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Abstract.  In this study, the supersonic panel flutter of doubly curved composite sandwich panels with 

variable thickness is considered under aerothermoelastic loading. Considering different radii of curvatures of 

the face sheets in this paper, the thickness of the core is a function of plane coordinates (x,y), which is 

unique. For the first time in the current model, the continuity conditions of the transverse shear stress, 

transverse normal stress and transverse normal stress gradient at the layer interfaces, as well as the 

conditions of zero transverse shear stresses on the upper and lower surfaces of the sandwich panel are 

satisfied. The formulation is based on an enhanced higher order sandwich panel theory and the vertical 

displacement component of the face sheets is assumed as a quadratic one, while a cubic pattern is used for 

the in-plane displacement components of the face sheets and the all displacement components of the core. 

The formulation is based on the von Kármán nonlinear approximation, the one-dimensional Fourier equation 

of the heat conduction along the thickness direction, and the first-order piston theory. The equations of 

motion and boundary conditions are derived using the Hamilton principle and the results are validated by the 

latest results published in the literature. 
 

Keywords:  aerothermoelastic loading; doubly curved sandwich panels; variable thickness; enhanced 
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1. Introduction 
 

Generally, the exteriors of the vehicles with supersonic speeds become exposed to severe 

aerodynamic loads as well as environmental temperatures. In a special case, a self-excited 

oscillation of the external skin can often occur when the velocity increases up to a certain point 

called the panel flutter speed. Panel flutter is known as a critical, multidisciplinary problem 

because it is induced by interactions among thermal loads, aerodynamic forces, and elastic 

restoring forces (Shin et al. 2009).  

Wang (2003) investigated the flutter and buckling analyses of a fixed beam in the transverse 

direction under a static follower force. Navazi and Haddadpour (2007, 2011) studied the buckling 

analysis of functionally graded plates under thermal loading. Their formulation was based on the 
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classical plate theory and the linear piston theory. Sohn and Kim (2009) investigated the thermal 

flutter analysis of functionally graded panels based on the first-order shear deformation theory, the 

von Kármán model and the first-order piston theory. The aerothermoelastic analysis of a curved 

skin panel was done by Abbas et al. (2011) based on the third-order piston theory aerodynamics, 

von Kármán model and Kirchhoff plate hypothesis. The flutter analysis of composite plates was 

done by Kuo (2011) based on the finite element method and linear piston theory. The effect of the 

variable fiber spacing on the response was considered. Shiau et al. (2012), Li and Song (2013) 

presented the aerothermoelastic analysis of composite laminated panels in supersonic flow based 

on the linear piston theory and Kirchhoff theory. Song and Li (2014) applied Reddy’s third-order 

shear deformation theory and the piston theory to perform the nonlinear aeroelastic analysis and 

active flutter control of sandwich beams with pyramidal lattice core and the piezoelectric 

actuator/sensor pair. Yang et al. (2014) studied the aeroelastic analysis of single curved isotropic 

panels based on the modified piston theory. In their theory, only one transverse degree of freedom 

was considered. Zhao and Zhang (2014) applied the third-order piston theory, Reddy’s third-order 

plate theory and von Kármán model to study the nonlinear dynamics analysis of composite 

laminated cantilever rectangular plates. Sankar et al. (2014, 2015) used the higher-order finite 

element method, zigzag function, and linear potential flow theory to study the panel flutter 

analysis of sandwich plates with carbon nanotube reinforced face sheets and a homogeneous core. 

Using the first order shear deformation theory and piston theory, Song and Li (2016) investigated 

aerothermoelastic analysis of composite sandwich panels. 

Sandwich structures with laminated composite face sheets have historically been known to 

have the potential for high structural efficiency and have been extensively used in a variety of 

engineering applications including transportation, constructions and aerospace, in which strong, 

stiff and light components are required (MalekzadehFard and Livani 2015).  

The higher-order sandwich panel theory was developed by Frostig et al. (1994, 2004), who 

considered two types of computational models for expressing the governing equations of the core. 

