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Thermal postbuckling of imperfect Reissner-
Mindlin plates with two free side edges and
resting on elastic foundations

Hui-Shen Shent

Department of Civil Engineering, Shanghai Jiao Tong University, Shanghai 200030, China

Abstract. A thermal postbuckling analysis is presented for a moderately thick rectangular plate
subjected to uniform or nonuniform tent-like temperature loading and resting on an elastic foundation.
The plate is assumed to be simply supported on its two opposite edges and the two side edges remain
free. The initial geometrical imperfection of the plate is taken into account. The formulation are based
on the Reissner-Mindlin plate theory considering the first order shear deformation effect, and including
plate-foundation interaction and thermal effects. The analysis uses a mixed Galerkin-perturbation
technique to determine the thermal buckling loads and postbuckling equilibrium paths. Numerical
cxamples are presented that relate to the performances of perfect and imperfect, moderately thick plates
resting on Pasternak-type or softening nonlinear elastic foundations from which results for Winkler
elastic foundations follow as a limiting case. Typical results are presented in dimensionless graphical
form.

Key words: structural stability; thermal postbuckling; moderately thick plate; elastic foundation;
Galerkin-perturbation method.

1. Introduction

In the thermal analysis of concrete pavements of roads and airfields, the problem is usually
simplified and analyzed as moderately thick rectangular plates supported by an elastic
foundation. These plates may have significant and unavoidable initial geometrical
imperfections and are assumed to be simply supported on its two opposite edges and the two
side edges remain free (see Harik er al. 1994). Due to boundary constraints, varying
temperature environments typically induce stress, with ensuing buckling. Calculations of
buckling behavior of such plates resting on elastic foundations are difficult problems and the
difficulties increase when taking into account the large deflections of the plate.

Although a limited number of publications have appeared in the literature on the thermal
buckling of thick plates subjected to temperature distribution, investigation of the thermal
postbuckling response of thick plates is very limited. Thermal buckling loads for initially
stressed transversely isotropic and antisymmetrically cross-ply laminated thick plates were
evaluated using the Galerkin method by Chen et al. (1982) and by Yang and Shieh (1988).
Thermal buckling analyses of composite laminated thick plates subjected to uniform or
nonuniform temperature loading have been made by Tauchert (1987), Sun and Hsu (1990) and
Chen et al. (1991).
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Noor and Peters (1992, 1994) and Noor et al. (1993) calculated buckling loads and
postbuckling load-deflection curves of perfect, symmetrically laminated plates subjected to
combined axial load and a uniform temperature distribution. Librescu and Souza (1993)
analyzed postbuckling of an imperfect, shear-deformable, transversely isotropic plate under
combined thermal and compressive edge loading. Shen and Zhu (1995) analyzed the thermal
postbuckling of perfect and imperfect, moderately thick plates subjected to uniform or
nonuniform tent-like temperature distribution using the deflection-type perturbation technique.

For elastic foundations, Raju and Rao (1988) calculated the thermal postbuckling response
of a thin isotropic square plate resting on a Winkler elastic foundation by the finite element
method. Dumir (1988) analyzed the thermal postbuckling of a thin isotropic rectangular plate
resting on a Pasternak-type elastic foundation using the Galerkin method, but his numerical
results were only for Winkler elastic foundation case. Recently, Shen et al. (1966) and Shen
(19964, b) analyzed the postbuckling of perfect and imperfect, thin and thick plates subjected
to combined uniaxial compression and a uniform temperature distribution and resting on
Pasternak-type or softening nonlinear elastic founcations, from which results for Winkler
elastic foundations follow as a limiting case.

Almost all of the investigations mentioned above are concerned with simply supported
plates. Cui and Dowell (1983) considered the compressive postbuckling of perfect, orthotropic
plates with two free side edges, but the analysis was limited to the thin plate. To the author's
knowledge, there are no research works dealing with the thermal postbuckling of moderately
thick plates with two free side edges subjected to nonuniform temperature loading and resting
on elastic foundations, specially for imperfect ones.

Therefore, the present work focuses attention on the thermal postbuckling of moderately
thick plates with two free side edges subjected to uniform or nonuniform tent-like temperature
loading and resting on elastic foundations. Two types of foundation model are considered, i.e.,
Pasternak-type elastic foundation and softening nonlinear elastic foundation. The initial
geometrical imperfection of the plate is taken into account. The material properties are
assumed to be independent of temperature. The formulations are based on the Reissner-
Mindlin plate theory considering the first order shear deformation effect, and including plate-
foundation interaction and thermal effects. The analysis uses a mixed Galerkin-perturbation
technique to determine the thermal buckling loads and postbuckling equilibrium paths.

