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Abstract. Most reliability-based analyses focus on the reliability of the individual components of a
structure. There are many advantages to examining the components in combination as an entire
structural system. This paper illustrates an algorithm used in the computer program RELSYS
(RELiability of SYStems) which computes the system reliability of any structure which can be
modeled as a series-parallel combination of its components. A first-order method is used to initially
compute the reliability of each individual component. The system reliability is computed by
successively reducing the series and parallel systems until the system has been simplified to a single
equivalent component. Equivalent alpha vectors are used to account for the correlation between failure
modes during the system reduction process.

Key words: correlation; optimization; random variables; sensitivity; structural reliability; system
reliability.

1. Introduction

Over the past several decades, the concepts and methods of structural reliability have
developed rapidly and become more widely understood and accepted. Many reliability-based
applications are transitioning from hypothetical structures using fictitious data to real-world
applications which require the most realistic data possible. Most reliability-based analyses
focus on the reliability of the individual components of a structure. There are many
advantages to examine the components in combination as an entire structural system. In some
cases, the reliability of every component may be satisfactory, but the reliability of the system
may become dangerously low. In other cases when the system is highly redundant, the
reliability of individual components may be quite low while the system reliability remains
high. A system approach to reliability considers both the reliability of components and their
relationship and importance to the entire system.

Reliability-based methods have only become practical with the rapid improvements in
digital computers. As reliability methods gain greater acceptance, ther is a greater need for
software that will provide fast computations. This paper illustrates an algorithm used in the
computer program RELSYS, RELiability of SYStems (Estes and Frangopol 1997) which
computes the system reliability of any structure which can be modeled as a series-parallel
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combination of its components. The first step is to compute the reliability of each individual
component. First-order reliability methods (FORM) are widely accepted and used. The
process for transforming all random variables to the uncorrelated standard normal space and
finding the shortest distance from the origin to the failure surface is illustrated using an
example. Sensitivity with respect to changes in the random variables is provided.

A structural system is modeled as a series-parallel combination of its components. The
system reliability is computed by successively reducing the series and parallel systems until
the system has been simplified to a single equivalent component. Series systems are solved
by taking the average of the Ditlevsen's bounds (1979) and the multi-normal integral is
evaluated to compute the reliability of parallel systems. Equivalent alpha vectors are used to
account for the correlation between failure modes during the system reduction process. Again,
the algorithm is illustrated using a numerical example. The strengths and weaknesses of
RELSYS are discussed.

2. Component reliability

A reliability problem may be a function of many random variables. The generalized
structural reliability problem is formulated in terms of a vector of basic random variables of
the structural system, X=(X;, X,, ..., X,,)T, where X, X,, ..., X, are basic random variables that
may describe loads, structural component dimensions, material characteristics, and section
properties. A limit state function, g(X)=0, describes the performance of a structural
component in terms of the basic random variables, X, and defines the failure surface which
separates the survival region from the failure region. These regions are as follows:

g(X)> 0 defines the survival or safe region )
g(X) < 0 defines the failure region (2)

If the joint probability distribution function of the design variables X, X, ..., X, iS fy, x,, ... x,
(%1, X3, ..., X,,), the probability of the failure state is

Pf IJ‘ s J.g(x)gofxl’XZX"(x]’xz’ ...,xn)dxldX2...dxn (3)

which may be written as

Pr=[ . frlo)dx @

Eq. (4) represents the n-fold integral of fi(x) over the failure region g(X)<0. This
convolution integral can easily become too complex to solve directly. Approximate tech-
niques were developed to approximate this integral. This study uses a first-order reliability
method to search for the shortest distance between the origin and the limit state surface in the
reduced space of standard normal variates.

