the critical buckling load for both open and closed 
circuit conditions. 
2. The critical buckling load increases as the thickness of FGP plate increases for all electrical 
and  loading conditions, the critical buckling load increases as the thickness of FGP plate 
increases.  
3. In all loading conditions, changing the open circuit condition to the closed one reduces the 
critical buckling loads. 
4. In all electrical boundary conditions, the highest and lowest values for the critical buckling 
load are related to the plates under biaxial compression, and tension and biaxial compression, 
respectively. 
5. The effect of variation in dielectric constants on the critical buckling load is more significant 
than that of other constants of FGPM. 
6. The piezoelectric phenomenon has no effect on the critical mode number of buckling. 
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Appendix A 
 

Open circuit condition constants 
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Appendix B 
 

Closed circuit condition constants 
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Appendix C 

 

 2 2
11 1k A                                 (C.1) 

12 8k A                                  (C.2) 

 2 2
13 2 3k A A                               (C.3) 

14 4k A                                  (C.4) 

 2 2
15 5 6k A A                               (C.5) 

16 7k A                                  (C.6) 

 2 2
21 1k A                                  (C.7) 

22 8k A                                  (C.8) 

23 4k A                                  (C.9) 

 2 2
24 3 2k A A                              (C.10) 

25 7k A                                 (C.11) 

 2 2
26 6 5k A A                              (C.12) 

 3 2
31 1 8k B B                               (C.13) 

32 9k B                                 (C.14) 

 2 2
33 2 3 8k B B B                             (C.15) 

34 4k B                                 (C.16) 
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41 1 8k B B                              (C.19) 

42 9k B                                 (C.20) 

43 4k B                                 (C.21) 

 2 2
44 3 2 8k B B B                             (C.22) 

45 7k B                                 (C.23) 

 2 2
46 6 5k B B                              (C.24) 

   4 2 2 4 2 2 2
51 1 4 12k D D P                           (C.25) 

 2 2
52 5k D                                (C.26) 

 2 2
53 2 4k D D                              (C.27) 

 2 2
54 2 4k D D                              (C.28) 

 2 2
55 3k D                                (C.29) 

 2 2
56 3k D                                (C.30) 

   4 2 2 4 2 2
61 1 42k F F                             (C.31) 

 2 2
62 7 1k F                                 (C.32) 

 2 2
63 2 5k F F                                (C.33) 

 2 2
64 2 5k F F                                (C.34) 

 2 2
65 3 6k F F                                (C.35) 

 2 2
66 3 6k F F                                (C.36) 
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