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Abstract. In this paper, the first-order ordinary differential constitutive equations of endochronic theory
are incorporated into finite element formalism. A theoretical investigation is performed on the ratchetting
effect of a stepped beam subjected to steady tension and cyclic bending. Experimental data of lead alloy
found in literature are used for comparison. Those data reveal that the endochronic prediction yields more
adequate results than those predictions using the plasticity models with isotropic hardening or kinematic
hardening, as employed by Hardy, et al. (1985).
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1. Introduction

More thoroughly understanding the behavior of material ratchetting is essential in designing
mechanical or structural systems such as a power plant or components of nuclear reactors. Some
simple models incorporated with finite element method to analyze the complex geometry com-
ponents with complex loading conditions yield poor predictions of the material behavior when
compared with experimental findings. As is generally known, the prediction accuracy for real en-
gineering problems depends on the modelling of the components, the component materials, and
loading conditions. Owing to the rapid progress in computer technology, some realistic and com-
plex models can be implemented to satisfy an increasing demand to accurately simulate the
response of real materials.

Endochronic theory, as originally proposed by Valanis (1971), is a different approach to des-
cribe elasto-plastic behavior of history-dependent materials. The theory is based upon ir-
reversible thermodynamics and employs the concept of internal variables. The key concept of
the theory is the intrinsic time which is originally defined in terms of a total strain tensor
(Valanis 1971). Moreover, the theory was developed without any concept of yield surface. The
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definition of the intrinsic time has led to difficulties in cases where the history of deformation in-
volves unloading. This was subsequently modified by reformulating the intrinsic time in terms
of the plastic strain tensor (Valanis 1980). After its introduction, the theory has been suc-
cessfully applied in describing material responses, such as metals (Wu and Yip 1981, Valanis
and Fan 1983, Valanis and Lee 1984, Watanabe and Atluri, 1985, Fan and Peng 1991), soils
(Wu and Aboutorabi 1988, Imai and Xie 1990), concretes (Bazant and Bhat 1976, Valanis and
Read 1986), composites (Mathison, et al. 1991), and porous materials (Wu, et al. 1990). The
kernel function of the theory exhibits the weak singularity at the zero intrinsic time and is in-
tegrable in a finite domain. According to the mathematical characteristics, Murakami and Read
(1989) used a group of exponential decaying functions to form the kernel function. Thus, the
constitutive equations of the theory could then be simplified into first-order ordinary differential
constitutive equations. Moreover, they also investigated the performance of these equations with
and without Richardson extrapolation. It was shown that the extrapolation methods provide a sig-
nificant increase in computational speed for comparable accuracy.

Hyde, et al. (1985) conducted the first experiments involving a beam component of a lead al-
loy subjected to steady tension and cyclic bending in an attempt to investigate the ratchetting ef-
fect of a material. The accumulation of the strain amplitude on the top and bottom surfaces was
measured. The model, as proposed by Goodman and Goodall (1981), was incorporated into the
finite element program for simulating the beam component's ratchetting behavior. Fessler and
Hyde (1985) tested stepped beam components made of the same material under steady tension
and cyclic bending. Fig. 1 shows the geometry and dimensions of the stepped beam component.
The prismatic part (shank) is loaded in an axial direction, but there is a stress concentration and
non-uniaxial stress state in the region of the fillet (circular arc). Strains were measured in the fil-
lets at the step as well as in the shank of the stepped beam component. They discovered that the
ratchetting strains per cycle decreased during each cycle, and the steady state values were re-
lated to the load magnitudes. Later, Hardy, et al. (1985) made predictions of experimental
results tested by Fessler and Hyde (1985). In their study, the creep effect caused by the steady
tension was neglected owing to the short duration time. In addition, the elastic-perfectly plastic
model and the classical plasticity model with isotropic hardening or kinematic hardening were in-
corporated into finite element programs to describe the stepped beam's ratchetting behavior.
Their results depicted that none of those models provide accurate predictions for the beam's
ratchetting behavior.