In the second Frostig’s model, a polynomial description of the displacement fields was used for the 

core that was based on the displacement fields of the first Frostig’s model. Their theory did not 

impose any restriction on the deformation distribution through the thickness of the core. To 

perform the buckling analysis of cylindrical and conical sandwich panels, Zhong and Reimerdes 

(2007) utilized the Kirchhoff-Love theory for the face sheets and neglected in-plane extensional 

and shear stiffnesses of the core. The thermoelastic buckling analysis of FG truncated conical 

shells was done by Naj et al. (2008) based on the first-order shell theory and Sanders nonlinear 

kinematics equations. Rahmani et al. (2009) applied the classical shell theory and an elasticity 

theory for the face sheets and the core, respectively to study the free vibration analysis of an open 

single curved composite sandwich shell. Kheirikhah et al. (2012) applied the third-order plate 

theory for the face sheets and quadratic and cubic functions for the transverse and in-plane 

displacements of the core to examine the bending analysis of composite sandwich plates. They 

also satisfied the continuity conditions for transverse shear stresses at the interfaces and the 

conditions of zero transverse shear stresses on the upper and lower surfaces. Using the Differential 

Quadrature method and the first-order shear deformation theory, Moradi and Mansouri (2012) 

performed the thermal buckling analysis of rectangular composite laminated plates under a 

uniform temperature distribution. Satisfying shear stress free surface conditions, Fekrar et al. 

(2012) conducted the buckling analysis of hybrid functionally graded plates based on a four 

variable refined plate theory. In this theory, the transverse shear stresses varied parabolically 

across the thickness. Using a thirteen nodes triangular element, Rezaiee-Pajand et al. (2012) 
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performed the bending analysis of composite sandwich plates. Jalili et al. (2014) applied 

numerical and experimental methods for studying the buckling analysis of composite conical 

panels under dynamic external pressures. They also investigated the effect of geometrical 

imperfections of experimental specimens on the numerical results. The bending and free vibration 

analyses of doubly curved composite sandwich panels with simply supported and fully clamped 

boundary conditions were performed by Malekzadefard et al. (2014a, b). In their theory, the first-

order shear deformation theory and a polynomial description of the displacement fields based on 

the second Frostig’s model were used for the composite face sheets and core, respectively. Using 

the first-order shear deformation theory, the free vibration and buckling analyses of functionally 

graded sandwich plates were done by Nguyen et al. (2014a). Thai et al. (2014) and Nguyen et al. 

(2014b) studied the static, buckling and free vibration analyses of isotropic and functionally 

graded sandwich plates using the inverse first-order shear deformation theory and trigonometric 

shear deformation theory. Nguyen et al. (2015) applied a four unknown higher-order shear 

deformation theory to perform the bending, vibration and buckling analyses of functionally graded 

sandwich plates.  

The literature survey demonstrated that the most of the studies have been performed on the 

composite sandwich panels with constant thickness and no research is available in the field of 

thick doubly curved sandwich panels with variable thickness. In this study, the supersonic flutter 

of doubly curved composite sandwich panels with variable thickness under aerothermoelastic 

loading is investigated based on a three-dimensional elasticity theory. Considering different radii 

curvatures of the face sheets in this paper, the thickness of the core is a function of the plane 

coordinates (x, y), which is unique. As a result, this study is able to analyze a wide range of 

sandwich panel configurations. For the first time in the current model, continuity conditions of the 

transverse shear stress, transverse normal stress and transverse normal stress gradient at the layer 

interfaces as well as the conditions of zero transverse shear stress on the upper and lower surfaces 

of the sandwich panel are satisfied. The formulation is based on an enhanced higher order 

sandwich panel theory, the von Kármán model and first-order high Mach number approximation. 

The vertical displacement component of the face sheets is assumed as a quadratic one while a 

cubic pattern is used for the in-plane displacement components of the face sheets and all the 

displacement components of the core. Also, the transverse normal and shear strain and stress of the 

core and face sheets as well as their in-plane strain and stress are considered. The equations of 

motion and boundary conditions are derived using the Hamilton principle.  

 

 

2. Theoretical formulation 
 

Consider a doubly curved composite sandwich panel which is composed of two composite 

laminated face sheets. The sandwich is composed of three layers: the top and bottom face sheets 

and core layer. As shown in Fig. 1, the length and width of panel are a and b, respectively. The 

Cartesian coordinate system (xi, yi, zi, i=t,b,c) are also shown in Fig. 1, in which indices t, b and c 

refer to the top and bottom face sheets and core of the panel, respectively and the z coordinate of 

each layer is measured upward from its mid-plane. The face sheets are laminated composites that 

assumed to have uniform thickness and the thicknesses of the top and bottom face sheets are ht and 

hb, respectively. Curvature radii of the top and bottom face sheets and core in x-z and y-z planes 

are Rtx, Rbx, Rcx and Rty, Rby, Rcy, respectively. The core is also assumed as soft orthotropic material 

that due to consideration of different radii curvatures of the face sheets has non-uniform thickness.  
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Fig. 1 A doubly curved sandwich panel with laminated face sheets 

 

 
The thickness of the core is a function of the plane coordinates (x,y).  