3. First order reliability method

In the First Order Reliability Method (FORM), the limit state function at any point is
approximated by a first-order Taylor series expansion about that point. This creates a straight
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line which is tangent to the limit state function at the point of interest. The minimum distance
B from the origin of the reduced space to the tangent plane of the failure surface at point u*
is:

_i u* ag

u i=1 an*
— e _ 5
B= - ©)
& g
) i
i=1 | U/

where u* =(u;,u;,...,u’) is the most probable failure point, the derivatives (dg/0U;")
are evaluated at this same point, and g, and o, are the mean value and the standard deviation
of g(X), respectively (Shinozuka 1983, Ang and Tang 1984).

Based on the user's guess for the most probable point of failure, the method involves an
iterative search which relies on the gradients of the limit state function at the point of failure
and the direction cosines to find this minimum distance (Shinozuka 1983). The detailed
theory behind the FORM approach is presented in Ang and Tang (1984). This iterative
process is best illustrated by an example.

Given the limit state equation g(X)=g(X;, X,)=2X,"—2X,=0, the reliability index can be
calculated by finding the minimum distance from the origin in standard normal space to the
failure surface. The limit state equation g(X)=0 is defined in the original space which will be
denoted as the x-space. The minimum distance in question is found in the standard normal or
reduced space, hereafter referred to as the u-space. The variable X, is normally distributed
with a mean value py =2.0 and a standard deviation 0y,=0.2 which can be expressed as X;=N
[2.0, 0.2]. The parameters for the normally distributed variable X, are N[3.0, 0.3]. With these
uncorrelated, normally distributed variables, the transformation equation from the original
space x to the reduced space u is:

Xi — ALLXi
Ox.

(4

U, = i=1,2,..n (6)

The limit state equation g(X)=0 could be transformed directly to the u-space using Eq. (6) to
obtain

g()=0.133U,*+2.67U, — U,+3.33=0 (7

The algorithm is structured, however, so that the transformation from the x-space to the
u-space is never explicitly made. This allows for computer code where the problem and the
solution are provided in the original x-space and the user is not aware of the existence of the
u-space. The algorithm uses the Direct Derivation approach developed by Lee (1994) which
was originally incorporated into the program RELTRAN (Lee et al. 1993). The method
simultaneously iterates to find the optimal search direction and ensures that the failure point is
on the failure surface. The method also allows the user to express the limit state equation in
its original x-space form.

Using the stated example problem, this iterative FORM approach proceeds as follows:
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- Step 1: For each random variable, make an initial guess of the most probable point of
failure in the original space. Usually the mean value is a reasonable starting guess. For
purposes of illustrating the convergence process, this example will make an intentionally bad
initial guess. Therefore, for the first iteration, let x;* =6.0 and x5 =0.5.

- Step 2: Calculate the gradient with respect to each random variable (dg/0X;") based on
the initial guess value. The gradient will establish the search direction for this iteration

dg/dX,=4X,, then dg/0X] =4x; =4(6)=24
dg/0X,=-2, then dg/dX; =-2
- Step 3: Calculate the gradients in the reduced space.
dg /0U; = dg /0X;(dX,/0U;), where X; = oy, U; + ly, and 0X,/0U; = oOy,.
Therefore,
dg /0U; =dg /0X,(0y,) and dg/dU;" = dg /90X, (Oy,)
Consequently,

dg/dU} =0dg /X[ (0y,)=24(0.2)=4.8
dg /U3 =0g/0X} (Oy,) =—2.0(0.3)=—0.6

- Step 4:  Compute AB based on Taylor series expansion about U .
AB= gXx’)

y|-%

i | oU;

2

g(X")=2x;? —2x; =2.0(6.0y — 2.0(0.5) =71

2 2 2
\/2 J9g z\/ 98 | [ % =V4.8% + (-0.6)> = 4.837
T | oUT

oU; aU;
AB=71/4.837 =14.68

- Step 5:  Compute the updated reliability index.
Brew = Py + AB=0.0 + 14.68 = 14.68

- Step 6: Compute the direction cosines.

og /oU;*

O v, =
2

x [ g
)3

i=1 an*
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Therefore, for the first iteration the direction cosines are

0, = 9 /90U, = 4.8/4.837 =.9923
2 2
d | .| %%
U, U;

o, =-0.6/4.837=-.1240

- Step 7:  Compute the new failure point in the reduced space.

uifnew =— ag,Ui ﬁ
U pew =— 041 8=—.9923(14.86) = - 14.68
U3 oy = — 04, =—(—.1240)(14.86) = 1.82

- Step 8:  Compute the new failure point in the original space.