In this paper, we incorporate the first-order ordinary differential constitutive equations into the
finite element formalism for the sake of simulating the material ratchetting behavior of a stepped
beam subjected to steady axial load and cyclic bending. Experimental data tested by Hyde, et al.
(1985) are used to compare with the endochronic simulation. A better approximation for the
uniaxial cyclic stress-strain curve and the cyclic strain-moment curves for the top and bottom of
the beam's surface is obtained when compared with the simulation used by Hyde, et al. (1985).
Moreover, experimental data tested by Fessler and Hyde (1985) are also compared with the en-
dochronic simulation. The strain variations in the shank and fillet areas for the top and bottom
of the surface of the beam are calculated. This study also included theoretical predictions ac-
cording to classical plasticity models with isotropic hardening or kinematic hardening employed
by Hardy, et al. (1985). Those results indicated that owing to the accurate description of the
material's elastic-plastic behavior, the endochronic model provides a more accurate prediction of
the material ratchetting behavior than the predictions of the two models employed the Hardy, et
al. (1985).
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2. Endochronic theory for elasto-plastic deformation

Under the condition of small deformation, the endochronic constitutive equations are ex-
pressed as follows (Valanis 1980):

P

= ZI p(z—2") a~ ——d7 1

and

ds
de =de — ——
2 U 2)
in which s and e denote the deviatoric stress and strain tensors, respectively, e ~p is the de-
viatoric plastlc strain tensor, Uy is the elastic shear modulus, p(z) is the kernel function, and z is

the intrinsic time scale. The intrinsic time measure ( is defined to be
dg= | de" | ©)
where || - || is the Euclidean norm. The relationship between intrinsic time scale and measure
is
ag
—Z=1-Ce#, C<l1
dz 4)

where C and B are material parameters. If the material is assumed to be plastically in-
compressible, it can be expressed as

in which K is the elastic bulk modulus.
The kernel function p(z) is a weakly singular function at the origin and integrable in the
domain 0<z< oo (Valanis 1980), i.e.,

p(0) = oo (6)
and

Jﬂzp(z') dZ <oo, <z <oo, (7)

Based on the above mathematical characteristics, p(z) can be approximated by a finite sum of
decaying exponential functions (Murakami and Read 1989), i.e.,

n
pz)= i Crewaz 5 p(0)= C,=large number
r=1 r=1 (88 b)

where C, and o are material parameters. By con51der1ng the kernel function in Eq. 8(a) and by
using the Leibniz's differential rule, one obtains

B ©)

and
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Lia +o,s,=C de’
dz U dz (10)
From Egs. (9) and (10), the deviatoric stress increment is determined to be
n n n
ds=3% ds, =23 C de’ =Y s, dz.
r=1 r=1 r=1 (11)

By considering the total stress o'and the total strain tensor €, Eq. (11) becomes

L n
do=3 do.=p.de+prdes [+p. 3 o (g_ %ﬂgj &
r=1 r=1 r

(12)
and
n
21,y G
r=1 1 —P1
Pr=———7F > P2=K—§P1, P3=—
o+ ) C; 2V G,
Zi rzzl (13a, b, ¢)

in which [ is the unit tensor.

3. Endochronic formulation on the finite element method for plane stress state

The endochronic constitutive equations for general loading condition are expressed from Eg.
(12) to be

{do} =[D {de}+p:{H}dz

ptp2 P2 pa 0 0 0]
’do-xx\ P> pitp, p, 0 0 O dey (Hxx\
do,, P p: pitp, 0 0 O dey, H,,
do-| | 0 0 0 le 0 0 de; | H,
doy | = , 2dey [ TP3 B, [
Zo—ﬂ 0 0 0 0 71 0 2de,, Hy,
Ox 2de, H

o o o o o P2 o
i 2 (14)

where

n
H; = 2 0, (S;)r G j=x, y, 2).
r=l (15)