The mid-surface equation of the panel with length of a and width of b and curvature radii Rx 
and Ry in x-z and y-z planes respectively is (Leissa and Kadi 1971) 

     

2 21

2 x y

x y
z

R R

 
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 
 (1) 

where the origin of the coordinate is located in the center of the panel, then for the case that the 

origin of coordinate is located in the corner of the panel, Eq. (1) is to be in the following form 
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then the relation of the upper and lower surfaces of the face sheets and core can be defined as 

follows 
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(3) 

where 0

ch  is the thickness of the core in the center of the panel.  
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2.1 Kinematic relations 
 

The displacement fields of the face sheets are based on the second Frostig’s model (Frostig and 

Thomsen 2004) for the thick core, take a cubic pattern for the in-plane displacements and a 

quadratic one for the vertical ones and are read as 

     ,),,(),,(),,(),,(),,,( 3
3

2
210 iiiiiiiii ztyxuztyxuzryxutyxutzyxu   

     ,),,(),,(),,(),,(),,,( 3
3

2
210 iiiiiiiii ztyxvztyxvzryxvtyxvtzyxv   

     ),(   ;   ),,(),,(),,(),,,( 2
210 btiztyxwzryxwtyxwtzyxw iiiiiii   

(4) 

where zi is the vertical coordinate of each face-sheet (i=t, b) and is measured upward from the mid-

plane of each face-sheet. The nonlinear von Kármán kinematic equations for the face sheets are as 

follows (Sankar et al. 2015) 

    

22
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 (5) 

Also, the all displacement fields of the core are a cubic polynomial functions as 
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3
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(6) 

Kinematic relations of the core for a doubly curved sandwich panel that are based on nonlinear 

von Kármán nonlinear strain approximation can be written as 

(7) 
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2.2 Thermal analysis 
 

To obtain the steady state temperature distribution, the one-dimensional Fourier equation of the 

heat conduction in the thickness direction was solved, as follows 

(8) 

     

0 ; , , .i
i

i i

d dT
k i t c b

dz dz

 
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 
 

where ki (i=t,c,b) is heat transfer coefficient. To solve the steady state temperature distribution 
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using Eq. (8), six boundary conditions were needed, as follows 

(9)      
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where Tu and Ti are the temperatures of the upper and lower surfaces of the sandwich panel, 

respectively. Now using Eqs. (8)-(9), equations of the steady state temperature distribution of the 

face sheets and core are obtained, as follows 

(10) 
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(11) 
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2.3 Compatibility conditions 
 

The compatibility conditions in this paper were perfect bonding between the face sheets and 

core, continuity conditions of the transverse shear stresses, transverse normal stress and transverse 

normal stress gradient at the layer interfaces and the conditions of zero transverse shear stresses on 

the upper and lower surfaces of the sandwich panel. Note that to derive the compatibility 

conditions, the thermal effects were ignored. Assuming perfect bonding between the core and face 

sheets, the continuity conditions at the top and bottom face sheets-core interfaces are 

(12) 
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The continuity conditions of the transverse shear stresses at the face sheets and core interfaces 

are 

(13) 
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The continuity conditions of the transverse normal stress at the face sheets and core interfaces 

are 

(14) 
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6



 

 

 

 

 

 

Higher order flutter analysis of doubly curved sandwich panels with variable thickness... 

 

 

The continuity conditions of the transverse normal stress gradient at the face sheets and core 

interfaces are 

(15) 
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and finally, the conditions of zero transverse shear stresses on the upper surface of the top face 

sheet and the lower surface of the bottom face sheet are: 

(16) 
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2.4 Stress resultants 
  

The stress resultants per unit length for the core can be defined as follow 
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therefore, the stress resultants per unit length for the face sheets can be defined as follow 
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2.5 Governing equations 
 

The equilibrium equations for the face sheets and core are derived using the Hamilton principle 

(19) 
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where δK, δU and δWext denote variation of kinetic energy, variation of strain energy and virtual 

work done by applied forces, respectively. Also, δ denotes the variation operator. 

