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Analysis of composite plates using
various plate theories
Part 2. Finite element model and numerical results

P. Boset and J.N. Reddyt

Department of Mechanical Engineering, Texas A&M University,
Coliege Station, TX 77843-3123, U.S.A.

Abstract. Finite element models and numerical results are presented for bending and natural
vibration using the unified third-order plate theory developed in Part 1 of this paper. The unified third-
order theory contains the classical, first-order, and other third-order plate theories as special cases.
Analytical solutions are developed using the Navier and Lévy solution procedures (see Part 1 of the
paper). Displacement finite element models of the unified third-order theory are developed herein. The
finite elelment models are based on C” interpolation of the inplane displacements and rotation functions
and C' interpolation of the transverse deflection. Numerical results of bending and natural vibration are
presented to evaluate the accuracy of various plate theories.

Key words: finite element model; anaytical solutions; bending; vibration; shear deformation; third-
order theory.

1. Introduction

In the first part of this paper we developed a unified third-order laminate plate theory that
contains classical, first order and other third order theories as special cases. Analytical
solutions using the Navier and Lévy solution procedures were presented. Though the
analytical solutions are useful for the purpose of comparison, their scope is limited to
particular geometries, loads, and boundary conditions. The Navier solutions are limited to
simply supported rectangular plates and the Lévy solutions are for rectangular plates with two
parallel edges simply supported and the other two having arbitrary combination of simply
supported, free, and clamped boundary conditions. For a more general treatment of complex
problems, one has to turn to an approximate numerical method, such as the finite element
method. In this paper, we develop finite element models of the different laminated plate
theories. Numerical results of bending and vibration for a number of problems are discussed
in this paper.
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2. Finite element models

2.1. Weak form

Consider the equilibrium equations of the general third order theory (Bose and Reddy
1997). For each of the equations, we construct weighted-integral form by multiply the entire
equation by a weight function ¢ and integrating it over the domain Q° of a typical element.
For the i-th equation, this will look like

O:J. ¢ [RHS of modified equation i] dxdy (1)
Q¢

The above statement is called the weighted-integral statement equivalent to the original
(Reddy 1993). Next Eq. (1) is integrated by parts to weaken the continuity requirement on the
approximation functions used for the unkown displacements. The weighted-integral statement
so obtained is called the weak form (see Reddy 1993, 1997).

From weak forms (not given here) of the theories considered here, it is easy to identify the
primary and secondary variables by examining the boundary terms. The specification of the
primary variables constitute the essential (or geometric) boundary conditions while the
specification of the secondary variables constitute the natural (or force) boundary conditions.
The essential and natural boundary conditions of the two theories are as follows:

General third order theory (GTOT)

essential:  specify u,, us, w, @n, O, W, Y, Y5, 6., 6, 6.
natural:  specify N, Nus, N2y My, Mg, Pu, Puc, M, S, Ss, P @
General third order theory of Reddy (GTTR)
o, aV’B C % %
on’ 0s 7 dn’ Os
natural: specify N, Nus, N, My, Mo, Q., Py, Pos, R., S, Sus 3)

essential: specify u,, us, w, ¢, s, Y,

2.2. Finite element models

In the finite element method, the primary variables are approximated as continuous
variables throughout the domain, including interelement boundaries. The list of primary
variables of the general third order theory show that all generalized displacements of the
theory, and not their derivatives, must be carried (C’-continuity) as the nodal variables to
satisfy the continuity requirement. For the special third order theory, the first derivatives of
some primary variables also need to be continuous across the elements. Hence the nodal
degrees of freedom should include these first derivatives, i.e., C' continuity of the element is
required. This is true for three of the special cases of the special third order theory, GTTR,
STTR, and CLPT. For FSDT, however, C’ continuity is enough.

The nodal degrees of freedom used for the different theories are given below.

CLPT: u,v,w,ow/dx,ow/dy, d°'w/0xdy
FSDT: u,v,w, ¢, &
STTR: u,v,w,ow/dx,ow/dy, 0w /dxdy, ¢, O,
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GTTR: u,v,w, ¢, ¢, Wi, OW/0x, Oy, dy, 3" Ys/0x 3y, , 05/dx, 9(/dy, 9°{/0x dy
GTOT u,v,w, ¢la ¢2’ WU Wb %, 91’ 929 93 (4)

All the generalized displacements in GTOT and u, v, ¢, ¢, in the other theories (also w in
GTTR) can be interpolated by the Lagrange or serendipity family of interpolation functions.
That is

A, y,0)=3 4,OY;(x,) ©)

where A can be any of the above-mentioned displacements, A; are the nodal values of A, and
v, are the interpolation functions. The value of n can be four for linear Lagrange element,
eight for eight-node serendipity element, or nine for quadratic Lagrange element.

The variables w (in the case of CLPT and STTR) and y; and { in the case of GTTR are
interpolated by Hermite cubic interpolation functions. The cross derivative term is also taken
as a nodal degree of freedom. Such an element is called a conforming element (Reddy 1993).

If A represents any of the displacements mentioned above then
Ay, )= 4,()¢ ;(x,y) (6)
j=1

A ; are the nodal values of A , and o ; are the Hermite cubic interpolation functions. For a
four-node element, there will be four degrees of freedom at each node thus making the value
of m to be 16.