Each stress component is expressed as
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dG. =(p,+pr)dex +prdey +prdes +piHxdz

doyy =pdea + (P +p2)dEy +pade. +psH,dz

dO.. =p,d&. +p.de, + (P +Pr)de: +piHzdz

doy =p.d€y +piHydz

do,. =p.,d&; +piHydz

do, =pdex +piHadz (16a, b, ¢, d, ¢, f)

In the plane stress condition, the values of do,, d0;., dOx are equal to zero. Thus,

_ —p2d€x —pdEy—piH=dz

de.
P1tD:
_ —psHy.dz
dey = D
— -piH.dz
dex == (173, b, ¢)

Substitution of Egs. (17a), 17(b) and 17(c) into Egs. (16a), (16b) and (16c) leads to

' p? p? PP
P, P2 [ [p P1+D2 J

4, = |py— —P2— lden + |py+po——21— \ds, + [pHy - LE H. iz
pi1t+D2 pP1tpP2 pPitD:

doy =p.dey +p;sHydz. (18a, b, )
The endochronic constitutive equations can be expressed in terms of matrix notation as

{do} =[D {de} + ps{H}dz

:
p? p?
+p,— - 0
PP PP P2 DD
dOx ; p de,
doy,=| p2— p+ prtp2——— 0 |4 ds,
do, I A% ) PiP2 e,
0 0 Py
2
L g B
Hxx'— p2 sz
pP1+pP2 L
D2
+pi\H, - H.(dz 19
o pi1tp2 (19
H,y

By using Eq. (19) and the principle of virtual work, an initial stress finite element computational
algorithm of the endochronic theory can be formulated. The governing equation is



332 Endochronic prediction for the mechanical ratchetting

(JIBY'ID1[B1dV){da} =-p( [BY dV){H }dz + [ [N) {dP}dV + | INT'{dT}dS (2

where [B] is the strain-displacement matrix, {da} is the displacement vector, [N] is the shape
function matrix, {dP} is the body force vector, and {dT} is the traction force vector. Eq. (20)
can be rewritten as

[K){da} = {dF }+{dF ..} 21)

and
[K]1=] [BI'[D][BlaV
{dF,} =—p([ [BY dV){H}dz
{dF.;} = [ IN] {dP}dV + [ [N]'{dT}dS (22a, b, ©)

where [K] is called the stiffness matrix, {dF,} is the plastic pseudoforce, and {dF,,} is the ext-
ernal force.

The incremental elastoplastic solution is determined by iteratively revising the system of finite
element equations by adding a vector of plastic pseudoforce. The nonlinear solution is then cal-
culated by the solution of a series of linear equations and by varying the plastic pseudoforce.
Once the difference between the calculated values of dz in Eq. (19) and Eq. (21) is less than
some defined tolerance, a new loading or unloading process is then initiated.

4. Comparison and discussion of the theoretical and experimental results

In this section, we compare theoretical results with experimental data obtained by Hyde, et al.
(1985), and Fessler and Hyde (1985). Hyde, et al. (1985) tested the beam component of a lead
alloy subjected to cyclic uniaxial loading. Meanwhile, They also conducted an experiment on
the beam component under steady axial tension and cyclic bending. Strains were measured at
the top and bottom surfaces of the beams using electrical resistance strain gages. Theoretically,
they used the plasticity model proposed by Goodman and Goodall (1981) and incorporated it
into a finite element program for simulating the beam component's ratchetting behavior. Fessler
and Hyde (1985) tested a stepped beam made of the same material subjected to steady tension
and cyclic bending. Strains were measured in the fillets at the step and in the shank of the beam
component. The geometry and dimensions of the stepped beam component is depicted in Fig. 1.
In this study, we also include the theoretical predictions obtained by using classical plasticity
theories with isotropic hardening (denoted as [H) or kinematic hardening (denoted as KH),
which were employed by Hardy, et al. (1985).