The first variation of the kinetic energy, upon assuming the homogeneous conditions for the 

displacement and velocity with respect to the time coordinate, can be written as follows 
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where the moments of inertia are 

(21) 

    

     , 1 1 ; , & 0,1,2,3

u u
i c

l l
i c

z z

n n c c
ni i i i n c c c c

x c y cz z

z z
I z dz I z dz i t b n

R R
 

  
       

  
  

   

The first variation of the strain energy for a doubly curved sandwich panel with variable 

thickness includes the top and bottom face sheets and the core is 

(22) 
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In addition, the six perfect bonding conditions at the layer interfaces, eight continuity 

conditions of the transverse shear stresses, transverse normal stress and transverse normal stress 

gradient at the layer interfaces and four conditions of zero transverse shear stresses on the upper 

and lower surfaces of the plate are fulfilled by using eighteen Lagrange multipliers.  

The first variation of the external work of the sandwich panel under the aerodynamic, 

mechanical and thermal loads is as follows 

(23) 
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 where 
m
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and 
m

yy iN
 

are the external mechanical loadings in the x and y directions, 

respectively. Also in Eq. (23), Δp is the aerodynamic pressure which is calculated by the first-

8



 

 

 

 

 

 

Higher order flutter analysis of doubly curved sandwich panels with variable thickness... 

 

 

order piston theory that for the doubly curved sandwich panel with variable thickness can be 

defined as follows (Sankar et al. 2014) 

(24) 
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By substitution of Eq. (24) into Eq. (23), we have 

(26) 
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Also by substitution of Eqs. (20), (22) and (26) into Eq. (19), and then integration by parts, the 

governing equations and appropriate boundary conditions can be obtained. The simply supported 

B.Cs. for a doubly curved sandwich panel at the edges x=0, a of the panel are obtained as follow 
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 (27) 

and at the edges 0,  y b of the panel are obtained as follow 
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where xx iN and yy iN ( ,i t b= ) are the external loads in the x and y directions and xx iM
 

and 

yy iM ( ,i t b= ) are the bending moment about the x and y directions and can be obtained as 

(29) 
     

, , , ; , ,m T m T T T

xx i xx i xx i yy i yy i yy i xx i xx i yy i yy iN N N N N N M M M M i t b c      

 

where superscript m and T are used for the mechanical and thermal loadings, respectively and 
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3. Analytical solution 
 

In this section, the procedure of determining the dimensionless critical dynamic pressure of the 

doubly curved sandwich panel under aerothermoelastic loading is presented. To do that, the right-

hand side of the governing equations should be removed. Also the in-plane inertia terms of the 

governing equations are neglected, since based on research given by Reddy (2004), the 

deformations in these directions are smaller than that in the transverse direction. The displacement 

fields based on double Fourier series for a doubly curved composite sandwich panel satisfying the 

simply supported boundary conditions (Eqs. (27)-(28)) are assumed to be in the following forms 
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i cW are Fourier coefficients and m and n are half 

wave numbers along the x and y directions, respectively and Ω=α+iω that α andωare damping 

ratio and frequency. Also the Lagrange multipliers can be expressed in the following forms 
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are Fourier coefficients.  

To obtain governing equations, the Galerkin method is used. In this method, the coordinate 

functions are similar to the weighted functions as follows 
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where ][L  is a matrix of differential operators and ϕ and ψ are shape functions and weighting 

functions that are 
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cos( )sin( ), sin( )cos(

mn mn mn

j j j cm n m n m n

mn mn mn

j c j c j cm n m n m n

T

m n m

XZ x y YZ x y XZ x y

YZ x y ZZ x y ZZ x y

x y x

     

     

     ), sin( )sin( ), cos( )sin( ),sin( )cos( ),

sin( )sin( ), cos( )sin( ), sin( )cos( ),sin( )sin( ), cos( )sin( ),

sin( )cos( ), cos( )sin( ),sin( )cos( ),sin( )

n m n m n m n

m n m n m n m n m n

m n m n m n m

y x y x y x y

x y x y x y x y x y

x y x y x y x

      

         

       sin( ), cos( )cos( ) .n m ny x y  

 (34) 

Now by substituting displacement field (Eqs. (31)-(32)) into the governing equations, and 

applying the Galerkin’s procedure and collecting coefficients, the final governing equations can be 

expressed in the following forms 

     
         {0}.M X C X K X    (35) 

where [M], [C] and [K] are the mass, aerodynamic damping, and stiffness matrices, respectively.  