For the finite element model, the weak forms are first written out explicitly in terms of the
generalized displacements. Then we substitute the interpolation functions for the generalized
displacements in the weak form. The weight functions ¢, for each of the equations are
substituted by the corresponding interpolation functions (y; or ¢ ). This leads to a set of
algebraic equations for each element, the i-th equation of which is given by

p .. .

Y KA+ MPA) =+ Q1 i=1,2,..,n(0) (7)

[
where a=1, 2, ---, p. The value of p is 11 for the general third order theory, and 7 for the
special third order theory. It represents the number of primary variables in the problem. The
element stiffness matrix JK] and element mass matrix [M] each have p X p submatrices. The
size of a submatrix [K™] or [M"ﬂ is n(a) > n(p). n(a)=n(B)=4 or 8 or 9, depending on
whether the correspondlng primary variable is interpolated by linear Lagrange functions,
serendipity functions or quadratic Lagrange functions. n(@)=n(f)=16, if the corresponding
primary variable is interpolated by Hermite cubic interpolation functions. The element force
vector {f} and the vector of secondary variables {QJ} have p subvectors, one corresponding
to each primary variable. The size of each subvector is n(a)X 1. In matrix notation, the
system of finite element equations for each element can be written as

[KU{A}+[M A} ={f }+{0"} ®)

The elements of the mass and stiffness matrices are given explicitly in Bose (1995) and
Reddy (1997).
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Table 1 Material properties

C, 23.2x10° psi
Cp 5.41x10° psi
Ch 0.25% 10" psi
Cs 12.6X10° psi
o P
Aragonite gB %222%? ig“ gz:
33 -~ )
Cu 6.19x 10° psi
Css 3.71x10° psi
Cy 6.10x 10" psi
E, 19.2x 10" psi
E, 156X 10° psi
E, 1.56x10° psi
G, 0.523x 10" psi
o Do
Graphite-epoxy gH 828%5§ }86 g:
12 : )
Vas 0.49
Vis 0.24
Vin 0.24
E, variable
E, 1.0x10° ps
E, 1.0X10° psi
) G 0510 psi
Material 3 G 0.6x 10" psi
Gy 0.6x 10" psi
Vs 0.25
Via 0.25
Via 0.25

3. Results and disscussion
3.1. Introduction

Three computer programs were written to solve a number of bending and free vibration
problems in laminated plates. The first program was for finding the solution by Navier's
method, the second for finding the solution by Lévy's method, and the third was a finite
element program for the analysis of a general laminated composite plate problem for arbitrary
loadings, geometries, and boundary conditions.

3.1.1. Material properties

Three different materials were used for the numerical examples. Their properties are listed
in Table 1. The first material is Aragonite. Exact solutions for a number of cases were given
for this material by Srinivas et al. (1966, 1970, 1973). Results obtained from the different
theories have been compared with these exact solutions. The second material is graphite/
epoxy. The majority of numerical results given in this paper are for this material. Noor (1989)
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Fig. 1 Boundary conditions for Lévy solution

gave exact solutions to free vibration problems for a high modulus composite, which we shall
call Material 3. We compare results of free vibration from the different theories with the exact
solutions given by Noor.

3.1.2. Analytical solutions

The theoretical basis for The Navier and Lévy solutions have been explained in Bose (1995)
and Reddy (1997). In both these methods, the solutions are approximated in the form of an
infinite series which is truncated after a few terms. For the Navier method, m=n=25 gives
sufficiently accurate results. In the Lévy method, the convergence is extremely fast as
mentioned in the concluding part of Part 1. Taking only the first four terms gives very good
results in all the cases. For problems which have been solved by the Navier method, all four
sides of the plate are simply-supported, and the remaining two edges can have any
combination of free, clamped, or simply-supported boundary conditions. The different sets of
boundary conditions for which results have been obtained are shown in Fig. 1. For example,
the acronym SSCF refers to a plate which is simply-supported y=0 and y=b, clamped at
x=—a/2, and free at x=+a/2. A total of six such boundary conditions have been investigated.

3.1.3. Finite element solutions

The different boundary conditions used, including the symmetry boundary conditions, on
the primary variables (PV's) are shown in tabular form for the different theories in Tables
2-6. Symm_X refers to symmetry boundary conditions along line parallel to the x-axis.
Symm_Y, refers to simply-supported boundary conditions along edges parallel to the y=axis.
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Table 2 Boundary conditions for CLPT

Specified primary variables

Symm_X v=0w/dy=0"w/oxdy=0
Symm_Y u=0w/ox=09"w/oxdy=0
Simple_X u=w=ow/dx=0
Simple_Y v=w=dw/dy=0
Clamped X All PVs specified zero
Free X No PVs specified

Table 3 Boundary conditions for FSDT

Specified primary variables

Symm_X v=¢,=0
Symm_Y u=¢,=0
Simple_X u=w=¢,=0
Simple_Y v=w=¢,=()
Clamped_X All PVs specified zero
Free_X No PVs specified