Fig. 2 displays the finite element mesh used to model one half of the stepped beam com-
ponent. The elements are 8-noded, plane stress, isoparametric elements. Fig. 3 shows the ex-
perimental stress-strain curve under a uniaxial cyclic strain-controlled test. Based on the ex-
perimental data in Fig. 3, the material parameters for the theory are determined according to the
method proposed by Fan (1983) to be: 1;=8.7x 10° MPa, K=22.7x 10° MPa, C=-0.08, $=70.0,

C,=2.65% 10" MPa, oq=4.5%10°, C,=7.85x 10° MPa, 0,=4.5x 10°, C,=2.8%x 10° MPa and ;=
9.5x10". The corresponding simulated result is also demonstrated in Fig. 3. According to this
figure, the alloy exhibits the property of cyclic softening for uniaxial cyclic loading; therefore,
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the material parameter C is found to be a negative value. Figs. 4 and 5 present the strain-mo-
ment curves at the first tensile (F7T) surface (for z/d=0.48) and first compressive (FC) surface
(for z/d=-0.48) at the shank area of the beams during the first complete cycle, respectively,
where z is the distance from beam centre-line, d is beam depth, and M, is the maximum elastic
moment, which is equal to 22.34 N-m. It is shown that the endochronic simulation yields a bett-
er prediction than the model employed by Hyde, ef al. (1985).

Next, the ratchetting effect of stepped beam component subjected to steady axial tension and
cyclic bending is discussed in the following. The loading condition is +23 N-m for the mag-
nitude of the cyclic moment and 5.38 kN for the magnitude of the axial tension. Figs. 6 and 7
depict the calculated results of the stress-strain history of the beam component during fifteen cy-
cles on the FT and FC surfaces as the shank of the beam, respectively. The ratchetting effect of
the stress-strain behavior is observed, which is accompanied by a reduction in the width of the
stress-strain loop when the number of cycles is increased. Figs. 8. and 9 present the variation of
the strains on the FT and FC surfaces at the shank of the stepped beam with each of moment
during the first three cycles, respectively. Due to the reversal of the moment produced con-
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Fig. 2 The finite element mesh.
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Fig. 3 Uniaxial stress-strain curves under cyclic Fig. 4 Variation of strain with moment for the
strain-controlled test. shank at the FT surface.

siderable reverse plastic strain at the outer surface, the reverse strains are accompanied by a re-
latively small increment of strain in each cycle. Those figures indicate that the endochronic
model yields a better prediction with the experimental data than the other-two models. Fig. 10
shows the theoretical and experimental results of the total accumulated strain vs. number of cy-
cles on the FT and FC surfaces at the shank. Also, Fig. 11 exhibits the corresponding ratchet
strain vs. number of cycles on the FT and FC surfaces at the shank. It is seen that the ratchet
strains initially reduce rapidly with the cycle number from the first cycle value. After the first
two or three cycles, the rate of reduction is relatively small. Figs. 12 and 13 present the vari-
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ation of the strains on the FT and FC surfaces at the fillet of the stepped beam with each of mo-
ment for ten moment cycles, respectively. According to those figures, the accumulated total
strains rapidly increase with the progress round the fillet towards the shank; the locations of the
maximum strain are very close to the fillet-shank transitions. A comparison with the ex-
perimental data reveals that the endochronic theory incorporated into the finite element for-
mulism in simulating behavior the beam element yields the most satisfactory result.
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5. Conclusions

In this paper, we incorporate the first-order differential constitutive equations of endochronic
theory derived by Murakami and Read (1989) into the finite element formalism. Theoretical in-
vestigations on the stepped beam components of a lead alloy subjected to steady tension and cy-
clic bending is made. The ratchetting effect in the (circular arc) fillets at the step and in the
shank of the stepped beam component are studied. Experimental data tested by Hyde, et al.
(1985) and Fessler and Hyde (1985) are used for comparison. In addition, theoretical predictions
by using the plasticity models with isotropic or kinematic hardening, as employed by Hardy, ez
al. (1985), are also included for comparison. It is shown that the endochronic prediction yields
more adequate results when compared with the experimental data and the predictions by two
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plasticity models (Hardy, et al. 1985).
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