Xinew = iy, + Winey O, = 2 + (— 14.68)(0.2) = —.9128
x;,new = .uX2 +U inew O-X2 - 3 + 1.82(03) = 3546

- Step 9: Let £=.00001. Substitute the coordinates of new failure point (x},..,X3.w) iNt0
the performance function g (X). If|g (X’ )| <&, then the iteration is complete and the solution
has converged. If not, perform another iteration using the new failure point (X{ e > X3en )-

In this case, the solution did not converge and ten more iterations were necessary. On the
eleventh iteration, the value for |g(X’)| was less than 0.00001 and the solution was
sufficiently precise. Table 1 shows the values for these iterations. Figs. 1 and 2 show the
iterations graphically in the reduced and original spaces, respectively. After the eighth
iteration, the changes were too small to be shown on the graphs. The final reliability index
was 3=1.2317. The program RELSYS uses this method to compute reliability indices.

When there is correlation between the random variables, an additional transformation
matrix using the eigenvalues and eigenvectors of the correlation matrix is used to decouple

Table 1 Iterative FORM solution for g(X)=2X,>-2X,=0 where X,=N[2.0, 0.2] and X,=N[3.0, 0.3]

Iteration Step 2 Step 3 Step 4  Step 5 Step 6 Step 7 Step 8

Number 9¢ /X7 9g/0X; dg/0U; dg/dU; gX') AB B o4, o, uro ouy xi x;
1 24.0 2.0 4.80 -0.60 71.0 14.68 14.68 0.9923 -0.1240 -14.56 1.82 -0.91 3.55
2 -3.65 -2.0 -0.73  -0.60 -5.426 -5.74 8.94-0.7727 -0.6348 6.905.67 3.38 4.70
3 13.52 2.0 2.70 -0.60 13.458 4.85 13.79 0.9763 -0.2166 -13.46 2.99 -0.69 3.90
4 -2.77 -2.0 -0.55 -0.60 -6.831 -8.36 5.43-0.6788 -0.7343 3.693.99 2.74 4.20
5 10.95 -2.0 2.19 -0.60 6.597 291 8.34 0.9645-0.2642 -8.04 2.20 0.39 3.66
6 1.57 -2.0 0.31 -0.60 -7.016 -10.37 -2.03 0.4626 -0.8866 0.94-1.80 2.19 2.46
7 8.75 -2.0 1.75 -0.60 4.649 2.52 0.49 0.9459 -0.3243 -0.46 0.16 1.91 3.05
8 7.63 -2.0 1.53 -0.60 1.187 0.72 1.21 0.9307 -0.3658 -1.130.44 1.77 3.13
9 7.10 -2.0 1.42 -0.60 0.035 0.02 1.23 0.9211-0.3892 -1.130.48 1.77 3.14
10 7.09 -2.0 1.42 -0.60 -6E-0.4 0.00 1.23 0.9210-0.3896 -1.13048 1.77 3.14
11 7.09 2.0 1.42 -0.60 -1E-0.7 0.00 1.23 0.9210-0.3896 -1.130.48 1.77 3.14
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Reduced Space Original Space
U, X,

2
9(U )=.133u, +2.67u,-u,+3.33=0 (X )=2X,’-2X,=0

X

1

Fig. 1 Results of FORM iterations in the reduced  Fig. 2 Results of FORM iterations in the original
space space

the correlation. When the random variables have non-normal distributions, an equivalent
normal distribution is created. The equivalent normal standard deviation oy" ig computed
(Ang and Tang 1984) as

