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Abstract.  The present article is aimed at an investigation of stresses produced in a microstretch elastic half-

space due to a moving load. The expressions of normal stress, shear stress and tangential couple stress 

produced in this case have been obtained in closed form. To find the displacement fields the perturbation 

method is applied. Significant effect of moving load on variation of stresses developed at different depths 

below the surface due to the depth of substrate and frictional coefficient of the rough surface of the medium 

has been observed. The effects of different shapes of irregularity and depth of irregularity on normal, shear 

and tangential couple stresses have been discussed. Some particular cases have also been deduced from the 

present investigation. Finally, the analytical developments have been illustrated numerically for aluminium-

epoxy-like material substrate under the action of moving load. 
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1. Introduction 
 

Microstretch model can be used as a mathematical model for many different material media 

like chopped elastic fibers, porous media whose pores are filled with gas or inviscid liquid, asphalt 

and solid-liquid crystals which fall outside the domain of micropolar elasticity (which can model 

human bones, chopped fiber composites, platelet composites, porous material, foams, bones). This 

microstructured continua possesses internal expansion and contraction (breathing) modes 

independent of their transformations and rotations, in addition to the micropolar modes. 

Microstretch elastic solids possess seven degrees of freedom: three for translation, three for 

rotation and one for stretch. When directors are rigid there are only three rotational degrees of 

freedom in addition to three classical displacement degrees of freedom and the Microstretch theory 

is reduced to micropolar theory. Further, if the directors are taken to be fully coupled to the 

material points, the rotational degree of freedom of micropolar theory become equal to classical 
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rotations and micropolar theory reduces to couple stress theory. When the particle reduces to the 

mass point, all the theories reduce to classical continuum mechanics. The theory of microstretch 

elastic solid was introduced by Eringen (1971) as a special case of micromorphic theory in 

addition to generalization of micropolar theory. Iesan and Pompei (1995) discussed the boundary 

value problems of the equilibrium theory of homogeneous and isotropic solids. Tomar and Garg 

(2005) investigated the reflection and transmission from a plane interface between two 

microstretch elastic solid half-spaces. Forest and Sievert (2006) presented a hierarchy of higher 

order continua by introducing additional degrees of freedom. Sharma et al. (2007) studied the 

Rayleigh surface waves propagation in microstretch thermoelastic continua under inviscid fluid 

loadings. Sharma and Kumar (2016) studied the influence of microstructure, heterogeneity and 

internal friction on SH-waves propagation in a viscoelastic layer overlying a couple stress 

substrate. 

The stress developed in body due to moving load causing fracture is an interesting problem of 

mechanics having its applications towards the stability of the medium. The response of a moving 

load over a surface is a subject of investigation because of its possible practical application in 

determining the strength of a structure. The physical problem of a fracture is a dynamic problem in 

which the slip has to be considered as a consequence of stress conditions and the strength of 

material in the focal region. From this point of view, the mechanism of an earthquake is 

represented by a shear fracture produced by the drop in stress in the focal region. Fracture initiates 

at a point of the fault when the stress acting on the fault plane exceeds a critical value, propagates 

with a certain velocity, and finally stops when conditions impede its further propagation. Cole and 

Huth (1958) obtained the steady state solution of the problem of moving load over an elastic half 

space and Craggs (1960) derived a relatively simple closed-form solution, exhibiting a resonance 

effect at a critical load velocity, which in this case equals the velocity of Rayleigh waves. Earlier, 

Sneddon (1952) has studied the problem considered by Cole and Huth (1958) but with different 

solution strategy. Mukherjee (1969) has studied the stresses developed in a transversely isotropic 

elastic half-space due to normal moving load over a rough surface. The problem of moving load on 

a plate resting on a layered half space has been solved by Sackman (1961) and Miles (1966). Some 

notable work concerned with the problem of moving load on an elastic half-space has been done 

by Achenbach et al. (1967), Chonan (1976), Ungar(1976), Olsson (1991), Lee and Ng (1994), 

Alkeseyeva (2007) etc. The problem of a normal load over a transversely isotropic layer lying on 

rigid foundation is investigated by Mukhopadhyay (1965) whereas Selim (2007) discussed the 

static deformation of an irregular initially stressed medium. He used the Eigen value approach to 

solve the problem. The dynamic response of a normal moving load in the plane of symmetry of a 

monoclinic half-space was studied by Chattopadhyay et al. (2006). Chattopadhyay et al. (2011) 

have also studied the stress on a rough irregular isotopic half-space due to normal moving load. 