Table 4 Boundary conditions for STTR

Specified primary variables

Symm_X v=0w/dy=0"w/dxdy=,=0
Symm_Y u=0w/ox=09"w/oxoy=¢,=0
Simple_X u=w=gw/ox=¢=0
Simple_Y v=w=dw/dy=¢,=0
Clamped_X All PVs specified zero
Free X No PVs specified

Table 5 Boundary conditions for GTTR

Specified primary variables

Symm_X v=¢,=0y/dy=0" y/0xdy=0 g/ay=af Lloxdy=0
Symm_Y U=, =0y,/0x=0"y,/oxdy=0/dx=0"{/dxdy=0

Simple_X u=w=¢,=y,=0ys/dx={=0/dx=0
Simple_Y v=w=@,=y,=0y,/dy={=0{/oy=0
Clamped_X All PVs specified zero
Free X No PVs specified

Table 6 Boundary conditions for GTOT

Specified primary variables

Symm_X v=p=yr=0,=0
Symm_Y u=¢,=y,=6,=0
Simple_X u=w=¢;=y,=y,=0,=6,=0
Simple_Y v=w=@,=Ysr=y;=0,=6,=0
Clamped_X All PVs specified zero

Free_X No PVs specified
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Table 7 Transverse deflection (C,w/hg,) in an orthotropic plate under uniform
transverse load

Cywihq,
bla hia
Exact GTTR STTR FSDT CLPT
2 0.05 215420 21543.0 215442 215443 21210.6
0.10 1408.5 1408.5 1409.0 1409.0 1325.7
0.14 387.23 387.25 387.55 387.60 345.08
1 0.05 10443.0 10443.6 10446.8 10446.8 10250.7
0.10 688.57 688.60 689.54 689.57 640.67
0.14 191.07 191.09 191.61 191.64 166.77
05 005 2048.7 2048.8 2051.5 2051.5 1989.0
0.10 139.08 139.09 139.83 139.85 124.31
0.14 39.790 39.801 40.215 40.231 32.359

Table 8 Normal stress (o,/q,) in an orthotropic plate under uniform transverse load

Ux/%
bla h/a
Exact GTTR STTR FSDT CLPT
2 0.05 262.67 262.67 262.67 262.08 262.26
0.10 65.975 65.977 65.978 65.392 65.564
0.14 33.862 33.864 33.865 33.279 33.451
1 0.05 144.31 144 .31 144.32 143.91 144.39
0.10 36.021 36.024 36.034 35.623 36.098
0.14 18.346 18.348 18.358 17.948 18.417
05 005 40.657 40.658 40.708 40.525 40.860
0.10 10.025 10.026 10.074 9.893 10.215
0.14 5.0364 5.0389 5.0842 4.9052 5.2118

Table 9 Normal stress (0,/q,) in an orthotropic plate under uniform transverse load

/4,
b/a hja

Exact GTTR STTR FSDT CLPT

2 0.05 79.545 79.558 79.337 79.230 79.119
0.10 20.204 20.221 20.038 19.891 19.780

0.14 10.515 10.534 10.350 10.203 10.092

1 0.05 87.080 87.100 86.990 86.826 86.486
0.10 22.210 22.232 22.123 21.959 21.622

0.14 11.615 11.637 11.529 11.365 11.031

05 0.05 54.279 54.303 54.284 54.097 53.838
0.10 13.888 13.912 13.895 13.708 13.460
0.14 7.2794 7.3055 7.2909 7.1038 6.8671

733
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Table 10 Shear stresses (7,,/q,) in an orthotropic plate under uniform transverse load

- T.\'z/q()
bla hia
Exact GTTR STTR FSDT CLPT
2 0.05 14.048 14.149 14.187 11.411 0
0.10 6.9266 6.9852 7.0290 5.7032 0
0.14 4.8782 49368 49816 4.0716 0
1 0.05 10.873 11.009 11.048 8.8999 0
0.10 5.3411 5.3987 5.4462 4.4367 0
0.14 3.7313 3.7882 3.8383 3.1566 0
0.5 0.05 6.2434 6.3098 6.3524 5.1430 0
0.10 2.9573 3.0125 3.0676 2.5332 0
0.14 1.9987 2.0522 2.1128 1.7749 0

Symm_Y, Simple X, Clamped_Y and Free_Y have similar meaning. For bending analysis
of SSSS, SSCC, SSFF plates, quarter-plate models have been used. For bending analysis of
SSCS, SSCF, and SSSF plates, half-plate models have been used. For free vibration analysis,
half-plate models have been used for all the six sets of boundary conditions. The
discretization used for a quarter-plate model is a 8 X8 mesh of 4-node elements for CLPT,
STTR and GTTR. For FSDT and GTOT, two meshes have been used for the quarter-plate

Table 11 Transverse deflection and stresses in a three-ply laminate under uniform transverse load
(B=E./E,=10)

ﬂzEx] /Ex2 10
Source Exact GTTR STTR FSDT CLPT
—wE,, /hq, 159.38 154.38 154.53 136.23 118.82