Also, {X} is the vector of unknown coefficients: 

   , , , , , , , , , , , , , , ' ;

(i=0,1,2,3), (l=0,1,2),(j=t,b) 

mn mn mn mn mn mnT mn mn mn mn mn mn mn mn mn
j j j c j c j c j ci j i j l j i c i c i c j c j c j cX U V W U V W X Y Z XZ YZ XZ YZ ZZ ZZ

 

The final governing equations can be reduced to a standard eigenvalue problem by transferring 

to state-space as (Seresta 2007) 

     

   

       
1 1

0 I XX

XX M K M C
 

       
     

          

 (36) 

where [I] is the identity matrix. By varying the flow speed, eigenvalue analysis of the state space 

equation is performed. The instability occurs when the real part of one of the eigenvalues becomes 

positive; the flow speed for which the damping ratio becomes zero is the linear flutter speed. 

 

 

4. Results and discussions 
 

To study the aerothermoelastic stability of doubly curved composite sandwich panel with variable 

thickness, a computer program is developed based on the governing equations. In this section, some 

examples are considered and the obtained results are validated and discussed. To validate the present 

results and to demonstrate its capability, some examples are presented and the results obtained from 

the present theory are compared with the theoretical and numerical results found in literature. The 

agreement between the results was quite good. 

 

Example 1 
In this example, the free vibration analysis of a flat composite sandwich panel with a foam core 

and composite face sheets (Table 1) and simply supported boundary conditions (S.S. B.C.s) is 

investigated.  
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Table 1 Material properties of a flat composite sandwich panel (Rahmani et al. 2010) 

3

1 2 3 12 13 23E E E 0.10363 GPa,G G G 0.05 GPa, 0.32, 130 kg / m .          Foam core 

1 2 12 13 23

3

12 13 23

E 24.51 GPa, E 7.77 GPa,G G 3.34 GPa, G =1.34GPa,

0.078, 0.49, 1800 Kg / m .   

   

   
 Composite face sheets 

 
Table 2 Comparing dimensionless natural frequencies of a flat composite sandwich panel with cross ply lay up 

2 1/2( / ) /c ca E h   , / 0.1h a  , / 0.88ch h  ,[0/90/0/Core/0/90/0] 

Mode 

No. 

Present 

model 
1st model 

of Frostig 
Error (%) ANSYS Error (%) HSDT-ESL Error (%) 

1 14.05 14.27 1.6 14.74 4.9 15.28 8.8 

2 25.88 26.31 1.7 26.83 3.7 28.69 10.9 

3 27.04 27.04 1.7 27.53 3.5 30.01 12.9 

4 34.32 34.95 1.8 35.60 3.7 38.86 13.2 

 
Table 3 Material properties of a cylindrical composite sandwich panel 

3

1 2 3 12 13 23E E E 6.89MPa,G G G 3.45MPa, 0.32,  94.195Kg / m .          Foam core 

1 2 3 12 13 13

3

12 13 23

E 131 GPa,  E E 10.34GPa,G G 6.895GPa , G 6.205GPa,

0.22, 0.49,  1627 Kg / m .   

     

   
 Composite face sheets 

 

 

In Table 2, the results obtained from the present theory (IHSAPT) are compared with those 

obtained from the first model of Frostig (Rahmani et al. 2010), the higher order equivalent single 

layer theory (HSDT-ESL) (Meunier and Shenoi 1999) and FE modeling in ANSYS code (Rahmani 

et al. 2010). The maximum difference between the present theory and the higher order equivalent 

single layer theory (HSDT-ESL) is 13.2 percent. Due to core flexibility in the current theory, the 

obtained natural frequencies from the current theory are lower than the natural frequencies 

obtained from the FSDT-ESL. Also, the present results are in good agreement with those obtained 

from finite element ANSYS software and the first model of Frostig.  

 

Example 2 
 In this example, the free vibration analysis of a cylindrical composite sandwich panel with a 

foam core is investigated. Mechanical properties of the face sheets and core are given in Table 3. 