2. Analytical formulation

Consider a moderately thick rectangular plate of length a, width b and thickness ¢ simply
supported on its two opposite edges and the two side edges remain free. The plate is subjected
to thermal loading and rests on an elastic foundation. The foundation is assumed to be an
attached foundation, that means no part of the plate lifts off the foundation in the postbuckled
regime._The load-displacement relationship of the foundation is assumed to be p=K,W-K,
V*W - KW, where p is the force per unit area, V* is the Laplace operator in X and Y, and K,
K, and K, are the Winkler, Pasternak and softening nonlinear elastic_foundation stiffnesses,
respectively. If K;=0, gives a Pasternak-type elastic foundation, and if K,=0 gives a softening
nonlinear elastic foundation, as used for imperfect columns by Amazigo et al. (1970). Let U,
V and W be the plate displacements parallel to a right-hand set of axes (X, Y, Z), where X is
longitudinal and Z is perpendicular to the plate. ‘¥, and ¥, are the mid-plane rotations of the
normals about the Y and X axes, respectively. Denoting the initial deflection by W (X, Y), let
W(X, Y) be the additional deflection, and F(X, Y) be the stress function for the stress resultants,
and denoting differentiation by a comma, so that N=F,, N=F, and N.=-F .
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From the Reissner-Mindlin plate theory considering the first order shear deformation effect,
including plate-foundation interaction and thermal effects, the governing differential equations
of such plates are

DV'W +V’MT = [1 - K?Gt V2][L (W+W ,F)—(K,W -K,V*W -K,W")] 1)
V'F +(1—V)V2NT=—%EtL(W+2W*,W) @)
where
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in which D is flexural rigidity and D=E¢’/12(1— v?). E is Young's modulus, G is the in-plane
shear modulus and v is Poisson's ratio. Also x” is the shear factor which accounts the non-
uniformlz/ of the shear strain distribution through the plate thickness, and for Reissner plate
theory k°=5/6 while for Mindlin plate theory x’=m"/12.

The nonuniform tent-like temperature rise is

T,+2T,Y/b 0<Y<b/2

TX.Y,Z)=\ 7,427, (1-Y/b) b/2<Y <b (3)

where T, is the uniform temperature rise, and 7 is the temperature gradient.
The thermal force and moment are defined by

NT, MT) = % :Zz(l,Z)T(X, Y,Z)dzZ @)

in which « is thermal expansion coefficient for a plate. Because of Egs. (3) and (4), it is
noted that the thermal moment M'=0 and V’N"=0.
The unit end-shortening relationship is
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If the plate is simply supported on its two opposite edges which is assumed to be restrained
against expansion in the X-direction, and the two side edges remain free, the boundary
conditions are
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where M, and M, are, respectively, the bending moments per unit width and per unit length of
the plate, and Q, is the transverse shear force.

Egs. (1)-(6) are the governing equations describing the required large deflection thermal
postbuckling response of the plate.

3. Analytical method and asymptotic solutions

Let ®=¥,_-F,, and A, =12(1-v’)b’ad,/n’t* (i=0 for uniform temperature distribution
and otherwise i=1) and introducing the dimensionless quantities (in which the alternative
forms k,, k, and k; are not needed until the numerical examples are considered)

x=nX/a, y=n¥b, B=ab, y=n'D/k’a’Gt, ®=da 12(1-v)]/x’t,
W, WH=(W, WH[12(1-v)]"Yt, F=F/D, Q,=Q,a[12(1-v)]"Yn’Dt,
(M, My, My)=(M., M,, My, )a?[12(1 - v?)]"7/7’°Dt,
K, k)=(a* bYK /7D, (K, k;))=(a> b)K,/nD,

K+, k)=@*, b)K/7'D, & =(A/a)12(1-vI) b/ 't (7)

enables the nonlinear Egs. (1) and (2) to be written in dimensionless form as
V'W +[1-y VK W =K, V'W - KW =B[1-yV']|L(W + W, F) (8)
V'F =— %BZL (W +2W, W) )

where
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and the unit end-shortening relationship becomes
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Note that in Eq. (10) for the uniform thermal loading case Cy,;=1.0 and A,=12(1 - v°) b*aT,/
7°t?, and for the nonuniform tent-like temperature loading case Co,=(Ty/T,+1/2) and A;=12(1 -

v)bol\/n't’.
The boundary conditions of Eq. (6) become
x =0, m,
W=W¥=F,, =M,=0 (11a)
6 =0 (11b)
y=tn?2, , )
My == VW +(1-v) 2 149V W =L (1 vy 22 - (110)
ox? 2 ox dy
My=—(1-V)B J [1+yV] W+ l(l—v) 1-(1—v)y-§2— D=0 (11d)
i ox dy 2 ox2
9 Vw_L1_y 9P _
Q, = ﬂava > (1-v) = =0 (11e)
» °F |,
jﬂ =7 & =0 (11f)

