Structural Engineering and Mechanics, Vol. 6, No. 2 (1998) 201-215 201
DOI: http://dx.doi.org/10.12989/sem.1998.6.2.201

Discontinuous deformation analysis for reinforced
concrete frames infilled with masonry walls
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Abstract. The structural behavior of reinforced concrete frame infilled with a masonry wall is in-
vestigated by the method of discontinuous deformation analysis (DDA). An interface element is de-
veloped and it is incorporated into DDA to analyze the continuous and discontinuous behavior of the
masonry structure. The numerical results are compared with previous research and possess satisfactory
agreement. Then the structural behavior and stress distribution of a reinforced concrete frame infilled with
a masonry wall subjected to a horizontal force are studied. In addition, the justification of equivalent strut
is assessed by the distribution of principal stresses. The results show that the behavior of the masonry
structure is highly influenced by the failure of mortar. On the basis of the distribution of principal stress
of the masonry wall in the reinforced concrete frame, the equivalent strut can be approximately substituted
for the masonry wall without separation and opening. However, the application of equivalent strut to the
masonry wall with separation and opening needs further study.
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1. Introduction

The reinforced concrete frames infilled with masonry walls have been widely used for building
constructions. The masonry walls are constructed with brittle materials and the failure of which is
frequently initiated from the cracking of mortar and separation of brick. Structure failure induced by
cracking and separation causes existence of discontinuous and nonlinear behavior.

Smith (1966) examined the behavior of infilled frames by the finite difference method and a-
dopted a simplified equivalent single strut model to replace the wall. The equivalent strut model
has been widely used by engineers and researchers. Liauw (1972) proposed an equivalent frame
method to analyze the infilled frames. Thiruvengadam (1985) used the finite element method,
the equivalent single strut model, and the equivalent multiple strut model to study the natural fre-
quencies of infilled frames with opening and separation of wall. Achyutha, et al. (1986) pro-
posed an iterative finite element method of analysis to simulate the elastic behavior of infilled
frames with and without opening. Ali and Page (1988) studied the stress distributions and
failure behaviors of masonry structures by the finite element method. Alternatively, Papia (1988)
proposed a coupled finite element and boundary element method to analyze the infilled frames.
The analysis was carried out by using the boundary element method for the infill and op-
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portunely divided the frame into the finite element. Dawe and Seah (1989a, b) investigated the
behavior of masonry infilled steel frames experimentally by using large-scale specimens and
scale models. In addition, they compared the experimental dynamic results with those of the
three analytical models--the single degree of freedom model, the braced frame model, and the
equivalent strut model. They pointed out that the analytical result of equivalent strut model was
found to be unsatisfactory in predicting dynamic response of masonry infilled frames. Gulkan, et
al. (1990) and Clough, et al. (1990) studied the earthquake response of masonry structures by
the method of seismic testing. Similar study was presented by Abrams and Paulson (1991). Lotfi
and Shing (1991) studied the masonry shear wall by incorporating the smeared crack models
into the method of finite element. El Haddad (1991) studied the cracking and stress redis-
tribution of infilled frames based on the finite element method and fracture mechanics tech-
niques. May and Naji (1991) developed a nonlinear finite element method to simulate the beha-
vior of steel frames infilled with concrete panels subjected to monotonic or cyclic loading.
Mehrabi (1994) evaluated the safety of existing masonry infilled reinforced concrete structures
under earthquake loadings by using the half-scale specimen experiment and finite element
method. Recently, Saneinejad and Hobbs (1995) developed an inelastic analysis and design
method for infilled steel frames subjected to in-plane forces. More recently, Haider (1996) stu-
died the in-plane cyclic response of reinforced concrete frames with unreinforced masonry infill
by the full-scale specimen experiment and the equivalent strut model.

The cracking and separation phenomena occurring in the masonry structures cause distinct
block elements. As a result, the masonry structures characterize discontinuous and nonlinear
behavior. The nature and orientation of discrete blocks play an important role in the per-
formance of masonry structures. To model the masonries as discrete blocks by the classical num-
erical methods (finite difference method, finite element method, and boundary element method)
is not an easy task and is usually very time consuming. Recently, El Shabrawi and Verdel (1995)
applied the distinct element method (DEM, Cundall 1971) to study the behavior of ancient
masonry structures under dynamic loads. The DEM has been proved to be indispensable to
many engineers in approaching rock analysis. Because fractured rock masses and masonry build-
ing are similar in nature of materials, the use of the DEM is justified. However, the DEM em-
ploys an explicit central difference time-marching scheme to integrate the equation of motion
directly (Cundall and Hart 1989). Since a central difference procedure is conditionally stable, the
time-step size must not exceed a critical value. As a result, the computation time used in DEM
is dramatically large even for a simple problem. Moreover, a mathematical damping is used in
DEM to dissipate the extra kinetic energy, and the current block kinematics in DEM can not handle
complex contact situations such as corner-corner contacts. Because of its incomplete block kinemat-
ics and mathematical damping, the explicit scheme used in DEM can not guarantee the dynamic e-
quilibrium state of a system at any time. Alternatively, Shi (1988) proposed the method of discon-
tinuous deformation analysis (DDA). DDA is an implicit method, in which displacements are the
unknowns to be solved. Shi (1988) addressed five unique features of DDA:

(1) complete block kinematics and its numerical realization;

(2) perfect first-order displacement approximation;

(3) strict postulate of equilibrium;

(4) correct energy consumption; and

(5) high computing efficiency.