0./q,

Top ply at top surface 65.332 65.407 65.335 65.272 66.947

Top ply at interface 48.857 50.039 49.937 52.217 53.557

Mid ply at upper interface 4.9030 5.0039 4.9937 5.2217 5.3557

Mid ply at lower interface —4.8600 -4.9740 —-4.9937 -5.2217 —5.3557

Bottom ply at interface - 48.609 —49.740 —49.937 -52.217 —53.557

Bottom ply at bottom surface - 65.083 - 65.107 —65.335 - 65.272 —66.947
O'y/CI()

Top ply at top surface 43.566 43.427 43.200 41.290 40.099

Top ply at interface 33.413 33.787 33.606 33.032 32.097

Mid ply at upper interface 3.4995 3.3787 3.3606 3.3032 3.2079

Mid ply at lower interface —-3.3669 —-3.3653 —-3.3606 -3.3032 -3.2079

Bottom ply at interface —33.756 - 33.653 —-33.606 -33.032 - 32.097

Bottom ply at bottom surface -43.098 -43.294 —43.200 —41.290 —-40.099
- sz/%

Mid ply at upper interface 3.9285 1.5274 1.5332 1.5785 0

Mid ply at midsurface 4.0959 4.2427 4.2589 1.5785 0

Mid ply at lower interface 3.5154 1.5274 1.5332 1.5785 0
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Table 12 Comparison of the lowest natural frequency of an orthotropic

square plate: a/h=10, w=wh(p/C,,)"”

m n Exact GTTR STTR FSDT CLPT
1 1 0.0474 0.0474 0.0474 0.0474 0.0493
1 2 0.1033 0.1033 0.1032 0.1032 0.1098
2 1 0.1188 0.1188 0.1188 0.1187 0.1327
2 2 0.1694 0.1694 0.1693 0.1692 0.1924
1 3 0.1888 0.1888 0.1884 0.1884 0.2070
3 1 0.2180 0.2181 0.2180 0.2178 0.2671
2 3 0.2475 0.2476 0.2471 0.2469 0.2879
3 2 0.2624 0.2625 0.2623 0.2619 0.3248
1 4 0.2969 0.2969 0.2960 0.2959 0.3371
4 1 0.3319 0.3320 0.3320 0.3311 0.4471
3 3 0.3320 0.3321 0.3315 0.3310 0.4172
2 4 0.3476 0.3476 0.3466 0.3463 0.4152
4 2 0.3070 0.3708 0.3706 0.3696 0.5018

Table 13 Comparison of the second lowest natural frequenc/y
of an orthotropic square plate: a/h=10, w=wh(p/C,,)""

m n Exact GTTR STTR FSDT
1 1 1.3077 1.3085 1.3086 1.3159
1 2 1.3331 1.3339 1.3339 1.3410
2 1 1.4205 14213 1.4215 1.4285
2 2 1.4316 1.4324 1.4323 1.4393
1 3 1.3765 1.3773 1.3772 1.3841
3 1 1.5777 1.5786 1.5788 1.5857
2 3 1.4596 1.4604 1.4603 1.4671
3 2 1.5651 1.5659 1.5657 1.5727
1 4 1.4372 1.4379 1.4379 1.4445
4 1 1.7179 1.7187 1.7186 1.7265
3 3 1.5737 1.5745 1.5744 1.5812
2 4 1.5068 1.5076 1.5076 1.5142
4 2 1.6940 1.6948 1.6947 1.7022

735

model; one a 8X8 mesh of linear Lagrange elements, and the other a 4X4 mesh of
quadratic Lagrange clements (referred to in the tables as FEM_L and FEM_Q respectively).
For half-plate models, the discretizations used are a 16X 8 mesh of 4-node elements for all
the theories. Additionally, a 8 X4 mesh of 9-node quadratic Lagrange elements were used

for FSDT and GTOT.

3.2. Laminate theory solutions vs. 3-D elasticity solutions

The exact solutions of different laminate theories were compared with the 3-D elasticity
(exact) solutions given by Srinivas and Rao (1966, 1970) (Tables 7-14), and Noor (1989)
(Tables 15 and 16) for rectangular plates. In all cases, the plate is assumed to be simply -
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Table 14 Comparison of the third lowest natural frequency of
an orthotropic square plate: a/h=10, w= wh(p/C,,)"

Exact GTTR STTR FSDT

1.6530 1.6542 1.6550 1.6646
1.7160 1.7178 1.7209 1.7305
1.6805 1.6818 1.6827 1.6921
1.7509 1.7528 1.7561 1.7655
1.8115 1.8143 1.8208 1.8306
1.7334 1.7347 1.7361 1.7450
1.8523 1.8552 1.8620 1.8715
1.8195 1.8215 1.8253 1.8341
1.9306 1.9349 1.9461 1.9560
1.8548 1.8564 1.8586 1.8657
1.9289 1.9320 1.9391 1.9480
1.9749 1.9793 1.9906 2.0002
1.9447 1.9469 1.9511 1.9587

ANWRARWNDWRPD == F
N A W= B W= W =N — |

supported on all four edges.
3.2.1. Bending results

Table 7 gives the transverse deflections w at the mid-point of the plate (x/a=0.5, y/b=0.5, z/
h=0). Tables 8 and 9 give the normal stresses o, and o, respectlvely at the center of the top
surface of the plate (x/a=0.5, y/b=0.5, z/h=-0.5), Table 10 gives the shear stresses T, at the