Effect of irregularity and heterogeneity on the stresses produced due to a normal moving load on a 

rough monoclinic half-space has been studied by Singh et al. (2014). The response of moving load 

on a micropolar half-space with irregularity is investigated by Kaur et al. (2015). Szylko-Bigus 

and niady (2015) presented dynamic analysis of Timoshenko beams under continuous moving 

load. Due to moving load the structural damage and force identification was studied by Zu et al. 

(2015). Kaur et al. (2016) analyzed dynamic response of normal moving load on an irregular fiber-

reinforced half-space. Elastic solutions due to a time-harmonic point load in isotropic multi-

layered media has been investigated by Lin et al. (2016). 

The theory of microstretch elastic solids is a further generalization of the theory of micropolar 

elasticity. Since such a generalized media can catch more detailed information about the micro-
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deformation inside a material point, which is more suitable for modeling the overall property of 

the composite materials reinforced with chopped elastic fibers and various porous solids, it has 

drawn the attention of many researchers for investigation. Although, the earlier studies had shown 

that the stress developed due to a moving load and the effect of the presence of irregularity in a 

media have a great utilization in the interpretation and analysis of geophysical fracture, yet, no 

attempts has been made to study the stresses developed in an irregular microstretch substrate due 

to a normal moving load. In the present problem, not only the induced stresses due to moving load 

on microstretch media has been investigated but also the effect of irregularity on induced stresses 

has been studied and this serves as a novel feature to the present problem with respect to the 

existing works available in the literature. 

The present problem is concerned with the effect of a moving load on the surface of 

microstretch elastic substrate with irregularity. The closed form expressions for the stresses 

produced at any point of the microstretch elastic substrate due to inclined load are obtained. To 

find the displacement fields the perturbation method is applied. The effects of friction of the rough 

surface and irregularity in the substrate have been studied by introducing frictional coefficient (R) 

and irregularity factor (x/a). To study the effect of irregularity, in the substrate, the variation of 

stresses with depth have been drawn. 

 

 

2. Formulation of the problem 
 

We consider a model which consists of a microstretch elastic substrate with parabolic 

irregularity under the influence of normal moving load F which is independent of y and moving 

with a constant velocity V in the direction of positive x-axis. The rectangular Cartesian co-ordinate 

system is introduced having origin at the middle point of span of the irregularity and y-axis 

pointing vertically downwards as shown in Fig. 1. 

 

 

 

Fig. 1 Geometry of the problem 
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The equation of upper interface containing irregularity is 

( ),y h x                                                                   (1)  

where 

 2 2

0,

( ) 2
,

x a

h x a x
x a

a

 


  




 

and 
'

1,
2

H

a
    is a small positive number, 'H is the maximum depth of the irregularity below 

the interface and 2a is the span of the irregularity. 

The basic governing equation of motion and constitutive relations in microstretch elastic 

substrate, in the absence of body force are given by Eringen (1990) 

       
2

2 *

0 2
. ,

u
u u

t
        
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          
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
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. ,

3 9 9
u j

t


    


    
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                                         (4) 

    *

, , , , 0 ,ij r r il i l l i l i ilr r iju u u u                                               (5) 

, , , ,il r r il i l l im                                                             (6) 

where 
*, andu   are displacement, microrotation and microstretch functions respectively. 

Here 0 0 1, , , , , , , and         are material constants, ρ is the density of the material, j is 

microinertia, ζil 
and mil are the stress tensor and couple stress tensor respectively and δil 

is the 

Kronecker delta. 

For two-dimensional problem, we assume 

   , ,0 0,0, .u u v and    

The equations of motion (2), (3) and (4) can be written as 

     
2 2 2 * 2

02 2 2
2 ,

u u v u

x y x y y x t

 
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     
        

      
                    (7) 

     
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 
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                                           (9) 
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2 * 2 * 2 *
*
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                          (10) 

The boundary conditions at ( )y h x  may be written as 

 ,yy F x Vt                                                             (11) 

 ,yx FR x Vt                                                                  (12) 

0,xzm                                                                    (13) 

*

0,
x





                                                                        (14) 

where mxz 
is tangential couple stress, ζyy

 
and ζyx are normal and shearing stresses and δ(x) is Dirac 

delta function and    
0

1
cos .x Vt k x Vt dk





    

 

 

3. Solution of the problem 
 

The solution of equations of motion (7), (8), (9) and (10) may be assumed as 

                 
0

cos sin ,qy qyu Ae x Vt Be x Vt d   


                             (15) 

                
0

cos sin ,qy qyv Ce x Vt De x Vt d   


                                (16) 

               
0

cos sin ,qy qyEe x Vt Fe x Vt d     


                               (17) 

                 *

0
cos sin ,qy qyGe x Vt He x Vt d     


                               (18) 

where  is the wave number and q is independent of  .  

