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Vibration, buckling and dynamic stability of a
cantilever rectangular plate subjected to
in-plane force
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Abstract. Vibration, buckling and dynamic stability of a cantilever rectangular plate subjected to an
in-plane sinusoidally varying load applied along the free end are analyzed. The thin plate small
deflection theory is used. The Rayleigh-Ritz method is employed to solve vibration and buckling of the
plate. The dynamic stability problem is solved by using the Hamilton principle to drive time variables.
The resulting time variables are solved by the harmonic balance method. Buckling properties and
natural frequencies of the plate are shown at first. Unstable regions are presented for various loading
conditions. Simple parametric resonances and combination resonances with sum type are obtained for
various loading conditions, static load and damping.
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1. Introduction

The dynamic stability of a thin rectangular plate has been studied by many researchers
(Bolotin 1964, Yamaki and Nagai 1975). In these studies, however, a uniformly distributed
load has been treated under relatively simple boundary conditions and mainly simple
parametric resonances have been considered. The buckling and dynamic stability of a thin
beam subjected to in-plane load are analyzed when the aspect ratio is large (Column Research
Committee of Japan 1971). However, when the aspect ratio is small, the plate theory must be
applied to the problem. The dynamic stability of a rectangular plate subjected to in-plane
bending load such as a concentrated load or a distributed load, remains to be considered.

Theoretical solutions are reported for the dynamic stability of a rectangular plate under
linearly distributed periodic loads applied along two opposite edges by the author (Takahashi
and Konishi 1988). In this paper, theoretical solutions are reported for the dynamic stability
of a cantilever rectangular plate under in-plane bending loads applied along free ends. The
problem is solved by using the Hamilton principal and the harmonic balance method
described by the authors (Takahashi 1982, 1981).

After presenting the problem in the eigenvalue form, numerical results are presented, first,
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for buckling properties and natural frequencies of the plate and second, for dynamic unstable
regions of the cantilever rectangular plate with various loading conditions along the edge.

2. Basic equations

Assume that a cantilever rectangular plate with length a4, width b and thickness £ is
subjected to in-plane bending loads. A cartesian co-ordinate system (x, y) is introduced as
shown in Fig. 1. The in-plane forces N,, N, and N,, due to static load g, and periodic dynamic
load g, cos€X are obtained by two dimensional theory of elasticity, as follows

N. =(p,+p, cos&t) fi(x,y)
N, = (po+pt cos€dt) fo(x,y) ey
ny =(p(]+pt COSQt)'f3(x’y)

in which p, and p, are the amplitudes of the static and dynamic loads, respectively, €2 is the
radian excitation frequency and, fi(x, y), fi(x, y), and fi(x, y) are functions characterized by the
distribution of the in-plane bending load as shown in Fig. 2. That is,

Case I: concentrated load along the free end x=a;

Case II: uniformly distributed load along the free end y=0;

Case IIL: triangularly distributed load along the free end y=0.

In-plane forces, N,, N, and N,, are shown in Appendix A for the three cases.

It is assumed that effects of longitudinal and rotatory inertia forces and transverse shear can
be neglected.

Strain energy V, strain energy due to in-plane forces U and kinetic energy T of the plate are
given by

_1 22 B o*w a2w_ o'w ’
V—ZDHA (V'w) =231 V){axz 5 (axay dxdy )

g(x)=q (x)+q,(x)cos Q¢
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Fig. 1 Geometry of a cantilever plate
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Fig. 2 In-plane force applied to the plate
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where w denotes the transverse deflection, ¢ is the time, D=Eh’/12(1—V’) is the bending
stiffness, £ is Young's modulus, v is the Poisson ratio, 4 is the plate thickness and p is the
mass density.

The total potential energy can be written as

N=V+U-T ®)

3. Free vibration and buckling analysis

Free vibrations of a plate subjected to static force is given by setting p,=0. The solution of
the vibration problem which satisfies the geometric boundary conditions is assumed in the
form

w=3 3 A i &) hn (et (6)

where @ is the natural radian frequency, A,,, is an unknown constant, A,, is the vibration mode
of the clamped-free beam, A, is the vibration mode of the free-free beam, =x/a and n=y/b.