Table 15 Effect of degree of orthotropy of individual layers on the
fundamental frequency of snmPly -supported symmetric square
laminates: a/h=5, w=10 X w(ph'/E;)

Number of E\JE;
Source
layers 3 10 20 30 40
3 Exact 2.6474 3.2841 3.8241 4.1089 4.3006

GTTR  2.6286 3.2679 3.7011 3.9456 4.1150
STTR  2.6211 3.2604 3.6940 3.9390 4.1053
FSDT  2.6258 3.2793 3.7110 3.9541 4.1158
CLPT 29198 4.1264 5.4043 6.4336 7.3196

5 Exact 2.6587 3.4089 3.9792 4.3140 4.5374
GTTR  2.6416 3.3802 3.9439 4.2809 4.5106
STIR  2.6340 3.3723 3.9365 4.2743 4.5047
FSDT  2.6337 3.3680 3.9306 4.2714 4.5068
CLPT 29198 4.1264 5.4043 6.4336 7.3196

7 Exact 2.6640 3.4432 4.0547 4.4210 4.6679
GTTR  2.6460 3.4202 4.0310 4.4008 4.6533
STTR  2.6384 3.4125 4.0240 4.3947 4.6480
FSDT  2.6376 3.4079 4.0147 4.3818 4.6315
CLPT 29198 4.1264 5.4043 6.4336 7.3190
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Table 16 Effect of degree of orthotropy of individual layers on the
fundamental frequency of siﬁmply;suppoﬁed antisymmetric square
laminates: a/h=5, w=10X w(ph'/E;)"”

Number of S E/E;
QuUICE
layers 3 10 20 30 40
2 Exact 25031 27938  3.0698 32705  3.4250

GTTR  2.4936 2.8011 3.1331 3.4060 3.6384
STTR  2.4868 2.7955 3.1284 3.4020  3.6348
FSDT  2.4834 2.7757 3.0824 3.3285 3.5333
CLPT  2.7082 3.0968 3.5422 3.9335 4.2884

4 Exact 2.6182 3.2578 3.7622 4.0660 4.2719
GTTR  2.6080 3.2863 3.8583 4.2208 4.4747
STTR  2.6003 3.2782 3.85006 4.2139 4.4686
FSDT  2.6017 3.2898 3.8754 4.2479 4.5083
CLPT  2.8676 3.8877 4.9907 5.8900 6.6690

6 Exact 2.6440 3.3657 3.9359 4.2783 4.5091
GTTR  2.6299 3.3700 3.9745 4.3483 4.6060
STTR  2.6223 3.3621 3.9672 4.3419 4.6005
FSDT  2.6228 3.3673 3.9771 4.3531 4.6106
CLPT  2.8966 4.0215 5.2234 6.1963 7.0359

10 Exact 2.6583 3.4250 4.0337 4.4011 4.6498
GTTR  2.6413 3.4128 4.0339 44140  4.6745
STTR  2.6337 3.4051 4.0270 4.4079 4.6692
FSDT  2.6335 3.4053 4.0255 4.4023 4.6577
CLPT 29115 4.0888 5.3397 6.3489 7.2184

center of an edge (x/a=0, y/b=0.5, z/h=0). For deflections, GTTR gives the best results. STTR
and FSDT values are almost the same, while CLPT values are least accurate. The error in the
values predicted by CLPT also increases as the plate thickness increases. For the normal
stresses o, and ©,, the values given by GTTR and STTR are almost the same, both being
very close to the exact value. FSDT values are slightly worse, but still quite good. For shear
stress 7,,, GTTR gives the best results, followed by STTR. FSDT values are not good, while
CLPT values are uniformly zero since it does not take into account efects of shear deformation.

In Table 11, the transverse deflection w, and stresses o,, 0, and 7,, are given for a
square three-ply laminate with the top and bottom plies being of equal thickness and made
up of identical material (h/a=0.1, h,/h=0.1, h,/h=0.8, hy/h=0.1). The modular ratio between
the middle ply and the outer plies (B=E,/E,,) is 10. The deflections and stresses are
calculated at the same points as in Tables 7-10. Additionally, the variation of the stresses
through the thickness of the plate is shown. For deflection, GTTR and STTR give the
most accurate results. For normal stresses, the values predicted by GTTR and STTR are
quie close to the exact values. For shear stress 7, while the GTTR and STTR values are
good at the mid-strface they do not compare very well with the exact solutions at the
interfaces. This is because the stress values have been evaluated from the constitutive
equations, and not from the equilibrium equations. FSDT, of course, predicts a constant
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Table 17 Center deflections w of simply-supported [0/90] antisymmetric cross-ply square laminates
under different load and boundary conditions: #/a=0.2, w=w x 10

Type of Boundary condition
solution SSSS SSCC SSFF SSCS SSCF SSSF

GTOT FEM_Q  243.655 147.232 497.658 187.363 291.309 378.458
FEM_L 241441 145.831 489.388  185.587 287.518 373,461
GTTR Exact 242360 143948 502.516  184.167 291.594  380.854