The form of assumed solutions (15)-(18) may be recognized to present a steady state solutions. 

Using solutions given in Eqs. (15), (16), (17) and (18) in equations of motion (7), (8), (9) and 

(10), we have                        

     2 2

02 0,q V A qD qE H                                        (19) 

     2 2

02 0,q V B qC qF G                                        (20) 

     2 2

02 0,q V C qB F qG                                         (21) 

     2 2

02 0,q V D qA E qH                                        (22) 
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2 0,D qA E                                                           (23) 

2 0,C qB F                                                            (24) 

1 0 0 0,G B qC                                                           (25) 

1 0 0 0,H A qD                                                           (26) 

 2 21 0,jV q E    
 

                                                 (27) 
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 

                                                 (28) 
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0
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 
                                                (30) 

Solving Eqs. (23)-(30), we get following relations 
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Using these relations in Eqs. (19) and (20), we get 
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Similarly, from Eqs. (21) and (22), we get 
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From Eqs. (31) and (32), we get 

2 2

2 4
,

2

Q Q P
q

P

 
                                                         (33) 
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where 
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2 22 2 2
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j j
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In view of equation (33), equations (15), (16), (17) and (18) can be written as 

         1 2 1 2

1 2 1 2
0

cos sin ,
q y q y q y q y

u Ae A e x Vt B e B e x Vt d
     


         
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         1 2 1 2

1 1 2 2 1 1 2 2
0

cos sin ,
q y q y q y q y

v B m e B m e x Vt Am e A m e x Vt d
     


         

  (35) 

         1 2 1 2

1 1 2 2 1 1 2 2
0

cos sin ,
q y q y q y q y

Ae A e x Vt B e B e x Vt d
           


         

   (37) 

where 

   1 1 2 21 1 2 2
1 2 1 0 2 0

1 1

1 1
, , and .

2 2

q m q mm q m q
     

 

  
     

Now, setting the approximations due to small value of  as follows: 

1 10 11 2 20 21, 1 10 11 2 20 21, , .A A A A A A B B B B B B            

The terms A1, A2, B1 and B2 appearing in Eqs. (34), (35), (36) and (37) are functions of ε as the 

boundary is not uniform. These terms can be expanded in ascending powers of ε. Since ε is small, 

therefore, retaining the terms up to the first order of ε, we can approximate A1, A2, B1 and B2 as 

taken in the above assumption.  

Moreover, for small ε the assumption 1he h    also holds well, where ν is any quantity. 

Applying boundary conditions (11), (12), (13) and (14) on (34), (35), (36) and (37), we get 

   0 1 10 2 0 20 ,
F

B B     


                                             (38) 

   0 1 10 2 0 20 0,A A                                                     (39) 

       0 1 11 2 0 21 0 1 1 10 2 0 2 20 0,B B q hB q hB                                 (40) 

       0 1 11 2 0 21 0 1 1 10 2 0 2 20 0,A A q hA q hA                                (41) 

1 10 2 20 ,
FR

A A 


                                                        (42) 

1 10 2 20 0,B B                                                             (43) 

1 11 2 21 1 1 10 2 2 20 0,A A q h A q h A                                               (44) 
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1 11 2 21 1 1 10 2 2 20 0,B B q h B q h B                                               (45) 

1 10 2 20 0,B B                                                             (46) 

1 10 2 20 0,A A                                                             (47) 

1 11 2 21 1 1 10 2 2 20 0,B B q hB q hB                                                (48) 

1 11 2 21 1 1 10 2 2 20 0,A A q hA q hA                                                 (49) 

1 10 2 20 0,A A                                                             (50) 

1 10 2 20 0,B B                                                                   (51)  

1 11 2 21 1 1 10 2 2 20 0,A A q h A q h A                                            (52) 

1 11 2 21 1 1 10 2 2 20 0,B B q h B q h B                                                (53)  

where  

   1 1 1 1 1 2 2 2, .q m q m                  

Solving above equations, we get 

9 102 1 2 1 11 12
10 20 10 20 11 21 11 21

7 7 8 8

, , , , , , , ,
FRh FRhFR FR F F Fh Fh

A A B B A A B B
      

       
           

 (54) 

Where ξ9, ξ10, ξ11 and ξ12  are given in Appendix 1. 