N — ¢{@_1[F X; )]}
oy =
fr ()
where Fy (x*) and fx (x;*) are the cumulative distribution function (CDF) and probability

density function (PDF), respectively, of the non-normal distribution evaluated at the current

point of failure x;*. The symbols @ - ) and ¢( - ) represent the CDF and PDF of the standard
normal distribution, respectively. The equivalent normal mean value uy is

®

1 =x — o [Fy (6)] )

When the distribution is non-normal and the variables are correlated, equivalent correlation
coefficients developed by Der Kiureghian and Liu (1986) are used for a variety of
distributions.

After the reliability of a structural component has been computed, it is useful to examine
the sensitivity of the reliability with respect to the random variables which contribute to the
uncertainty in the problem (Frangopol 1985, Karamchandani and Cornell 1992). Hohenbichler
and Rackwitz (1986) showed that the direction cosines were good approximate measures of
the stochastic importance of a random variable. The sensitivity of the reliability index with
respect to the mean value of random variable X; in component a is
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sens =0l

(10)
where o is the direction cosine with respect to the failure point of random variable X; in the
uncorrelated reduced space. These direction cosines were computed in Step 6 of the iterative
solution process shown earlier. The sensitivity with respect to the standard deviation of

random variable X; is

senso=— o, (10)

These sensitivity values are used in RELSYS and were demonstrated by Estes (1997) to be
valid.

4. System reliability

A general system can be modeled as any combination of series and parallel systems.
Consider a series system consisting of y parallel systems. Each parallel system a has z,
components. Then, the probability of failure is given as:

P, =P (Qr’}{gab(X) < 0}) 12)

It is often difficult to determine whether a subscript in an equation is referring to a
component or a random variable - particularly regarding correlation coefficients and direction
cosines. The convention used in this study is to reserve subscripts (i, j, k, ..., n) for random
variables. The remaining subscripts (a, b, c, ..., k) and (o, ..., z) are used for components.

The reliability of a series system and a parallel system can be solved separately using the
reliabilities and the direction cosines at the point of failure of the individual components. The
approach for a complex system will be to sequentially break the system down into simpler
equivalent subsystems. The example series-parallel system in Fig. 3 illustrates how the
equivalent components are created and the system is simplified until a single system
reliability index can be calculated. The original problem consists of six limit state equations
£:(X)=0 through g«X)=0 and the reliability index of each component, §,, B,, ..., Bs can be
calculated using the FORM described earlier.

Using the direction cosines associated with the most probable points of failure for each
limit state, the system correlation matrix which provides the correlation between the
performance functions g,(X), ..., g(X) is calculated (Ang and Tang 1984). As shown in Fig. 4,
the correlation coefficient between any two performance functions g(X) and g.(X), p., is
equal to the cosine of the angle between the two reliability vectors associated with g,(X) and
8,(X). This can be calculated using the direction cosines, as follows (Ang and Tang 1984):

Cov(8.,85)
- 00 13
Peyss = O, Oy z i Ol (13)

a

where Cov(g,g,) is the covariance between g,(X) and g,(X), n is the number of random

variables associated with g,(X) and g,(X), and ¢, and og; are the direction cosines of the
tangent planes at the most probable failure point.
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0 ®

Fig. 3 Reduction of a series-parallel system

us

e P =
. \2 cosf

Fig. 4 Correlation between two failure modes

Consider the series-parallel system shown in Fig. 3. It consists of a series of four
subsystems with two subsystems in parallel. The first step is to reduce the two parallel
subsystems in Fig. 3 to equivalent components. By numerically integrating the trivariate
normal distribution, the probability of failure of the parallel subsystem comprised of g,(X),
g+(X), and g,(X) is found and an equivalent component g,(X) is created as follows:
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P(F)=P(F,NF;NF,)= j [ [ £:Ba By, Be5[Pys, . 1) B d By d B (14)
B3 B4
where F, is the failure event associated with component i and

| i 1
3 Bes By Bes [Pose . D n)*Vdet [p,s, , .1

in which [p,,,, | is the correlation matrix of g,(X), g;(X), and g,(X). Similarly, the bivariate
normal distribution

el- 172{B4.Bp . Be }[psysa b ]-1 {Ba ﬁbvﬁc}T] (15)