Load Source

FEM 241.683  138.282  487.221 180.770  281.506  372.645

STTR Exact 244985  143.898 504.345 185312 292214  385.189

FEM 246.618 142555 505993  185.535  292.367  384.487

UL FSDT Exact 251.648  157.041 517.696 196.610 305935 392.673

FEM_Q 251.786 157.191 517.809 196.902 306.269  392.848
FEM_L  251.774 157.213 515.218 196.891 305.502  391.586
CLPT Exact 186.061 735713 406.464 116205 206,741  303.552
FEM 185.810  73.0552  405.772  115.758  206.158  303.089

GTOT FEM_Q 42.8409 27.6154 82.6797 33.9589 50.2569  63.9855
FEM_L  42.6595 27.5168 81.6657 33.8195 49.8467 63.4303
GTTR Exact 41.7723  26.2295 824316 326589 49.7416  63.7339

FEM 42.3626  26.1251  B80.8925  32.8030 48.6096 629167

STTR Exact 4277476 2677977  83.4949  33.6698  50.4841  64.4209

FEM 431342 26.7958  83.8756 33.5496 503330 64.7923

LL FSDT Exact 44.4738 295071  86.2330 359912  53.1823  66.6447

FEM_Q 454636 305325 873179 36.8064 54.0150 67.6512
FEM_L 455128 30.5473 87.0559 ',36.8320 53.9582  67.5559
CLPT Exact 30.4292 127364  65.0200 19.4449  33.6513  48.8696
FEM 30.3186  12.6468  64.8752  19.3421  33.5469  48.7445

shear stress state through the thickness of the plate.
3.2.2. Natural vibration result

Tables 12, 13 and 14 give the natural frequencies of the first three antisymmetric modes of
free vibration of a homogeneous plate. GTTR gives the best results, followed closely by
STTR and FSDT. Tables 15 and 16 give the fundamenatal frequencies of free vibration for
symmetric and antisymmetric cross-ply plates. The plates have different number of layers, and
varying degrees of orthotropy of individual layers, ie., different values of E/E, Here E, refers
to the modulus in the longitudinal (fiber) direction, and E, refers to the modulus in the
transverse direction. In most cases, GTTR gives the most accurate results. However for N=3
in the case of symmetric plates, and N=2 in the case of antisymmetric plates, FSDT gives the
best results; CLPT consistently overpredicts the frequency values.

3.3. FEM results vs. analytical solutions
3.3.1. Static analysis

Here the finite element results are compared with the analytical solutions of laminate
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Table 18 Center deflections w of simply-supported [0/90/0] symmetric cross-ply square laminates under
different load and boundary conditions: #/a=0.2, w=w x 10

Type of Boundary condition
Load Source .

solution SSSS SSCC SSFF SSCS SSCF SSSF
UL GTOT FEM Q 185.576  126.286 981.749  153.417 358479  577.123

FEM_L  184.718 135.832 952.044 152.762 353.641 565.342
GTTR Exact 185.282 120.408  981.805 149.429  352.065 577.725

FEM 185.396  119.594  964.767  148.920  348.281  570.598
STTR Exact 188.344  120.849  997.597 150.832 356.288  586.641
FEM 188.414  119.588  996.497 149.997 354.453  585.318

FSDT Exact 182.011 126505 995718 152.194 359.601  583.509
FEM Q 182.148 126.638 995841 152330 359.742 583.641
FEM_L 182500 127.093 990.293  152.738 359.741  581.745
CLPT Exact 96.6214 224279 874983 43.6137 190336  480.104
FEM 96.6326 224389 874.994  43.6248 190.347  480.116

LL GTOT FEM_Q 349732 255374 160.186 29.8621  62.1453  96.5535
FEM_L 348992 255056 155932 29.8081 61.5151 949372
GTTR Exact 34.6047 24.2636  159.889  28.8045 60.8068  96.3339

FEM 34.8516  24.4359 157473  29.0929 60.5043  95.4652
STTR Exact 35.7848  25.0037  163.097 29.8045 62.1693  98.4478
FEM 36.2897 253514 163.469  30.1974 62.4380  98.7609

FSDT Exact 34.8615 26.0017 162.883  30.1100 62.7846  98.0323
FEM_Q 36.0259 27.1659 164.142 31.2744 63.9944 99.2413
FEM L  36.0608 272026 163.584 313098 64.0350  99.0880
CLPT Exact 17.5725 539766 139939 898087 320.882 77.8618
FEM 175800  5.44122 139973 9.01349 321435 77.8826

theories. The analytical and finite element solutions for center deflections w and normal stress
o, in [0/90] [0/90/0] square laminates are presented in Tables 17-19. The solutions are
evaluated using the different theories, under different boundary and loading conditions. The
dimensions of the laminate are taken to be 10 inch X 10 inch, and results are presented for 4/a
=0.2. The material is graphite-epoxy (see Table 1 for properties). Two different loading
conditions are considered: a uniformly distributed load (UL) over the entire plate, and a line
load (LL) along the centerline of the plate parallel to the x-axis. The magnitude of the loads
are 1000 1b/sq.in. for UL and 1000 Ib/in. for LL. The elements and discretizations used have
been explained earlier.