Applying Eqgs. (8)-(11), the thermal postbuckling behavior of Reissner-Mindlin plate is now
determined by a mixed Galerkin-perturbation technique (see Shen and Lin 1995). The essence
of this procedure, in the present case, is to assume that

Wy, e)=3, e'w;x,y),  Fl.y,9=Y &' f(x,y),
¢(x,y,8)=Z€j¢f(x,Y) (12)

where € is a small perturbation parameter.
From Lévy-type solutions (see Nosier and Reddy 1992), the first term of wix, y) is assumed
to have the form

wix,y)=APsinmxchy,y +A O sinmxch y,y (13)

in which m is the number of half-waves in the X-direction and
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'u.],zﬂ: m2+ (14)

where S, and Ay and Ay’ of Eq. (19) below are given in detail in the Appendix.
The initial geometrical imperfection is assumed to have a similar form to W(x, y, €), i.e.,

Wx,y, &)=uW(x,y, € (15)

where 1 is the imperfection parameter.

Substituting Eq. (12) into Egs. (8) and (9) gives a set of perturbation equations which can
be solved step by step. At each step the amplitudes in terms of wix, y), f(x, ¥) and ¢(x, y) can
be determined by the Galerkin procedure. As a result, the asymptotic solutions are obtained as

W =¢[A Vsinmxchp,y +A Dsinmxch gy |+ €7[A Osinmxch i,y +A 5
+A D sinmx ch2u, + 1)y +A ) sinmx ch(i, +24,) y +A 2 sinmx ch(2, — 1) y
+A O sinmx ch(, —24L)y +A O sinmx ch3, y +A ) sinmx ch3p, y

6
3) 3)

+A P sin3mxch i,y +A §sin3mx ch p,y +A § sin3mx chQp, + ) y

31
3)

+A D sin3mx ch(i, +21L,) y +A D sin3mx chu, — 1)y +A §

sinmxch i,y

sin3mx ch(u, —24,) y

+A @ sin3mxch3p, y +A Q sin3mxch3,y ]+ 0 (€9) (16)
2 2
F=-BY —yz— +£[-BY y? +B @ cos2mx +BPch2 i,y +b P ch2 i,y
+B P ch(u, + )y +b P ch(u, — 1)y + B2 cos2mx ch(i, + 1) y
+b? cos2mx ch(u, — )y 1+ 0 (€' 17
21

@=¢[C Vcosmxshpy +C § cosmxsh i,y ]+ [C Y cosmxsh,y +C &) cosmxsh pi, y
3) 3)

+C Q cosmx sh(2, + i)y +C ) cosmx sh(in, +2p4,) y +C 2 cosmx sh(2u, — 1) y

3
3) 3)

+C O cosmxsh(i, —24,)y +C 2 cosmxsh3p, y +C &) cosmx sh3pt, y

6
3) 3)

+C P cos3mxsh pyy +C ) cos3mxsh p,y +C 57 cos3mx sh(2p, + 1)y
+C 9 cos3mxsh(i, +24,)y + C D cos3mx sh(2p, — i)y +C ) cos3mx sh(i, —241,) y

34
+Ccos3mesh3p y +C  cos3mrsh3iny]+0 (£9) (18)

37

It is noted that Egs. (16)-(18) satisfy boundary conditions (11a) and (11f) identically. By
considering boundary conditions ﬁllc)—(lle), all coefficients in Egs. (16)-(18) are related and
can be written as functions of A}. Note that in Eqs. (16) and (18) the coefficients AS), A%,

) and C¥ are all zero for the case of Pasternak-type elastic foundation.