P(F)=PFENFY=] [ —

Bibs 2mN1 — P

is used to find the probability of failure of the two-member parallel subsystem comprised of
g4(X) and gy(X), and create the equivalent component gy(X). The notations a, b, ¢ used in Egs.
(14) and (15) are for the performance functions associated with components 2, 3, and 4 in Fig.
3, and the notations a and b in Eq. (16) are for the performance functions associated with
components 4 and 6 in Fig. 3.

For parallel systems with four members or more, the number of computations to
numerically integrate the multinormal distribution becomes too large and the Hohenbichler
approximation is used (Hohenbichler and Rackwitz 1983, S¢rensen 1987).

As shown in Fig. 3, the intermediate result is a series system of four components whose
performance functions are g,(X)=g(1), gAX)=g(7), g5(X)=g(5), and g4(X)=g(8). The probability
of failure of the equivalent single component with the performance function go(X)=g(9) is the
average of the Ditlevsen's bounds (1979) for this series system. The lower bound can be
written as:

e-1721- Psysap 2)(ﬂa 2+ By 2- 2P.§ysabﬁa Bp )d ﬂa d ﬂb (1 6)

P =PF )+ max[P(F.) - S(PF.NF, )00 (17)

where z is the total number of potential failure modes, F, is the failure event associated with
mode a, and F, is assumed to be the dominant failure mode. The lower bound is based on
considering only the individual mode probabilities, P(F,), and all possible combinations of
joint probabilities involving two failure modes, P (F.(M\F,). By neglecting joint probabilities

involving three (i.e., P (F.(M\F,(\F.)) or more modes, which are more difficult to calculate,

a lower bound is assured. The upper bound for the probability of the system failure can be
written as

mﬂppﬂ:ip(ﬂ)— Y max[P(F,MF.,)] (18)

a=2b<a

The upper bound is computed by selectively excluding certain two-member joint probabilities.
The joint probabilities are computed using Eq. (16). The best bounds are obtained by rank
ordering the failure events, (F,, ..., F,), from the event associated with the highest probability
of occurrence to lowest (Melchers 1987).

Since the reliability of a system is dependent on the correlation of the individual failure
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modes of the system, the equivalent correlation must be included. The equivalent correlation

coefficjents Psys-equive, that are associated with the equivalent components created in the system
analysis are a function of equivalent alpha vectors of equivalent direction cosines associated

with each random variable in the sub-system analysis, as follows:
psys —equivgp = 2 aequivak aequivbk (19)
k=1

where Clequivg is the equivalent direction cosine for equivalent component a with respect to
random variable k. Just as shown with step 6 of the iterative FORM procedure, the equivalent

direction cosines are a function of the gradients. The gradient under consideration however is
the change in the system reliability with respect to each random variable in the system

Oleguivg, = 9B VOXs) (20)

e (3(By) Y
E(aa»]

are computed by using the direction cosines associated with each

9IPBy)
o(X;)
component ¢, in a system to individually assess the effect of each random variable on the
reliability of the system. The sensitivity of the system reliability with respect to each random
variable becomes the equivalent direction cosine for that random variable. Consider random
variable X, for a series or parallel systems with z components. The reliability index associated
with an individual component f3, is varied by a small amount (an arbitrary small constant y

The gradients

multiplied the direction cosine ;) to create f3,, as follows:

Buc = B + W)
B = ﬁb_"': w(0%)

By = B + wa2) Q1)

Using these altered reliability indices and the original system correlation matrix p,,, the
revised system reliability index for the series or parallel system ﬂmm!k) with respect to the
random variable X, is computed. The system gradient with respect to X, is computed as

a(ﬁsys) - ﬁsys,,gw Ky ﬂsys
AR @2

This process is completed with respect to the rest of the random variables in the system
from which the remainder of the system gradients are computed. Eq. (20) uses these gradients
to create the equivalent alpha vectors and Eq. (19) computes the equivalent correlation
coefficients.