For both deflections and normal stresses, GTTR and GTOT give the best results followed
closely by STTR. FSDT gives good results for transverse deflections even in the case of thick
plates, but its values for normal stresses in thick plates are not very good. As is well
documented, CLPT does not give good results in the case of thick plates for either w or o,.
Due to the fine discretization employed, the finite element solutions are very close to the
analytical solutions for each theory.

Nondimensional center deflections, w, (w':lOOwh3E2/a4q0), and nondimensional center
normal stresses, G, (0,=1004°/a’q,) are plotted against different parameters like span-to-
thickness ratio (a/h), aspect ratio (b/a), and degree of orthotropy (E,/E,), for different stacking
sequences, number of layers, boundary conditions, and using the different theories. The o,
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Table 19 Center normal stresses & , for simply-supported [0/90/0] symmetric cross-ply square laminates
under different load and boundary conditions: #/a=0.2, ¢ ,=0c,/10

Boundary condition
Load Source Type. of Y
solution SSSS SSCC SSFF SSCS SSCF SSSF
UL GTOT FEM_Q 973.641 320.041 30.2642 653.548 256.610 459.610

FEM L 960459 314.217 31.6600 647.906 241.614  450.267
GTTR Exact 992.114  334.057 30.8988 639.800 308.397 278.964

FEM 982.709  327.325 19.4407 644871 274358  462.694
STTR Exact 995369  334.509 17.6550 635385  327.724  473.740
FEM 995.066 343.802 17.9696 647.690 291.056  469.563

FSDT Exact 1085.14  431.937 20.2023  733.613 262910 516.305
FEM Q 1079.65 427.733 20.2709 751.250  209.910  499.454
FEM_L 107281 424712 20.6861  750.503  200.040  493.030
CLPT Exact 1208.39  464.315 32.3017 680.166  280.892  629.531
FEM 120931  465.612  32.7585 690.654 259913 627.118

LL GTOT FEM_Q 172,668 589037 897681 117.795 33.9851  83.3899
FEM L  170.031 57.6618 9.07930 116.507 32.0467  81.5028
GTTR Exact 176.810  62.2996  6.07885 116.326  43.2240  86.1107

FEM 174.505 61.3136  6.07714 117.201 36.8403  83.7726
STIR Exact 178.970  67.9291 6.66829 118.186 43.1874  87.4451
FEM 181.575 70.8969 891552 123.380 34.8713  88.8165

FSDT Exact 195984  82.6924  7.51739 135614 322051 95.7561
FEM Q 194,187 81.5802 7.61716  138.217 243347  91.8081
FEM L  191.814 80.2266 7.53731 137.054 23.4689  90.0119
CLPT Exact 217.132 107.570  11.6526 137.876 239371 115.618
FEM 218.384  109.158  12.8193  140.920 19.7495  115.979

8.0 15.0

60+

Nondimensional center defiection

2093 50 100 150 200 %o 5.0 100 15.0 200
ah ah

Fig. 2 Nondimensional center deflection w vs Fig. 3 Nondimensional center deflection w vs

span-to-thickness ratio a/h for [0/90] span-to-thickness ratio a/h for [0/90]

square SSSS laminate using different square laminate with different boundary

theories conditions using GTTR
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modular ratio E,/E, for antisymmetric cross-
ply square SSSS laminates (a/h=5) with
different number of layers N using GTTR
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through the thickness of a [0/90/0] square
SSCC laminate using different theories

Fig. 6 Nondimensional center normal stress w vs
modular ratio E,/E, for antisymmetric cross-
ply SSSS laminates (a/h=5) with different
number of layers N using GTTR

stress has been taken to be at the center of the top layer of the laminate. In all examples, the
load is an uniformly distributed transverse load over the entire plate (UL). Unless mentioned
otherwise, the material is graphite-epoxy.

In Fig. 2, w has been plotted against the span-to-thickness ratio, a/h, for a [0/90] square
laminate with SSSS boundary condition. For CLPT w remains constant with a/h. All other
theories give very close results for w. In Figs. 3 and 4, w and G, have been plotted against
a/h for a square [0/90] laminate using GTTR for different boundary conditions. The
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laminate for different boundary conditions
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deflections are lowest for SSCC laminates, and highest for SSFF laminates. The normal
stresses are highest for SSSS laminates, and lowest for SSFF laminates.

In Figs. 5 and 6, w and G, have been plotted against the modular ratio, E,/E,, for a square
SSSS antisymmetric cross-ply laminate with a/h=5. The number of layers considered are N=2,
6 and 10. The material considered is Material 3 in Table 1. w decreases with increasing
modular ratio, and it decreases with increasing number of layers. This trend, again, was
observed for symmetric cross-ply laminates in Fig. 2. However, in this case, for an
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Table 20 Dimensionless fundamental frequencies of simply-supported antisymmetric cross-ply square
laminates under different boundary conditions: W:(wbz/h)(p/Ez)”2

