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Abstract.  Exact solutions for stresses, strains, displacements, and the stress concentration factors of a 

rectangular plate perforated by an arbitrarily located circular hole subjected to in-plane pure shear loading 

are investigated by two-dimensional theory of elasticity using the Airy stress function. The hoop stresses, 

strains, and displacements occurring at the edge of the circular hole are computed and plotted. Comparisons 

are made for the hoop stresses and the stress concentration factors from the present study and those from a 

rectangular plate with a circular hole under uni-axial and bi-axial uniform tensions and in-plane pure 

bending moments on two opposite edges. 
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1. Introduction 
 

Numerous researchers have investigated the mechanical behaviors of perforated plates, with 

main concerns being classified into four categories; stress concentration (Savin 1961, 

Muskhelishvili 1963, Miyata 1970, Timoshenko and Goodier 1970, Peterson 1974, Iwaki and 

Miyao 1980, Broek 1982, Theocaris and Petrou 1987, Mal and Singh 1991, Anderson 1995, Fu 

1996, Radi 2001, Yang and He 2002, Zhang et al. 2002, Viva et al. 2005, She and Guo 2007, Li et 

al. 2008, Yang et al. 2008, Yu et al. 2008, Kang 2014, Woo et al. 2014), vibration, buckling, and 

fatigue. The various methods have been used to study them. The finite element method (FEM) is 

the most widely used for this perforated plate problems. Diverse methods other than FEM have 

been used like the complex variable method, three-dimensional stress analysis, the Ritz method, 

the boundary element method, the differential quadrature element method, semi-analytical solution 

method, experimental method, conjugate load/displacement method, and Galerkin averaging 

method. Most of the shapes of perforated holes have three types of circular, elliptical, and 

rectangular cutout. Most of the previous researchers have generated approximate solutions, and 

have dealt with perforated plates subjected to uni-axial or bi-axial uniform tension or compression 

at the most. 
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Fig. 1 A perforated rectangular plate with an arbitrarily located circular hole loaded by in-plane 

pure shear loading τ0 

 

 

In the present study, exact solutions for stresses, strains, displacements, and the stress 

concentration factors of a rectangular plate perforated by an non-central circular hole subjected to 

in-plan pure shear loading are investigated by two-dimensional (2-D) theory of elasticity using the 

Airy stress function. The hoop stresses, strains, and displacements occurring at the edge of the 

circular hole are computed and plotted. Comparisons are made for the hoop stresses and the stress 

concentration factors from the present study and those from a rectangular plate with a circular hole 

under uni-axial and bi-axial uniform tensions (Timoshenko and Goodier 1970) and in-plane pure 

bending moments on two opposite edges (Woo et al. 2014). Stress intensity factor (SIF) is often 

confused with SCF. The SIF is a scaling factor used in fracture mechanics to denote the stress 

intensity at the tip of a crack of known size and shape. 

 

 

2. Method of analysis 
 

Fig. 1 represents an infinite plate with an arbitrarily located circular hole of radius of a and 

subjected to in-plane pure shear loading τ0. The plate is assumed to be very large compared with 

the circular hole. The present study comes within the category of the plane stress problem because 

the plate thickness is assumed to be very thin compared with other dimensions of the plate. The 

origin of the rectangular coordinate system (X,Y) is located at the center of the plate while the 

origins of the rectangular (x,y) and the polar (r,θ) coordinate systems coincide with the center of 

the non-central circular hole. The center of the non-central circular hole is located at (X,Y)=(X0,Y0).  

First of all, considering a plate with no hole subjected to in-plane pure shear loading τ0, the 

stress components are below 
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where ϕ
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is a fundamental Airy stress function. The Airy stress function ϕ satisfies the governing 

equation 
4
ϕ=

2
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ϕ)=0 for 2-D plane problems in elasticity with no body forces, where the 
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Deformation of a rectangular plate with an arbitrarily located circular hole... 

 

Fig. 2 The non-dimensional hoop stress σθθ/τ0 occurring at the edge of the circular hole on r=a 

 

 

and 
4
 is the bi-harmonic differential operator defined by 
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in the rectangular coordinates. From the relation of the Airy stress function and the stress 

components in rectangular coordinates in Eqs. (1), the fundamental Airy stress function ϕ
0
 can be 

assumed as 

3210
0 CYCXCXY                           (4) 

where C1, C2 and C3 are arbitrary integration constants. Since the relations of X=x+X0 and Y=y+Y0, 

Eq. (4) becomes 
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A linear function of X or Y and a constant in the Airy stress function in rectangular coordinates 

are trivial terms which do not give rise to any stresses and strains. Dropping the trivial terms in Eq. 