Applying the Rayleigh-Ritz method, i.e.,
all
0A ;s

in which r and s are 1, 2, ---, N gives the following set of algebraic equations

=0 )
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z zAmn (Emrns + Arbﬁ()Gmms - Mmes) =0 (8)

m=1 n=1

where A, =*Vph «’b*/D is the elgenvalue of vibration, A, is the eigenvalue of bucklmg
(Case I: A, =Pyb°/D, Case II: A, =p,hb /D, Case III: A, =pohb’/D), p,=p,/P., is the

nondimensional static load, p,, is the buckling load and E,,,, G,.. and F,, . are constants
depending on A, k., h, and h, (see Appendix B).
Eg. (8) can be put in matrix notation by using

(E]+ 24,plG] - MFD{X} = {0} ©)
where [E], [G] and [F] are the coefficient matrices, e{s+(r — 1)N, n+(m—1)N}=E,,., g{s+
(r—l)N n+(m - D)N}=G,,.., f{s+(r = DN, n+(m — 1)N}=F,,, and {X}={A;; A, =-- Ay -
ANN}

To obtain the eigenvalue A, in Eq. (9), one employs the method which obtains the
eigenvalue of the matrix. If one puts A,=0 and p, =1, the equation for buckling eigenvalue 4,
is obtained.

4. Dynamic stability analysis

One can assume the solution of dynamic stability to be of the forms

W =SS T (t) Wn (&, 1) (10)

m=1 n=1

in which T,, is an unknown time function and W, is the vibration mode of the plate
satisfying the geometric boundary conditions of the plate obtained by Eq. (6), defined as

Won Za'"h © Za"h ™).
Applymg the Hamllton principle, one has
sj (T-V-U)dt=0 (11)
3

where 0T,,=0 at t=¢t, and t,.
After the indicated integrations, Eq. (11) gives a set of ordinary differential equations for
the time variables

.. A
CH T + |2 Al — 22 (Po+F COS@T) Bl b Tn | =0 (12)
kll kll

where k,; =*Nphwib'/D is the first eigenvalue of vibration, p, =p,/p, is the
nondimensional amplitude of the dynamic load, @ = £2/a;, is the nondimensional excitation

frequency, 7=, is the nondimensional time, and C7;, AY and BY, are constants depending
on modes of vibration of the plate (see Appendix C).
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Eq. (12) can be put in matrix notation by using
[CI{T } +[QHT} + (P, + P, cos@n)[RUT} = {0} (13)

where [C], [Q] and [R] are the coefficient matrices, c {I +(k —1)L,n +(m - 1)L } =C¥,,

1
g{l +(k = DL 1 +(m —1)L}=kLﬁA,’:f,,, P{I+(k = DLn +(n = DL} =5 Bo and

{T}={Ty, Ty, --- T, Ty, --- T,;}" is the column vector of the dependent variables.
By using the inverse matrix [C] ' and considering linear dampings, nondimensional form
of the ordinary differential equations is then obtained as

[T }+[HUT }+[F1{T} + (P, + . cos@n)[G {T} =0 (14)

here [I] is the unit matrix, [H]=diag(2h;w,) is the damping matrix, [F]=[C] '[Q]=diag(®,’) is
the diagonal matrix and [G]=[C] '[R] is the square matrix. &, is the damping constant and o,
is the nondimensional natural radian frequency with i-th mode number in the x direction and
j-th mode number in the y direction in which j=1, 3, --- corresponds to the symmetric mode

of vibration and j=2, 4, --- corresponds to the anti-symmetric mode of vibration.
The solution of Eq. (14) is now sought in the form (Takahashi 1982, 1981)

(T}=en %bo + (@, sink @+ b, cosk @) (15)
k=1

where b,, a, and b, are vectors that are independent of time variable and A is an unknown
constant.

Substitution of Eq. (15) into Eq. (14) and application of harmonic balance method yield a
set of homogeneous algebraic equations

([Mo] = AIM ] - MM ]{X } = {0} (16)

where [M,], [M;] and [M,] are the coefficient matrices of the zeroth (constant), first and
second powers of A, respectively and {X} is a column vector. Upon introducing the new
variable {Y}=A{X}, Eq. (16) becomes an eigenvalue problem of a double sized matrix

[0] [7] X X
MM M| Y Ty (17)

As the matrix of Eq. (17) is a non-symmetric matrix with real elements, the eigenvalues
consist of pairs of complex numbers. If the eigenvalues of the equation are distinct, then the
necessary and sufficient condition for stability is that real parts of the complex roots should
be negative or zero.

5. Basic properties of dynamic instability

There are two types of unstable motions obtained from Eq. (14): that is, simple parametric
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resonance in the neighborhood of @ =2w;/q (g=1, 2, ---) and combination resonance in the
neighborhood of @ =(w;xwy)/q (g=1, 2 --+), in which g=1, 2, --- corresponds to the
principal, second, --- unstable regions.