The flowchart of the computer program RELSYS is shown in Fig. 5. For additional
information the reader is referred to Estes and Frangopol (1997).
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Read input data
(main program)

call relsys

read correlation matrix 4]
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Fig. 5 Flow chart for the program RELSYS
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no parallel system |  system correlation matrix
(parallel) (corlcoeff2)
yesl series system (series)
system correlation matrix
(corlcoeff)
!
rank order components bivariate = .

{corlcoeff) normal ’ Hohenbichler

] distribution approximation
joint probabilities (bivar) (hoben)
(jointevntbivar)
i
Ditlevsen bounds

(bimodal)
]

P and B P.and §

for series system for parallel system
I !
equivalent alpha vectors equivalent alpha vectors
(alphaequiv) (alphaequiv)
! i
update direction cosine matrix update direction cosine matrix
with new equivalent member with new equivalent member
T 3 ii ]
vasys and Bsys —1

Fig. 5 Part 5 of 5

5. System reliability example

Consider the general series-parallel system shown in Fig. 6. It contains three components 1,
2, and 3 represented by the limit state equations g(1), g(2), and g(3), as follows:

g(1)=2X2 —2X,=0
g2)=X,-X,=0
g(3)=15X,+0.5X2 - X,=0 (23)

The reliability associated with the component 1 was computed earlier: f,=1.2317. The
general system is a parallel subsystem of components 1 and 3 in series with component 1, in
series with a parallel combination of components 1, 2, and 3. The parameters of random
variables X;, X,, and X; are listed in Table 2 and the direction cosines and reliability
associated with each component are shown in Table 3.

Considering the parallel system of components 1 and 3, Eq. (13) uses the direction cosines
to compute the system correlation coefficient p,, ,=0.9032. The bivariate normal distribution,
Eq. (16), is used to compute the reliability of the parallel system f,,=1.3902 for f,=1.2317,
B,=1.1479, and p,,, .=0.9032.
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Table 2 Random variables X;, X, and X;

Random variable Mean value Standard deviation Distribution
X, 2.0 0.2 Normal
X, 3.0 0.3 Normal
X, 1.0 0.1 Normal
Table 3 Component reliability results for g(1), g(2), and g(3)
Component B P, P=1-P; o, o, a
g(1) 1.2317 0.1090 0.8910 0.9210 -0.3896 0.0
2(2) 4.4721 0.3875E-5 1.0 0.8944 0.0 -0.4472
£(3) 1.1479 0.1255 0.8750 0.6892 -0.6892 0.2238

The effect of random variable X; on the system reliability is considered first. Setting y=0.001,
the adjusted component reliabilities based on the sensitivity of X, are:

B = B + Wai) = 1.2317 + 0.001(0.9210) = 1.2326

By = B + w(05) = 1.1479 + 0.001(0.6892) = 1.1485

(24)
Solving the bivariate normal distribution where B,,=1.2326, B;,=1.1485 and pbym,3]=0.9033
yields ﬂmm(l)=1.3911. Table 4 shows the results for 3, B, and S,

newgpy 10T Tandom variables
X, and X,
The gradients of the system reliability with respect to each random variable are:

3Boe) _ Bosyesiy~ B

= =0.8344
X 1) 14
W) __ 5286
%(()[(3 2))
———= =0.0989 25
axs) )
Using Eq. (20), the equivalent direction cosines ¢, , which make up the equivalent alpha
vector for equivalent component 4 are
_ 0.8344 _0.8344
aequiv41 -