Next, substituting Egs. (16) and (17) into boundary condition 8,=0, the thermal postbuckling
equilibrium path can be written as

Lr:_l;f))_._ (2)Wm2+... (19)

in which W, is the dimensionless form of the maximum deflection of the plate, which is
assumed to be at the point (x, y)=(7/2m, 0).
Eq. (19) can be employed to obtain numerical results for the thermal postbuckling load-
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deflection curves of Reissner-Mindlin plates with two free side edges subjected to uniform or
nonuniform tent-like thermal loading and resting on elastic foundations. The thermal buckling
load of perfect plates can also readily be obtained numerically, by setting u=0 (or W¥/r=0),
while taking W,=0 (or W/t=0). In all cases, the minimum buckling load is determined by
considering Eq. (19) for various values of m which determine the number of half-waves in the
X-direction. From the Appendix, it can be seen that Ay is independent of the foundation
stiffness Kj;, so that the thermal buckling loads for Winkler and softening nonlinear elastic
foundations are identical. As expected, the results of the next section show that K; affects the
thermal postbuckling response of the plate, but does not affect its linear buckling load. In
contrast, K, affects both the thermal buckling load and postbuckling response of the plate.

4. Numerical results and discussion

A thermal postbuckling analysis has been presented for a Reissner-Mindlin plate subjected
to uniform or nonuniform tent-like thermal loads and resting on an elastic foundation. In the
numerical analysis, asymptotic solutions up to 3rd-order were used. A number of examples
were solved to illustrate their application to the performance of perfect and imperfect,
moderately thick square plates simply supported on its two opposite edges and the two side
edges remain free and resting on Pasternak-type or softening nonlinear elastic foundations.
Throughout these numerical illustrations v=0.3, 0=1.0%x10 °/°C and the transverse shear
correction factor was considered x’=m*/12. Typical results are presented in dimensionless
graphical form. On all figures W'/t and W/t mean the dimensionless forms of the maximum
values of, respectively, the initial and additional deflection of the plate.

Fig. 1 gives the thermal postbuckling load-deflection curves of moderately thick square
plates subjected to a uniform temperature rise and either without elastic foundations or resting
on Winkler or Pasternak-type elastic foundations. The stiffnesses are (k;, k,)=(2.0, 0.6) for the
Pasternak-type elastic foundation, (k;, k,)=(2.0, 0.0) for the Winkler elastic foundation, and (k,,
k,)=(0.0, 0.0) for the plate without any elastic foundation. It can be seen that the elastic
foundation increases the thermal buckling load and it has a significant effect on thermal
postbuckling behavior.

Fig. 2 gives the thermal postbuckling load-deflection curves of Reissner-Mindlin plates with

T‘-0.0

T b/t=10.0
B=1.0

1=(kl,ka)-(o.o,o.o)
P ) 2:(kx,sz-(2.0,0.0)
t 0.05 ~ccunmn 3’(k1'kz)'(2‘°'°'6)

oo
0.5 L, 15
Fig. 1 Thermal postbuckling load-deflection curves of Reissner-Mindlin plates on Winkler or Pasternak-

type elastic foundations or without elastic foundations
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Fig. 2 Effect of transverse shear deformations on the thermal postbuckling of Reissner-Mindlin plates; (a)
Winkler elastic foundation; (b) Pasternak-type elastic foundation

different thickness ratio b/t (=10.0, 5.0) subjected to uniform temperature loading and are
compared with those of the thin plate. The results show that the thermal buckling load of the
plate with b/t=5.0 is only about 2.9% lower than that of the thin plate in the case of Pasternak-
type elastic foundation and is only about 3.1% lower than that of the thin plate in the case of
Winkler elastic foundation, compare curves 1 and 3 in Fig. 2, so that the effect of transverse
shear deformation on the thermal buckling load of the plate with two free side edges is rather
less than that of the simply supported one (see Shen 1996a). It is found that the thermal
buckling load and postbuckling strength are decreased by decreasing the plate b/t. The thermal
postbuckling load-deflection curves of thick and thin plates differ substantially in the
Pasternak-type elastic foundation case, but have minor difference in the Winkler elastic
foundation case.

Fig. 3 shows the effect of thermal load ratio Ty7, (=0.0, 0.5, 1.0) on the thermal
postbuckling response of Reissner-Mindlin plates under nonuniform tent-like temperature

(k .k, )=(2.0,0.00 1 A b/t=10.0 s

b/t=10.0 B=1.0
L 8=1.0 i

Tk k) =(2.0,0.6) 1: T /T =0.0

2/ T { 0.00 2: T /T =0.5
°= f 0.05 -~--- 3: T,/T =1.0
N 0 0.5 1 g S
(@) (b)

Fig. 3 Effect of thermal load ratio T,/T, on the postbuckling of Reissner-Mindlin plates: (a) Winkler
elastic foundation; (b) Pasternak-type elastic foundation
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Fig. 4 Thermal postbuckling load-deflection curves  Fig. 5 Effect of transverse shear deformations
of Reissner-Mindlin plates on Winkler or on the thermal postbuckling of Reissner-
nonlinear elastic foundations Mindlin plates on nonlinear elastic
foundations

loading and resting on Winkler or Pasternak-type elastic foundations. As expected, these
results show that the thermal buckling load is decreased by increasing the thermal load ratio 7/
T, and that the thermal postbuckling equilibrium path becomes significantly lower as the
thermal load ratio T,/T, increases.