The kind and width of the unstable regions depend on the elements of the matrix [G]. As
the matrix [G] is symmetric, combination resonances with sum type in the neighborhood of
® =@; + @, will be obtained and combination resonances with difference type in the
neighborhood of @ = (w; — @, )/q will not be obtained (Hsu 1963).

The coefficient matrix [G] of the parametric excitation for the loading condition
corresponding to case I has the following form if the first four modes of the symmetric and

8121 z2u S 8nu
821 x2S 8321
gi213 2213 8iaz 833

0 0 0 0 8223 oz Biazz 8323
8z 8212 iz 8un 0 0 0 0 (18)
8uzz  8uxn 8z 8un
s 8211s Bisia 82314
gun 8z & 8xm

(el e i an]
S oo
o o0
oo

[G]=

=R Rl an]

0 0 0
0 0 0
0 0 0

anti-symmetric vibrations are adopted

in this case, {T}={Ty Ty Ti3 Tps T2, Ty, Ty T32}T-

The time functions T,,, T, Ti; and T,; have the symmetric modes, while the time functions
T, Ty, T,, and T3, have the anti-symmetric modes.

The diagonal element g,; is zero as shown in Eq. (18). Parametric resonances occur only
through the coupling term g, (i¥k, j#I). Therefore, simple parametric resonance which
occurs through the direct term g;; would not be important for the case I (Hsu 1963).
Combination resonance which occurs through the non-zero coupling term is predominant. As
the non-zero elements are g1, €112, &i1312 and so on, combination resonances such as @+,
Wy +0y,, W3+@;,, etc., would be included.

In the cases II and III, the matrix [G] has non-zero elements. It is to be expected that the
simple parametric resonances and combination resonances would be included simultaneously
(Hsu 1963).

Based upon the preceding theoretical analysis, numerical solutions have been obtained for
the cantilever rectangular plate. First, the natural frequencies and buckling load are presented.
Then, the unstable regions are determined.

6. Buckling and vibration analysis
6.1. Accuracy of the solution
The ten-term solution of Eq. (8) (N=10) is used in the present free vibration and buckling

analysis. The ten-term solution is converged and the present solution A} for the square plate
agrees well with the existing solution as shown in Table 1.
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Table 1 Accuracy of the present solution

mode present solution existing solution
1st 3.484 3.494
2nd 8.521 8.547
3rd 21.38 21.44
4th 27.28 27.46
5th 31.07 31.17
10000 E
] Case | —e—
1000 4 Case I —m—
Case I —A—
100 5
10
(<.Q

0.1

0.01 A

0.001

Fig. 3 Buckling curves of the rectangular plate

6.2. Buckling properties

Fig. 3 shows buckling curves of the rectangular plate for three different loading conditions.
The buckling load decreases with increase of the aspect ratio 8 (=a/b). Fig. 4 shows buckling
modes of the square plate. The deflection of the loaded end is large in the cases of distributed
loads and the effect of the torsional mode is conspicuous. On the other hand, torsional mode
and bending mode are the same order in the case 1.

6.3. Comparison with the beam theory

Fig. 5 shows of the buckling curves obtained by the present analysis obtained by the plate
theory and the beam theory (Japan 1971) in the case where A=b/10 and v=0.3. The ordinate
A, denotes the buckling eigenvalue, while the abscissa 8 is the aspect ratio. The result of the
present analysis coincides with the result obtained by the beam theory when the aspect ratio
B is large. The accuracy of the present result seems to be satisfactory. When the aspect ratio
B is less than 6.0, the difference between the plate theory and the beam theory is greater than
10%. The plate theory must be applied to the buckling analysis of the present problem.
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Case II

Case III
Fig. 4 Buckling mode of the square plate

6.4. Vibration analysis

The natural frequency versus the static load of the square plate for cases I, II and III are
shown in Fig. 6. In these figures, the ordinate shows the nondimensional natural frequency,



Vibration, buckling and dynamic stability of a cantilever rectangular plate 947

1000 " Phre
i ~— —Beam
100 g
& 10 ?
1 F
0.1 |
i 0.124 0-0915 70 0. 0s5
O. 01 IS NURTEEEE SRR RS AR SR AR I
0 1 2 3 4 5 6 7 8 9 10

» k'
5th
Ll o X 5th
4th L\
i 5 wh
o[ 3 0f 3d
~ > ~
~< 5k < s}
10 10
T
st 5 -\\ nd
x \ 1st
0 ! i 4 1 1: 0 L L L \
0o ) o4 e o8 10 00 02 04 06 08 10
po pO
Case | Case I