= =(.8405
V(0.8344) + (- 0.5286) + (0.0989)°  0.9927

Table 4 Adjusted system reliabilities for two-member parallel system based

on the sensitivities with
respect to random variables X, X,, and X;
Random Component 1 Component 3 System
Variable oy B oy Bsi Boysuenciy
X, 0.9210 1.2326 0.6892 1.1485 1.3911
X, -0.3896 1.2313 -0.6892 1.1472 1.3897
X, 0.0 1.2317 0.2238 1.1481 1.3903
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—-0.5286

O = = 05325
a2 0 9027
0.0989
00989 6996 26
Fequivas = "0°9927 (26)

This equivalent alpha vector can be used to compute the equivalent correlation coefficients
between component 4 and any of the other component in the system. The reliabilities of the
two components 1, 3,=1.2317, and 3, B,=1.1479, are relatively close and each have relatively
equal contributions to the reliability of the system. The equivalent direction cosines for each
random variable in this case are close to the average of the individual direction cosines for
each component.

The parallel system consisting of components 1, 2, and 3 is reduced to equivalent
component 5 in a similar manner. Eq. (13) provides the system correlation coefficients p,,, =
0.8238, p,,,,,=0.9032, p,,,.=0.5163 from which the system correlation matrix p,, is created.
The reliability of the parallel system f,=4.488 is computed from the trivariate normal
distribution, Eq. (14), using p,, and B=(B,, B, B;)'=(1.2317, 4.4721, 1.1479)". Table 5 shows
the adjusted reliabilities of the components based on the sensitivities of the random variables
and the resulting equivalent alpha vector for the three-member parallel system.

In this three-member system, component 2 has a much higher reliability than the other two
members and has the dominant effect on the reliability of the system. The equivalent direction
cosines are likewise dominated by the component 2.

The system has been reduced to an equivalent three-member series system of components 1,
4, and 5 (see Fig. 6). The reliabilities and direction cosines for these three components are
shown in Table 6. The direction cosines are used to compute the system correlation
coefficients using Eq. (13). The component reliabilities and correlation coefficients are
substituted into the bivariate normal distribution integral, Eq. (16), to compute all two-event
joint probabilities. The upper and lower bimodal bounds are computed using Egs. (18) and
(17), respectively. For the series system of components 1, 4, and 5, the Ditlevsen's bounds
were P;  =0.11281 and P, =0.11281.

Using the average of the bi-modal bounds, the reliability index of the single equivalent
component 6 and thus the reliability of the system is f3,,=1.2119. The equivalent alpha vector
could be computed in the same manner based on the contribution of the random variables to
the system reliability, but there is no need since the solution is complete. RELSYS uses this
method to break any system which can be modeled as a series-parallel combination of the
individual components into successively smaller equivalent systems, until only a single
equivalent component is remaining.

Table 5 Adjusted system reliabilities for three-member parallel system based on the sensitivities of the
random variables X, X,, and X,

Component 1 Component 2  Component 3 System

Random Bos)

variable ﬁli ﬂZi ﬁ3i ﬂsysn ewli) ﬂsys —3(7.1)_ aequivSi
X 1.2326 4.4730 1.1485 4.4891 4.4882 0.8885 0.9020
X, 1.2313 4.4721 1.1472 44882  4.4882 -0.0174  -0.0177

X, 1.2317 4.4717 1.1480 44878  4.4882  -0.4248 -0.4313
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Fig. 6 Reduction for a series-parallel system to equivalent single component: Example problem

Table 6 Results for components 1, 4, and 5

Component B P, P=1-P; o o, o,
1 1.2317 0.1090 0.8910 0.9210 -0.3896 0.0
4 1.3902 0.0823 0.9177 0.8405 -0.5325 -0.0996
5 4.4882 0.3598E-05 1.0 0.9020 -0.0177 -0.4313

The approximate system FORM approach described herein is very effective in many cases
and provides good results with minimum computational effort. Until such methods were
developed, the most popular estimation method for such analysis was Monte Carlo simulation
which has some serious limitations, particularly for problems that require millions and
sometimes billions of simulations to obtain a good solution. However, powerful adaptive
importance sampling procedures significantly reduces the number of samples needed in a
Monte Carlo approach and has successfully been used for system problems (e.g., Mori and
Ellingwood 1993, Enright and Frangopol 1998a, b).