In Figs. 1 and 3, the plate thickness ratio b/t=10.0, and in Figs. 2 and 3 the Winkler and the
Pasternak-type elastic foundation stiffnesses are characterized by (k,, k,)=(2.0, 0.0) and (2.0,
0.6), respectively.

Figs. 4-6 show thermal postbuckling results analogous to the results of Figs. 1-3, but are for
the case of softening nonlinear elastic foundation. In Figs. 4-6 the nonlinear elastic foundation
stiffness is characterized by (k;,, k:)=(2.0, 0.6) or (2.0, 1.0). Note that now the thermal
postbuckling equilibrium path is unstable and imperfection sensitivity can be predicted.

Fig. 7 shows the curves of imperfection sensitivity of thermally stressed Reissner-Mindlin
plates resting on softening nonlinear elastic foundations. A" is the maximum value of A, and W/
t varies on curves such as those of Figs. 4-6, made dimensionless by dividing by the critical
value of A, for the perfect plate. These results show that the imperfection sensitivity of the

(k, k) =(2.0,0.6)
b/t=10.0
’ 8=1.0

1: To/Tl.o,o
2: T°/Tl=0.5
3: Tn/Tl'l'O

° 65 1
0 : wn

Fig. 6 Effect of thermal load ratio 7y/T; on the postbuckling of Reissner-Mindlin plates on nonlinear
elastic foundations
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Fig. 7 Comparisons of curves of imperfection sensitivity of Reissner-Mindlin plates on nonlinear elastic
foundations

plate on a nonlinear elastic foundation with (k,, k3)=(2.0, 2.0) is large and is considerably
greater than that of the plate on a nonlinear elastic foundation with (k,, k;)=(1.0, 1.0). The
results calculated show that the imperfection sensitivities are almost the same for the plate
under either uniform or nonuniform temperature loading. Also the imperfection sensitivity of
the moderately thick plate is slight greater than that of the thin plate. Note that because the
reaction force p could be negative in the large deflection range, the results presented were
only for small initial geometrical imperfections.

5. Conclusions

Thermal postbuckling of Reissner-Mindlin plates with two free side edges and resting on
elastic foundations, induced by uniform or nonuniform tent-like temperature distribution, has
been studied by a mixed Galerkin-perturbation method. The numerical examples presented
relate to the performance of perfect and imperfect, moderately thick square plates resting on
Winkler or Pasternak-type or softening nonlinear elatic foundations. They show that the
thermal postbuckling responses for Winkler, Pasternak-type and softening nonlinear elastic
foundation cases differ substantially. They also show that the characteristics of thermal
postbuckling are significantly influenced by foundation stiffness, thermal load ratio and initial
geometrical imperfection.

Unlike the plate resting on a Winkler or Pasternak-type elastic foundation, which has a
stable postbuckling equilibrium path, the Reissner-Mindlin plate resting on a softening
nonlinear elastic foundation has an unstable thermal postbuckling equilibrium configuration.
For such cases, the plate is an imperfection-sensitive structure that exhibits all of the
interesting features of such structures.
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Appendix
In Eq. (19)
A A =(S o, SPA(L+1) B2C (20)

where S, is obtained from equation
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Notations

a, b plate length and breadth

D flexural rigidity for a plate

E elastic modulus for a plate

F, F stress function and its dimensionless form

G in plane shear modulus for a plate

K., K, k, Winkler elastic foundation stiffness and its two alternative dimensionless forms

,, Ks, k»  Pasternak elastic foundation stiffness and its two alternative dimensionless forms

K, K, k,  softening nonlinear elastic foundation stiffness and its two alternative dimensionless forms
t thickness of a plate

w, W deflection of a plate and its dimensionless form

w, W geometrical imperfection of a plate and its dimensionless form

o thermal expansion coefficient for a plate

B aspect ratio of plate, =a/b

A, O end-shortening and its dimensionless form

a small perturbation parameter

shear factor for a moderately thick plate
dimensionless form of thermal stress
imperfection parameter

Poisson's ratio

rotation and its dimensionless form
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