E

0fF 5th

> \‘*\ ath

2 3nd

~
&’ 15 |-

w0l

e

[ 1 1 K st

o0 02 04 06 08 10

Py
Case Il

Fig. 6 Natural frequency vs. the static load

while the abscissa denotes the static load normalized to the buckling load in each case.
Natural frequencies change with increase of the static load. Natural frequencies decrease with
increase of the static load p, except the fifth mode of the case I. The effect of the static load
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is the most pronounced in the case of the first mode. In this case, the frequency is zero when
the load p, becomes unity. This result can be seen in structural mechanics. It is concluded
that the present analysis is accurate. The mode of vibration of the first mode when the static
load p, is unity corresponds to that of buckling.

7. Dynamic stability analysis
7.1. Unstable regions of a square plate

The results of the square plate for different loading conditions with no static load p,=0 and
undamped case (h,;=0) are shown in Figs. 7 to 9. In these figures, the ordinate p, denotes the
amplitude of the periodic load normalized to the corresponding buckling load, while the
abscissa @ is the excitation frequency normalized to the lowest natural frequency. Further,
the hatched portions represent the regions of various types of instability. The narrow regions
of instability with @ less than 0.2 when p,=0.5 are omitted in the figures. The three-term
solution of Eq. (15) (k=3) is used in the present analysis. This solution is converged and
agree well with stability boundaries obtained by the Runge-Kutta-Gill method.

Wide unstable regions of combination resonances of sum type in the vicinity of @+, are
obtained as shown in case I as shown in Fig. 7. As the diagonal elements of the coefficient
matrix [G] as shown in Eq. (18) are zero in the case I, the simple parametric resonance
excited by the direct term is not obtained. However, the second unstable regions of the simple
parametric resonance such as @, occur through coupling terms. The widths of the simple
parametric resonances are narrower than those of combination resonances. Therefore,
combination resonances are important for the case L

Simple parametric resonances with 2@;, and 2@;;, etc. as well as combination resonances
are obtained in cases II and III as shown in Figs. 8 and 9. The combination resonances are
not predominant for cases II and III. From comparisons of Figs. 7 to 9, the force distribution
along the edge of the plate can be seen to much affect the unstable regions.

7.2. Effect of static load

Fig. 10 shows undamped (h,;=0) unstable regions of a square plate subjected to a static load
p,=0.5 for the case I. Simple parametric resonances with the principal unstables regions such

LORTRACETS w0 to, Wto, o, to,
0.5 W, Wy OptW, | 0, 0y, W+ Wy, W 5" Wy
0.4 |
_o03 |
le 0.0 |
0.1 |
0 . I T , I . | . f . i . ! L
0 2 4 6 8 1_0 12 14 16 18 20
w

Fig. 7 Unstable regions: case I, =1, p =0 and h;=0
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Fig. 11 Unstable regions: case I, f=1, p,=0 and #;=0.01
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as 2w, 20y, 20, and 2m,, and the third unstable regions such as 2@,,/3, 2w,,/3 and 2w,,/3
occur in conjunction with p,. This result corresponds to the fact that the coupling between the
modes through the restoring force terms in Eq. (14). The static load p, has an influence upon
the unstable regions. The simple resonances of small width in the absence of the static load p,
become of larger width.

7.3. Effect of damping

Fig. 11 shows undamped (h;=0) and damped (h,=0.01) unstable regions of a square plate
for case 1. The effect of damping depends on the width of the unstable region and is to
produce degeneracy of the unstable regions in the present case.

8. Conclusions

The dynamic stability of a rectangular cantilever plate subjected to in-plane load has been
investigated. The conclusions are as follows.

(1) Combination resonances with sum type are predominant for a plate subjected to
concentrated load along the free end. Simple parametric resonances and combination
resonances are excited simultaneously for a plate subjected to distributed load. The stress
distribution along the edge affects the kinds and widths of unstable regions.