In the Table 4, dimensionless first natural frequency for thin (h/b=0.01) and thick (h/b=0.01) 

sandwich panels with three different radii to width ratios (R/b) are presented. In this table, the results 

of the present theory (IHSAPT) are compared with those obtained from the first Frostig’s model, FE 

modeling in ANSYS code (Rahmani et al. 2010), first order shear deformation theory, and higher 

order equivalent single layer theory (Armenakas et al. 1969). As can be seen in Table 4, the current 

results are in good agreement with the first Frostig’s model results. Table 4 also demonstrates that 

results of different theories for the thin sandwich panel are in better agreement than those for the 

thick sandwich panel.  

 
Example 3 
In this example, the free vibration analysis of a spherical composite sandwich panel with S.S. 

B.C.s is investigated. Mechanical properties of the sandwich structure are given in Table 3. In Table  
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Table 4 Comparing dimensionless fundamental natural frequency of the cylindrical sandwich panel ([0/90]) 

R/b h/b 

Dimensionless natural frequency (a/b=1) 

Present 

model 

Frostig’s 

1st model 

Error 

(%) 
ANSYS 

Error 

(%) 

HSDT-

ESL 
Error (%) 

FSDT 

ESL 

Error 

(%) 

1 
0.01 62.5 63.27 1.2 64.62 3.4 64.64 3.4 64.80 3.7 

0.1 5.52 5.65 2.4 6.46 17.0 7.71 39.7 14.16 156.5 

2 
0.01 33.6 33.87 0.8 34.50 2.7 35.90 6.8 36.21 7.8 

0.1 2.9 2.96 2.1 3.71 27.9 5.82 100.7 14.026 383.7 

3 
0.01 24.01 24.17 0.7 24.81 3.3 26.69 11.2 27.12 13.0 

0.1 2.16 2.19 1.4 2.83 31.0 5.37 148.6 14.00 548.1 

 
Table 5 Comparing dimensionless fundamental natural frequency of a spherical sandwich panel ([0/90]) 

 h/a 
 

R/a 

0.1 0.01 

Present model HSAPT Error (%) Present model HSAPT Error (%) 

1 11.214 12.316 9.8 119.201 123.633 3.7 

2 5.986 6.726 12.4 63.887 65.906 3.2 

3 4.490 4.737 5.5 44.141 45.274 2.6 

4 3.514 3.772 7.3 32.548 34.998 7.5 

5 2.977 3.222 8.3 28.213 28.967 2.7 

10 2.182 2.283 4.6 17.844 17.909 0.3 

20 1.881 1.978 5.2 13.759 13.800 0.3 

 
Table 6 Material properties of a flat laminate panel (Ganapathi and Varadan 1995) 

1 2 3 12 13 23 12 13 23E 68.948 GPa, E E 6.895 GPa, G G 2.275 GPa, G 1.034GPa, 0.3.            Face sheets 

 

 

5, the current results are compared with the higher order sandwich plate theory (HSAPT) presented 

by Biglari and Jafari (2010). As can be seen in Table 5, the results of the present method are in good 

agreement with those of HSAPT; but, there is a little difference between the current results and those 

for the thick panel (h/a=0.1). It is because the HSAPT model do not consider the transverse stresses 

in the face sheets and the in-plane stresses in the core and the current method can rather accurately 

model flexibility of the core. 

 

Example 4 
In this example, the panel flutter analysis of a flat composite panel with S.S. B.C.s is investigated. 

Mechanical properties of a laminate panel are given in Table 6. Lay-up sequences of the laminate  

panel are [0/90/0/90] and [-45/45/-45/45]. In Table 7, the critical dynamic pressure (
cr ) obtained  

from the present theory are compared with those obtained from Ganapathi and Varadan (1995) 

based on the Mindlin theory and those obtained from Sawyer (1977) based on the classical plate 

theory. As demonstrates in this table, the agreement between the results is good.  

 

Example 5 
In this example the effect of the radii curvatures ratio on the panel flutter of doubly curved  

13



 

 

 

 

 

 

Mostafa livani, Keramat MalekzadehFard and Saeed Shokrollahi 

Table 7 Comparing the critical dynamic pressure for the laminated panel 
 

3

2

1

2

11 0
c

a
r

a

M D

V









 

a/b a/h 

[-45/45/-45/45] [0/90/0/90] 

Present 

model 

Mindlin 

theory 

Classical 

plate theory 

Present 

model 

Mindlin 

theory 

1 
10 151.5 160.60 - 39.2 44.75 

100 206.1 - 222.7 52.7 54.6 

2 
10 266.6 282.25 - 52.9 58.39 

100 645.9 684.06 - 136.3 141.88 

 
Table 8 Mechanical and geometrical properties of a doubly curved composite sandwich panel 

3

1 2 3 12 13 23E E E 6.89 MPa, G G G 3.45 MPa, 0.25, 130 kg / m .          Foam core 

1 2 3 12 13 13

3

12 13 23

E 131 GPa, E E 10.34 GPa, G G 6.895 GPa , G 6.205 GPa,

0.22, 0.49, 1627 kg / m .   