With the help of obtained values displacement components given in Eqs. (34), (35), (36) and 

(37) can be written as 

   
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   
          
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

   

(55) 
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(56) 
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

  

(58) 

Using expressions of displacement components from Eqs. (55) and (56); expression of 

microrotation function from Eq. (57); and microstretch function from Eq. (58) in Eqs. (5) and (6) 

which after performing integration result in the following expressions of non-vanishing stresses as 

       
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(59) 
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                      (60) 
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          

 

(61) 

where 

       
2 2 2 22 2 2 2 2 2 2 2

1 1 2 2 3 1 4 2, , , .q y x Vt q y x Vt q y x Vt q y x Vt                

From Eqs. (60), (61) and (62), it is clear that the whole stress system is moving with uniform 

velocity V in the x-direction. The expression of stresses shows that in any plane lying below the 

free boundary surface and parallel to the xz-plane, the stresses attains maximum value at x=Vt, i.e., 

at the point directly below the point of application of the moving load with velocity V at time t. In 

further discussion we shall deal with the stresses at x=Vt. 

 

 

4. Particular cases 
 

4.1 Case 1 
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In the absence of irregularity effect (ε=0), the expression of stresses (59), (60) and (61) reduces 

to 

   2 1
0 1 0 2
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,
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                                                   (64) 

Eqs. (62), (63) and (64) give the expression for normal, shear and tangential couple stresses 

respectively, produced due to normal moving load on a regular microstretch substrate. 

 

4.2 Case 2 
 

In the absence of stretch effect (λ0=0 and α0=0), the expression of stresses (59), (60) and (61) 

reduces to 

' ' ' '
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                       (67) 

Eqs. (65), (66) and (67) are the expression for stresses produced due to normal moving load on 

an irregular micropolar substrate. 

 

4.3 Case 3 
 

In the absence of stretch and irregularity effects (λ0=0, α0=0 and ε=0), the expression of stresses 

(59), (60) and (61) reduces to 
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where 
' ' ' ' '

1 2 1 2 8, , , andq q  
 
are provided in Appendix 2. Eqs. (68), (69) and (70) are the expression 

for stresses produced due to normal moving load on a regular micropolar substrate. 

 

4.4 Case 4 
 

In the absence of micropolar effect (λ0=0, α0=0, α=0, β=0, κ=0 and γ→0), the expression of 

stresses (65), (66) and (67) reduces to 

'' '' '' ''
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where 
'' '' '' '' ''

1 2 1 2 8, , , andq q  
 
are provided in Appendix 3. 

Eqs. (71), (72) and (73) are the expression for stresses produced due to normal moving load on 

an irregular isotropic substrate. 

 

4.4 Case 5 
 

In the absence of micropolar and irregularity effects(λ0=0, α0=0, α=0, β=0, κ=0, γ→0 and ε=0), 

the expression of stresses (65), (66) and (67) reduces to 

'' ''
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,
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                                               (76) 

Eqs. (74), (75) and (76) are the expression for stresses produced due to normal moving load on 

a regular isotropic elastic substrate. 

 

 

5. Numerical results 
 

For sake of numerical computation and graphical demonstration, we have taken Aluminium-

Epoxy-like material whose physical data is given by Singh and Kumar (1998) 
3 3 10 2 10 2 10 2

6 4 2 10 2 9

0 1 0

2.19 10 / , 7.59 10 / , 1.89 10 / , 0.0149 10 / ,

0.268 10 , 0.196 10 , 0.37 10 / , 0.61 10 .
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Fig. 2 Variation of the shear stress against depth for different values of frictional coefficients (R) 

 

   

(a) (b) (c) 

Fig. 3 Variation of the normal stress (in 3(a)), shear stress (in 3(b)) and tangential couple stress (in 3(c)) 

against depth for different values of irregularity depth (H′/a) when irregularity factor, x/a=0.5 

 

   

(a) (b) (c) 

Fig. 4 Variation of the normal stress (in 4(a)), shear stress (in 4(b)) and tangential couple stress (in 4(c)) 

against depth for different values of irregularity factor (x/a) when irregularity depth, H′/a=1 
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(a) (b) 

 
(c) 

Fig. 5 Variation of the normal stress (in 5(a)), shear stress (in 5(b)) and tangential couple stress (in 5(c)) 

against depth and irregularity depth (H′/a) in case of rectangular irregularity 

 

 

The variation of normal stress ζyy/F,
 
shear stress ζyx/F 

and tangential couple stress mxz/F 
in a 

microstretch elastic substrate for different values of frictional coefficient, depth of irregularity and 

different types of irregularity has been depicted by means of graphs (Figs. 2 to 6). Each of these 

figures manifests that with increase in depth of substrate all the three stresses decreases. 