(5), the fundamental Airy stress function ϕ
0
 becomes finally 

xy0
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Using the relations of 

 cosrx                                   
(7) 

 sinry                                   (8)
 

the fundamental Airy stress function ϕ
0
 in Eq. (6) can be transformed into the bi-harmonic 

functions as 
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Table 1 Stresses and displacements of potential candidates of bi-harmonic functions ϕ 

ϕ σrr σrθ σθθ 
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which satisfies the governing equation 
4
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and 
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in the polar coordinates. From the below relations between the stress components and the Airy 

stress function in polar coordinates, the stresses in the plate with no hole subjected to in-plane pure 

shear loading τ0 
can be calculated as below 
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Let us return to the original problem of a perforated plate by a non-central circular hole. The 

total Airy function ϕ
 
becomes 

*0                                   (13) 

where ϕ
*

 
is an Airy stress function to cancel unwanted traction due to ϕ

0
 on r=a. The normal (σrr) 

and shear (σrθ) stresses on r=a must be free as below 
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Deformation of a rectangular plate with an arbitrarily located circular hole... 

 

Fig. 3 The non-dimensional shear stress σrθ/τ0 at θ=0° and 180° 

 

 

Therefore, *
rr  

and *
 r

 on r=a must have terms of sin 2θ and cos 2θ, respectively, in order to  

eliminate the stresses on r=a due to ϕ
0
 in Eqs. (12). Table 1 shows the potential candidates of the 

bi-harmonic functions for the present problem identified as r
2 
sin2θ, sin2θ, r

4 
sin2θ, and sin2θ/r

2

 
from the tables by Dundurs (Fu 1996), which contain stresses and displacements of certain bi-

harmonic functions in the polar coordinates. However, the term of r
2 
sin2θ in the fundamental Airy 

stress function ϕ
0
 in Eq. (9) must not be included in ϕ

0
 in order not to disturb the traction boundary 

conditions at the boundaries of the plate in Eq. (1). It is observed in Table 1 that the singularity at 

infinity occurs in stresses and displacements because of the term of r
4 

sin2θ. Omitting these 

inadequate terms, the total Airy stress function ϕ in Eq. (13) becomes 
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where A and B are arbitrary integration constants to be determined by the traction boundary 

conditions the edge of the circular hole in Eq. (14). In order to make the constants A and B 

dimensionless, a constant a
2
 or a

4
 is multiplied by the constants. Using the relations between the 

stress components and the Airy stress function ϕ
 
in polar coordinates in Eq. (12) and applying the 

stress free boundary conditions the edge of the circular hole on r=a in Eq. (14) 
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the unknown constants are computed as A=−2 and B=1. Thus the total Airy stress function in Eq. 

(15) becomes finally 
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Fig. 4 The non-dimensional normal stresses σrr/τ0 
and σθθ/τ0 

at θ=45° and 225° 
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It is noticed from Eq. (18) that the Airy stress function ϕ is not dependent on the location of the 

circular hole at (X,Y)=(X0,Y0).  

From Eqs. (12) and (18), the stress components can be easily calculated as below  
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From Table 1 by Dundurs (Fu 1996), displacements can be easily obtained as selecting and 

summing the displacement corresponding to each term of the total Airy stress functions ϕ in Eq. 

(18) as below 
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Deformation of a rectangular plate with an arbitrarily located circular hole... 

 

Fig. 5 The non-dimensional hoop displacements uθμ/τ0a 

 

 

where ur and uθ are the radial and circumferential displacements, respectively, μ
 
is shear modulus 

and   is a secondary elastic constant defined by 
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for the plane stress problems of the present study, and v is Poisson’s ratio. 

Substituting the displacements in Eq. (20) into the relations of strain-displacement in polar 

coordinates  
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where εrr, εθθ, and εrθ are the radial, circumferential, and shear strains, respectively, the strain 

components can be calculated as below 
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3. Stress concentration factor 
 

By using of Eq. (19) the non-dimensional hoop stress σθθ 
occurring at the edge of the circular  
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Fig. 6 The non-dimensional displacements urμ/τ0a on θ=45° and 225° 

 

 

hole on r=a becomes 
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and is zero at θ=nπ/2 (n=0,1,2,3) irrespective of Poisson’s ratio as shown in Fig. 2. The non-

dimensional maximum hoop stresses σθθ/τ0 occur at θ=45°, 135°, 225°, and 315°, as expected, and 

are calculated as ±4 which is called the stress concentration factor (S.C.F.) (=σθθmax/τ0), defined as 

the ratio between the maximum normal stress and the nominal stress. 

For a large plate with a central circular hole under uni-axial (x-direction) uniform tensile load 

σ0, the Airy stress function is given by (Timoshenko and Goodier 1970) 
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The normal stress σθθ becomes 
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and so the non-dimensional hoop stress σθθ/σ0

 

on r=a is 
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This stress is independent of the radius of the circular hole for a large plate compared with the 

circular hole. On θ=π/2 or θ=3π/2, we find the S.C.F (σθθ)max/σ0 becomes 3. 
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Fig. 7 The non-dimensional displacements uθμ/τ0a 
on θ=0° and 180° 

 

 

For uniform tension applied in both x- and y-directions, we can find the solution by using the 

above solution for uni-axial uniform tension in Eq. (27) and the principle of superposition as 

below 
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It is of interest to note that the S.C.F decreases to 2 from 3. 