6. Strengths and limitations of RELSYS

RELSYS has the ability to compute the system reliability of any structure which can be
modeled as a combination of series and parallel systems, regardless of the complexity. It is
much faster than Monte Carlo simulation and gives reasonable and conservative results for
most situations. RELSYS produces highly accurate results for all parallel systems with five or
fewer members. The divergence of the Ditlevsen's bounds produced the largest errors when
the reliabilities of components in a series system were all equal, but even the worst case
produced answers that were within 10% of the Monte Carlo simulation solution (Estes 1997).
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In general, RELSYS provides an excellent approximation for most problems with relatively
little computational effort.

There are certain limitations to this approach. The FORM methods are approximations and
have errors associated with them, especially with problems that are highly non-linear.
Sometimes a local minimum is identified by the optimization process and the global
minimum distance to the failure surface is missed. This causes the reliability to be over-
estimated. This FORM approach uses only the first and second moment of random variables
and, therefore, only the mean and standard deviation are considered. Other descriptors of
random variables such as skewness are ignored. Creating an equivalent normal distribution
from a non-normal distribution can generate errors, especially when that assumption is carried
through the entire system analysis.

There is error associated with the bimodal bounds and the numerical integration of the
multi-normal integral, especially when there is very high correlation between the components.
In fact, any correlation higher than 0.99 is reduced to p,,,=0.99 which creates an additional
minor error - especially for those failure modes which are perfectly correlated. It has been
argued that a joint S-point is a more accurate measure of the reliability of a parallel system
than the multi-normal integral solution (Enevoldsen 1991, Enevoldsen and S¢rensen 1990).

There is a potential problem with failure surfaces that are symmetrical or otherwise have
multiple points that have the same minimum distance from the origin to the failure surface.
The 8 value would be the same for any of these points but the direction cosines could be
very different which may have a profound effect on the system reliability.

7. Highway bridge application

Estes (1997) used this approach and the RELSYS program to develop an optimum repair
strategy for the existing Colorado State Highway Bridge E-17-AH located in the metro
Denver area and shown in Fig. 7. The series-parallel model for the bridge system is shown in
Fig. 8 where the performance functions g(1) through g(16) represent the various failure modes
of the bridge to include moment failure of the deck, shear and moment failure in all of the
girders, and various failure modes in the pier cap, pier columns, and column footings. The

east

CB&Q RR spur

Pier #2 Pier #3
Fig. 7 Profile of Colorado State highway bridge E-17-AH
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Fig. 8 Series-parallel model for bridge E-17-AH: deck, superstructure, and substructure

bridge system was modeled as a combination of the deck, superstructure, and substructure. It
was assumed that the failure of any three adjacent girders was required for the structure to
fail. Using deterioration and live load models, the system and component reliabilities were
computed at many points in time through the life of the structure. RELSYS was able to
provide accurate results in relatively little time for this highway bridge. Some of these results
were reported by Estes and Frangopol (1997) and Frangopol and Estes (1997).
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8. Conclusions

There has been tremendous progress in applying reliability-based methods to anlyze the
safety and performance of structures. In general, structural reliability problems require a large
number of complex computations. For this reason, efficient computer programs will continue
to be needed to solve these problems. There is a constant trade-off between time consuming
computations that provide very precise solutions and simplified methods that allow one to
solve a wider variety of problems in less time, but with perhaps lower accuracy.

There remain many advantages to using a system approach to reliability-based problems
where the importance of individual components relative to the safety of the overall structure
is considered. The algorithm described herein provides quick and reasonable results for many
problems where a structure can effectively be modeled as a series-parallel system of its
components.
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