     

   
 Composite face sheets 

/ 0.73, 10 , 0.67 , , .c x t x b x c x y t y b y c yh h a h R R R R a R R R R a b         

 

Geometric 

 

 

Fig. 2 Variation of dimensionless critical dynamic pressure with the radii curvatures ratio 

 

 

composite sandwich panels with S.S. B.C.s is investigated. Mechanical and geometrical properties 

of a composite sandwich panel are given in Table 8. Cross ply [0/90/0/Core/0/90/0], angle ply 

[45/-45/-45/Core/45/-45/45] and [30/-30/30/Core/30/-30/30] stacking sequence are considered.  

In Fig. 2, the variation of the dimensionless critical dynamic pressure (λcr=βaa3/D11(0)) with 

the radii curvatures ratio is presented. Fig. 2 shows that by increasing the radii curvatures ratio, the 

dimensionless critical dynamic pressures for three types of lay-ups are decreased. This behavior is 

predictable; because by increasing the radii curvatures ratio, the doubly curved panel is turned to a 

single curved panel and, since the bending stiffness of the spherical panels (doubly curved panels) 

is more than that of the cylindrical panels (single curved panels), the dimensionless critical 

dynamic pressure is decreased. For higher radii curvatures, the variation of the dimensionless 

critical dynamic pressure is insignificant. 

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

R
y
/R

x


cr

 

 

[45/-45/45/Core/45/-45/45]

[0/90/0/Core/0/90/0]

[30/-30/30/Core/30/-30/30]
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Fig. 3 Variation of dimensionless critical dynamic pressure with the fiber angle (hc/ht=8, 

a=10h, Rxt=Rxb=Rxc=Ryt=Ryb=Ryc=0.67a, a=b) 

 

 

Example 6 
In this example the effect of the fiber angle on the panel flutter of spherical composite 

sandwich panels with S.S. B.C.s is investigated. Mechanical properties of a composite sandwich 

panel are given in Table 8. The lay-up of the composite sandwich panel is [-θ/θ/Core/θ/-θ].  

In Fig. 3, the variation of the dimensionless critical dynamic pressure (λcr) with the fiber angle 

is presented. Fig. 3 demonstrates that, by increasing the fiber angle from 0 to 45, the dimensionless 

critical dynamic pressure and its increasing rate are increased; afterwards, by increasing the fiber 

angle from 45 to 75, the dimensionless critical dynamic pressure is decreased. Also, the highest 

critical dynamic pressure occurs at the angle ply panel (θ=45). 

 

Example 7 
In this example the effect of type of varying thickness of the core on the panel flutter of doubly 

curved composite sandwich panels with S.S. B.C.s is investigated. To do this, change the curvature 

radii of the bottom face sheet to the curvature radii of the top face sheet ratio (Rb/Rt). Mechanical 

properties of a composite sandwich panel and stacking sequences are similar to Example 5.  

In Fig. 4, the variation of the dimensionless critical dynamic pressure (λcr) with Rb/Rt ratio is 

presented. Fig. 4 shows that by increasing the Rb/Rt ratio, the dimensionless critical dynamic 

pressure fluctuation occurs. Also this figure demonstrates that the highest critical dynamic 

pressure for three types of lay-ups is occurred at the panel with Rb/Rt ratio -1. As shown in this 

figure, type of varying thickness of the core significantly affects the panel flutter response of 

doubly curved composite sandwich panels. As a result, modeling variable thickness doubly curved 

panels with doubly curved, single curved or flat panels with constant thicknesses cannot be 

accurately predicted the flutter behavior.  