By taking a tensile stress σ0 in the X-direction and a compressive stress −σ0 in the Y-direction, 

we obtain the case of pure shear (Timoshenko and Goodier 1970). By using the solution for uni-

axial uniform tension in Eq. (27) and the principle of superposition, the hoop stress becomes 
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We find that the S.C.F. (=σθθ/σ0) is 4 on θ=π/2 or θ=3π/2, and the S.C.F. is −4 on θ=0 or θ=π, 

which is exactly same with the S.C.F for the present study.  

The hoop stress for the plate under in-plane pure bending moment M0 is given by (Fu 1996) 
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in which assuming σXX=σ0 at X=±L/2 and Y=−h/2, one obtains σ0=6M0/bh
2
, where b is a plate 

thickness. The hoop stress is depend upon the size of the circular hole.  

Fig. 3 shows the comparisons of the non-dimensional hoop stress on r=a for the plates with a 

circular hole under in-plane pure shear loading, uni-axial and bi-axial uniform tensile loads, and 

in-plane bending moment. The maximum hoop stress for in-plane pure shear loading is much  
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Fig. 8 Hoop strains εθθμ/τ0 

 

 

Fig. 9 Normal strains εrrμ/τ0 
and εθθμ/τ0 on θ=45° and 225° 

 

 

larger than the other three cases. 

Table 2 shows comparisons of the stress concentration factors (S.C.F) for the present problem 

and the plates with a circular hole subjected to uni-axial and bi-axial uniform tensions and in-plane 

bending moments. In the case of in-plane pure shear loading, the S.C.F is 4, which is the largest in 

the table. For the plate under in-plane bending moments, the S.C.F increases 

360



 

 

 

 

 

 

Deformation of a rectangular plate with an arbitrarily located circular hole... 

 

Fig. 10 Shear strain εrθμ/τ0 on θ=0° and 180° 
 

 

Fig. 11 Comparisons of the non-dimensional hoop stresses σθθ/σ0 for the rectangular plates with a 

circular hole under in-plane pure shear loading, uni- and bi-axial uniform tensile stresses, and in-

plane bending moment for a/h=0.1 and 0.3 

 
Table 2 Comparisons of the stress concentration factors S.C.F. 

 In-plane bending moment Bi-axial 

uniform tension 

Uni-axial 

uniform tension 

Pure 

shear a/h 0.01 0.05 0.1 0.2 0.3 0.4 

S.C.F. 0.04 0.2 0.4 0.8 1.2 1.6 2 3 4 

 

 

linearly with a/h, while for the other three problems under in-plane pure shear loading and uni-

axial and bi-axial uniform tensions, the S.C.F’s are irrespective of the size of the circular hole. 
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4. Conclusions 
 

Exact solutions for stresses, strains, displacements, and the stress concentration factors of a 

perforated plate with an arbitrarily located circular hole subjected to in-plane pure shear loading 

are investigated by two-dimensional theory of elasticity using the Airy stress function. The hoop 

stresses occurring at the edge of the circular hole are plotted and the stress concentration factors 

are calculated. It is noticed that the solutions is not related to the location of the non-central 

circular hole.  

The bi-harmonic functions ϕ to satisfy the governing equation 
4
ϕ=0 for plane problems with 

no body force in elasticity are called the Airy stress functions. Considering multi-valueness and 

singularity in stresses and displacements, once proper bi-harmonic functions for a certain problem 

are decided from the table presented by Dundurs (Fu 1996), the stresses and displacements 

according to the Airy stress functions can be easily selected from the table, and then strains can be 

calculated from the relations of strain-displacement in Eqs. (22). Also the integration constants 

could be calculated applying the stress free boundary conditions at the edge of the circular hole. 

The obtained Airy stress function ϕ(r, θ) satisfies both the governing equation 
4
ϕ=0 and the stress 

boundary conditions, therefore the solutions are exact. 

Comparisons are made for the non-dimensional hoop stresses σθθ on the edge of the circular 

hole and the stress concentration factors from the present study and plates with a circular hole 

under uni-axial and bi-axial uniform tensions, and in-plane bending moments on two opposite 

edges (Kang et al. 2014). It is seen that the stress concentration factor for the present problem 

under in-plane pure shear loading is the largest. The stress concentration factors from the case of 

pure shear obtained by taking a uniform tension on two opposite edges and a uniform compression 

on the other two edges by a previous researcher (Timoshenko and Goodier 1970) is exactly same 

as those from the present study. 

The exact solutions for stresses, displacements, and strains in Eqs. (19), (20), and (23), 

respectively, can be used in the case of a very long cuboid with a central circular cylindrical hole, 

which is a sort of plane strain problem. In plane strain problems, the secondary elastic constant   

in Eq. (21) must be change to 3−4v
 
from (3−v)/(1+v). 
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