No. of i Boundary condition
lavers /a Source
y SSSS SSCC SSFF SSCS SSCF SSSF
2 0.2 GTTR 9.0959 11.8688 6.1937 10.5642 7.1390 6.3710
STTR 9.0874 11.8906 6.1277 103934 6.8354 6.3876
FSDT 8.8335 10.8964 5.9518 9.8223 6.6383 6.2125
CLPT 10.7207 17.7407 7.1236 13.6273 8.0412 7.4501
0.4 GTTR 6.5792 8.1060 4.6286 7.1105 5.0883 4.7419
STTR 6.5729 7.8813 4.5655 7.1347 5.0754 4.7234
FSDT 6.1204 6.6426 4.2426 6.3267 4.7071 4.4088
CLPT 9.3590 15.2460 5.4890  11.7556 7.3849 5.7556
10 0.2 GTTR 11.6861 13.9043 8.1804 12.7862 8.9620 8.2357
STTR 11.6730  13.5673 8.1553 12,5137 8.9664 8.2877
FSDT 11.6446 12,9229 8.1385 12.1967 8.9189 8.2641
CLPT 12.1671 30.8537 114586 233477  13.6183 11.8152
0.4 GTTR 7.1302 8.3201 5.4638 7.9060 5.7058 5.1159
STTR 7.1237 8.1133 5.3268 7.5335 5.6044 5.1061
FSDT 6.9550 7.1736 5.1617 7.0083 5.4273 4.9807
CLPT 16.5306  27.0606  12.7885 18.7728  13.0223  12.1574
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Fig. 13 Nondimensional fundamental frequency w
vs span-to-thickness ratio a/h for different

layups of a square SSCS laminate using
GTTR

antisymmetric cross-ply laminate, the difference in deflections between N=2 and N=6 is quite
substantial due to the bending-stretching coupling present for the layer case. The normal
stresses increase with increase in modular ratio; they are the highest for N=2 and significantly

lower for N=6 and N=10.

In the remaining figures discussed here, the span-to-thickness ratio, a/h, is taken as S. Fig. 7
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gives the variation of o, stress through the thickness of a [0/90/0] SSCC laminate. The
stresses have been evaluated at the center of the plate (x/a=0.5, y/b=0.5). The 0 degree plies
carry the most load compared to the 90 degree ply. Fig. 8 gives the variation of o, stress
through the thickness of a [0/90/0] laminate using GTTR for different boundary conditions.
The values are highest in magnitude for SSSS and lowest for SSFF, with the other boundary
conditions falling in between.

Fig. 9 gives the variation of 7,, stress through the thickness of a [0/90/0] SSSS laminate.
The t,, stresses have been evaluated at the same location as the 7,, stresses, at (x/a=0.75, y/b=
0.75). The variation in magnitude is less in the 90 degree ply compared to the 0 degree ply.
STTR, GTTR and GTOT correctly predict the quadratic variation within each layer, whereas
FSDT gives constant values in each layer. Figs. 10 and 11 give the variation of 7, stress
through the thickness of a [0/90/0] laminate using GTTR for different boundary conditions.
Note that the scales used for 7,, are different for the two graphs. The laminates involving
free boundary conditions have much lower stress values than the rest.

3.3.2. Free vibration analysis

Results of free vibration analysis are presented in this section. The dimension of the plate
is the same as in static analysis, and the material properties are those of graphite-epoxy unless
otherwise mentioned. Table 20 gives the lowest natural frequency of vibration of
antisymmetric square plates under different boundary conditions.

In Fig. 12, the nondimensional fundamental frequency, w, (w=w(pa'/E;h’)'") is plotted
against a/h for square SSSS [0/90] laminates. Apart from CLPT, which gives consistently
higher values, all the other theories give quite close results. A plot of w versus a/h is shown in
Fig. 13 for three different layups [0], [0/90], and [0/90/0], of square SSCC laminates. The
laminate [0/90] has the lowest frequency among the three. The frequencies of [0] and [0/90/0]
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laminates are very close.

For Figs. 14 and 15, the material properties are those of Material 3 in Table 1. In Fig. 14,
w is plotted against a/h for a square [0/90/0/90] SSSS laminate for different modular ratios
E\/E,. The frequencies are lowest for F,/E,=5, and increases with increasing modular ratio.
In Fig. 15, w is plotted against E,/E, for square antisymmetric cross-ply SSSS laminates
with a/h=5 using GTTR. w reaches an upper limit with increase in the number of layers N,
and also increases with increase in modular ratio, trends which were also evident in the last
two plots.

4. Conclusions

The inability of CLPT to model thick plates is well known. Since thick plates have been
considered in most of the numerical examples, that shortcoming of CLPT is well evident. It
gives lower values for deflections, and higher values for frequencies. It gives higher values
for some stresses, and lower values for some others. FSDT gives reasonably good results for
deflections and frequencies, even for thick plates. But the error in the inplane stress values
predicted by FSDT increases as the plate gets thicker. The transverse shear stress values given
by FSDT are quite inaccurate for all thicknesses. GTTR and GTOT give the most accurate
results in almost every case. GTTR has the added advantage that it takes into account the
zero transverse shear stress conditions at the top and bottom of the plate. Overall, the STTR
values are always very close to those predicted by GTTR and GTOT. Considering the fact
that getting solutions using STTR requires less computational effort than doing the same
using GTTR and GTOT, STTR seems to possess the optimal performance among the ESL
theories considered in this study.
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