 

Example 8 
In this example the effect of the temperature rise (ΔT) on the panel flutter of doubly curved 

composite sandwich panels with S.S. B.C.s is investigated. Mechanical properties of a composite 

sandwich panel are given in Table 8. Cross ply [0/90/0/Core/0/90/0], angle ply [45/-45/-

45/Core/45/-45/45] and [30/-30/30/Core/30/-30/30] stacking sequence are considered. In Fig. 5,  

0 10 20 30 40 50 60 70 80 90
1.8

2

2.2

2.4

2.6

2.8

3




cr

 

 

[- / /Core/  /-]
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Fig. 4 Variation of dimensionless critical dynamic pressure with Rb/Rt ratio (hc/h=0.73, a=9h, 

Rxt=Ryt=Rt=a, Rxb=Ryb=Rb) 

  

 
Fig. 5 Variation of dimensionless critical dynamic pressure with the temperature rise (a=10 h , 

Rxt=Ryt=a, Rxb=Ryb=3a) 

 

 

the variation of the dimensionless critical dynamic pressure (λcr) with the temperature rise is 

presented. Fig. 5 shows that by increasing the temperature rise, the dimensionless critical dynamic 

pressure decreases. 

 

Example 9 
In this example the effect of the prestress on the panel flutter of spherical composite sandwich 

panels with S.S. B.C.s is investigated. Mechanical properties of a composite sandwich panel and 

stacking sequences are similar to Example 5.  

In Table 9, the effect of the prestress (N/Ncr=0, 0.2, 0.4, 0.6, 0.8) on the dimensionless critical 

dynamic pressure (λcr) for different length to width ratio (a/b=1,2,3) is presented. Table 9 shows 

that by increasing the prestress, the dimensionless critical dynamic pressure for three types of lay-

ups and all length to width ratio is decreased. 

-4 -3 -2 -1 0 1 2 3 4
0.1

0.15

0.2

0.25

0.3

0.35

R
b
/R

t


cr

 

 

[45/-45/45/-45/45/Core/45/-45/45/-45/45]

[0/90/0/90/0/Core/0/90/0/90/0]

[30/-30/30/-30/30/Core/30/-30/30/-30/30]

0 50 100 150 200
0.2

0.4

0.6

0.8

1

1.2

T


cr

 

 

[45/-45/45/Core/45/-45/45]

[0/90/0/Core/0/90/0]

[30/-30/30/Core/30/-30/30]
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Table 9 Effect of prestress on the panel flutter of spherical composite sandwich panels hc/h=0.73, a=9h, 

Rxt=Rxb=Ryt=Ryb=R=a  

 0.8

cr

crN N




 

 0.6

cr

crN N




 

 0.4

cr

crN N




 

 0.2

cr

crN N




 

 0

cr

crN N




 Lay-up type a/b

 
0.6301 0.6789 0.7198 0.7566 0.7922 0/90/0 

1 0.5368 0.5846 0.6145 0.6419 0.6650 45/-45/45 

0.5859 0.6351 0.6661 0.6937 0.7195 30/-30/30 

1.2933 1.3757 1.4478 1.5251 1.5878 0/90/0 

2 1.6601 1.7568 1.8389 1.9108 1.9602 45/-45/45 

1.5398 1.6047 1.6815 1.7341 1.7928 30/-30/30 

1.3439 1.4348 1.5119 1.5769 1.6479 0/90/0 

3 1.3373 1.4036 1.4662 1.5176 1.5654 45/-45/45 

1.3232 1.3948 1.4559 1.4981 1.5518 30/-30/30 

1.2645 1.3451 1.4220 1.4871 1.5487 0/90/0 

4 1.2569 1.3177 1.3903 1.4382 1.4907 45/-45/45 

1.3094 1.3808 1.4421 1.4817 1.5389 30/-30/30 

 

 

5. Conclusions 
 

In this work, the supersonic panel flutter of doubly curved composite sandwich panels with 

variable thickness under aerothermoelastic loading is studied based on a new improved higher 

order sandwich plate theory. The main conclusions are: 

• The new higher-order sandwich panel theory used in this paper, can accurately predict the 

stability behavior of doubly curved composite sandwich panels. 

• The highest flutter boundary is occurred at angle ply panels. 

• With the increase of the radii curvatures ratio, the aeroelastic stability is decreased. 

• Type of varying thicknesses of the core significantly affects the panel flutter response of 

doubly curved composite sandwich panels; as a result, modeling variable thickness doubly 

curved panels with constant thickness panels to predict flutter behavior of doubly curved panels 

is not strictly accurate. 

• The highest critical dynamic pressure for variable thickness doubly curved panels is occurred 

at the panel with Rb/Rt ratio -1 

• The aeroelastic stability decreases with the increase in temperature rise and in-plane stress. 
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