Fig. 2 depicts the effect of frictional coefficient of the free surface of microstretch elastic 

substrate on shear stress. Different values of frictional coefficient has been taken into account. For 

the considered values of frictional coefficient it has been observed from this figure that the 

frictional coefficient affects the shear stress predominately which increases with increase in 

frictional coefficient. It has also been found that in the expressions of normal stress (59) and 

tangential couple stress (61) both normal stress and tangential couple stress are independent of 

frictional coefficient. Therefore, variation of normal stress and tangential couple stress against 

depth are not plotted for different values of frictional coefficient. 

The impact of different values of irregularity depth on normal stress, shear stress and tangential 

couple stress has been reflected in Figs. 3(a), 3(b) and 3(c). Curve 1 in these figures (Fig. 3) 

represents the case when there is no irregularity in the substrate whereas as curves 2 and 3 in these 
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(a) (b) 

 
(c) 

Fig. 6 Variation of the normal stress (in 6(a)), shear stress (in 6(b)) and tangential couple stress (in 6(c)) 

against depth and irregularity depth (H′/a) in case of parabolic irregularity 

 

 
figures correspond to the case when there is irregularity in the substrate. It is evident from these 

figures that depth of irregularity has significant effect on all the three stresses i.e. all the three 

stresses increases with increase in depth of irregularity. 

In Figs. 4(a), 4(b) and 4(c), curves have been drawn to study the impact of different types of 

irregularity viz. rectangular, parabolic and no irregularity on variation of normal stress, shear stress 

and tangential couple stress. Different values of irregularity factor has been taken for different 

types of irregularity. Curve 1 in these figures (Fig. 4) corresponds to the case when irregularity is 

of rectangular type, curve 2 represents the case of parabolic irregularity and curve 3 represents the 

case when surface is free from irregularity i.e., no irregularity. It is noticed from these figures that 

stresses are more in case of rectangular irregularity than the case of parabolic irregularity. More 

precisely, as the irregularity prevails in the medium stress increases. 

Variation of normal stress, shear stress and tangential couple stress against irregularity depth 

and depth of substrate has been shown through surface plots in Fig. 5 and Fig. 6. If we compare 

surface plot in Fig. 5(a) with Fig. 6(a), Fig. 5(b) with Fig. 6(b) and Fig. 5(c) with Fig. 6(c), we 

observe that all the three stresses are favoured more with rectangular irregularity as compare to 

parabolic irregularity. 
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Moving load response on the stresses produced in an irregular microstretch substrate 

6. Conclusions 
 

The stresses produced in an irregular microstretch substrate due to a normal moving load at a 

rough free surface have been investigated in the present study. Significant effects of depth of 

substrate, frictional coefficient of rough surface, maximum depth of irregularity and irregularity 

factor have been observed on stresses in a microstretch substrate. Three different types of 

irregularity has been considered and discussed viz. rectangular, parabolic and no irregularity. 

Closed form of expressions for the normal stress, shear stress and tangential couple stress have 

been obtained. The following points can be highlighted as an outcome of the study: 

• Depth has a significant effect on the stresses. Stresses are more near the surface and 

magnitude decay as we go deep in the substrate i.e., stresses decreases with increase in the 

depth. 

• It is observed that the frictional coefficient of the rough surface have notable effect on the 

shear stress. With increasing value of the frictional coefficient the shear stress increases, 

whereas the normal stress and tangential couple stress are not affected by the frictional 

coefficient. 

• Substantial effect of irregularity factor has been observed on normal stress, shear stress and 

tangential couple stress. Specifically, as irregularity prevails in the medium stresses increases. 

Moreover the rectangular irregularity has more favourable effect to the stresses than the 

parabolic irregularity of same depth and span. 

• Maximum depth of irregularity has remarkable effect on all the three stresses. All the three 

stresses increases with increase in the maximum depth of irregularity. 

• For a particular depth of irregularity, it is observed that the stresses decreases abruptly with 

depth when depth is lesser than the maximum depth of the considered irregularity whereas 

stresses asymptotically approaches to zero when depth is higher than the maximum depth of the 

considered irregularity. 
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