(2) Static load has influence upon the kinds and widths of unstable region of a plate
subjected to in-plane dynamic load. The simple resonances whose widths are narrow in the
absence of a static load become broad in width.
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Appendix A: In-plane forces, N,, N, and N,,
Case I: concentrated load P=Py+P, cos{2 along the free end x=a

Ne== 120 ~b2)a —x) (A1)
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Ny =0 A-2)
_ 6P ,, 3P
ny =— ?{(y - b@) + % (A’S)
Case II: uniformly distributed load p=p +p, cos€2 along the free end y=0
_ 2y —b2)  b* |20y —b2)? _ 3@y -bR2) i
N; =—ph|6(a —x) ErT - X B3 (A-4)
2y —=b2y® 3y -b2) 1
=— - — A-5
_ 6(y —b2)y 3
Ny =ph(a -x)\=—5—"— -5/ (A-6)
Case III: triangularly distributed load p=p(1 — x/a)+p(1 — x/a)cos€2 along the free end y=0
2@ -xPb2-y) Ha-x)b2-y)P . 3a-x)b2-y)
= - A-7
N =ph b3 b3 " 5b A7)
3a —x)b2-y)  2a-x)bR-y)Y a-x
Ny, =ph{- - A-8
y=p b + e ) (A-8)
3a-x) | Ba-xPb2-y? b (BR-y)  3(b2-y)P
Ny =—ph!i - -——— + A9
w =—ph T b3 80 b3 105 (&)
Appendix B: Coefficient, E,,,.., Fpn and G,
1 = - Vo3 - 20-V) . s=5
Emms - In%rln‘ls +Irr¥rln.2s +— (Irr%rlni +In?r1n?s) + = In?r Ins (B‘l)
B g 3
Frns = In%r Inls (B'2)
Girns = - ?35 (BISTS + 4T + I5T2) — AT 8 + LT}
for case 1
— 4 - 3 - - 3 .= 1 ,-
Grns == 6lnd — — Iin Ins' = —— Ll — 20 + = Lindi? — — I Iis B-3
P 5P 2 2 ®

+ 6T+ [Ty — %(1,,},97,3 + LT

for case II
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Gmrns == 2B1rr}r2 In‘z + = Irr?r nLl - 2 Irr?r ]nﬁv + 5 rr}r m + 2[3 13 - glm? Inss

B B

v 3 AT+ LT + 2 BT + LT + < ! O T A )
2B(Im, e+ I - ﬁ(lm, ,,L°+1,§, Iyy)
where I =_[(: hmh,d & A =J; hnhsdn

1,3,=j;h2mh2,d§ 7,,%:](1%2,,@0171

In?,:J;thh,dé 7,3=J'(:52,,Ed77

1,:,‘,:]01 Fih s, d € _I,,‘i-z_[]ﬁ,,ﬁhdn

1,2,=j;h1mh1,d§ 13 = j hyhydn

1,,?,:](: (1= EVay by, dE I,,sz_[o (1 = 20)hnhsd

I,Z,:j;h,mh,dﬁ _1,,Z=j(:ﬁlnﬁgdn

1= huhydg 8= o,

Iy =j; (= EPhyhy,dE I =j; (1 - 2nPh, hedn

,,19=j; A= Eyyhrd _,.L":j(: (1 = 20)hahy dn

=] (1= O dE =] -2
] hdE R[] A2, R
-J " = EYimbrd E s =j; (A =21)°h, kg dn

14—j (= EVhy, hrdE _nk“zjnl (1 =20 | hed

W= Q=8 dE =] -2mahdn

p i d

m:—E’ m = d§ R

Appendix C: Coefficients, A%, Bk, and CX,

mn —J J. mn éWkl E& + mn TIT]WkI-Tm
0

2(1 = V) Wmn,énWId,én} déd n

+ —( mn 5§Wk1 mt v, Wkl,g.»;) +

ﬂz mn.mm

for case III

(&)
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2
_ 1
an=——Jf 8(1*5)[77——] n Wi g+ 4[71——] =1t W Wi+ Wog Wi | d Ed

for case [

3 1 1l
+5[ﬂ—3]—5 mn, ki (C-2)

3
6(1 - é) —] = 2= W Wi+ W Wi )| 41

for case 11

3
f=f [ —ﬂﬂ—@{mjﬂ+%ﬂ—®ﬁ—%]—%U—Q@‘%]ﬁ%gmé

: ——ﬁ(l—é)[n——] 213(1—5)( —]—%ﬂ(l—é) W it

1
1608

2
. %ﬁ(l—éf%ﬁ(l—é)?[n—%] .

4 2
1 1 3 W= = .o o
+ 26 (77 - EJ + 208 [71 - 5) Won W+ W qgWn | dEd
for case III
Ciin —j J. §Wk1 A&dn (C-3)

where W, = 2 akthm 2 ayhn, W, o= Z aph,, z ath,,, W, uv,§§= Y abthy, Y arhy,
m=1 n=1

uv nn = 2 ar'r‘lhmz a"th’ uv £ Z lmz anhn, Wuv,nz z a,‘,‘,hmz a,}’zln_
n=1 m=1 n=l