The first four features make DDA a rigorous analysis for discrete blocks. This method has
been adopted and extended by some researchers (Shyu 1993, Ke 1993, Chang 1994, Lin 1995).
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This study applied DDA to investigate the structure behavior of masonry structures. The pro-
totype of DDA can study the discontinuous deformation of block system efficiently. However,
the masonry wall behaves as a continuous structure if the mortar is not cracked. An interface ele-
ment is developed and is incorporated into DDA to analyze the continuous and discontinuous
behaviors of masonry structure. The proposed numerical method is first verified by comparing
the present results with previous research. Then the structural behavior and stress distribution of
infilled frames with or without opening are fully studied. In addition, the justification of e-
quivalent strut is assessed by the distribution of principal stresses.

2. Problem formulation

In the method of discontinuous deformation analysis (DDA, Shi 1988), the variables are dis-
placements and the equilibrium equations are solved in the same way as finite element method
does. However, DDA does not imply continuity at block boundaries. The blocks are independent
and they only have connections while in contact with one another. These connections are performed
by adding springs to the contacting positions. The compatibility conditions for the block systems are
no-tension and no-penetration between any two blocks. These two constraints are inequalities in
mathematical forms. However, the blocks are in contact only along the block boundaries so these
inequalities can be transformed into a set of equalities upon which the equilibrium equations can be
set up and solved. A complete first order polynomial is chosen as the displacement function for a
two-dimensional block, and this displacement function restricts the block to constant stress.

Referring to Fig. 1, the displacements (u, v) of any point (x, y) in a representative block i (Shi
1988) are given as

Uy
Vo
{u} 10 -(y-yo) (x—x0) 0  (y=yo)/2| |rg
V=101 (x-x) 0  (y-yo) (x-x2| & (12)
&
%o
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u
{v} =[T:][D:] (1b)

where (%, y,) are the coordinates of block centroid, [T}] is the first order displacement function, [D]’
=(ty, Vo, Yo E» E5 Yo)i 1S the displacement vector of block i, (u,, v,) are the rigid body translation, r,
is the rigid body rotation, and (g, €, 7,) are the strain components in a two-dimensional geometry.
By minimizing the total potential energy, the equilibrium equations for n blocks (Shi 1988) are
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(x+u,y-:—v)

Fig. 1 Schematic configuration of a block.

where K;; is the component of stiffness matrix, K;; depends on the material modulus and inertia
effect of block i, K;; (i) depends on the contacts or bolt connection between block i and block
J» D; is the displacement vector of block i, and F; is the force vector of block i.

To analyze the continuous behavior of masonry structures, an interface element is proposed
in this study. Referring to Fig. 2, a constant stress triangular element is adopted as the interface
element. The three nodes are connected to blocks i, j, and k, respectively. The shape functions
are

l.AV1=Ll
l;/2=Lz
ll/\/3=L3=1'L1—Lz ‘ (3)

where Li (i=1, 2, 3) represent the area coordinates. The interpolations of the displacement field
and coordinates are written as
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where (v, v,) and (x, y,) are the nodal displacements and nodal coordinates, respectively. The

nodal displacements can be calculated by putting the nodal coordinates into Eq. (1). By putting
the nodal displacements in Eq. (4), the displacement field is thus obtained as follows.

W (T30 [T 06 (1P
17 (R [P i ke | 11D
T2y [T3]ys [T ]

3

(6)
[Dx]

where [T%] and [T%] represent the partitioned components of the first order displacement func-
tion [7;]. The strain components of the interface element are
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The stiffness matrix and force vector of the interface element are derived by using the principle
of minimum potential energy. The strain energy =, of element is described as
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After taking derivatives with respect to displacement variables from the strain energy 7, of the
element, the components of stiffness matrix are obtained as

k=2 s, 1= 2L ), 1=l s
k1= 2L @By o, =L@ 48,
K =LEL @y ., k1= BB
k1= L @30+ .1, 1= 2L @B+ 82 (10)

The stiffness matrix of the interface element is added to the corresponding components of global
stiffness matrix in Eq. (2) to modify the DDA method. The solution procedures of DDA are di-
vided into many steps; there are initial stresses (0,’, 0, T, ) existing in each time step. The
strain energy 7, induced by the initial stresses is

o
ﬂczjol JoliLl[gx & Yol (0 (dx dy
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Similar to the derivation of stiffness matrix, the force vector induced by the initial stresses is
derived by taking derivatives with respect to displacement variables from the strain energy 7.
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The force vector is also added to the corresponding components of global force vector Eq. (2)
to modify the DDA method. The implementation of interface element for analysis of masonry
and concrete structures is shown in Fig. 3. Referring to Fig. 3a, one can see that the brick is
modeled as a block element, and the interface element is adopted to model the mortar. On the
analysis of reinforced concrete structure, referring to Fig. 3b, the concrete is divided into block
elements and the blocks are connected by the interface element. In addition, the reinforced steel
is modeled by the interface element.

The failure of mortar is determined either by its tensile strength or shear strength. The shear
strength is characterized by the Mohr-Coulomb failure criterion.
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Fig. 2 Interface elements.
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Fig. 3 (a) Schematic configuration of element mesh of the masonry wall, (b) schematic configuration of
element mesh of the reinforced concrete structure.
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T=Ty% O tan(9) (13)

where 7, is the cohesion, 0, is the normal stress, and ¢ is the internal friction angle. On the
study of reinforced concrete structure, the structure is assumed to be plane stress. The con-
stitutive relations for the uncracked concrete in the prefracture regime are developed based on
the isotropic linearly elastic material, while the stress-strain relations of fractured concrete are de-
veloped by using the model of smeared cracking approach (Chen and Saleeb 1982). The in-
cremental stress-strain relations for the uncracked concrete are

d o, d&
do,} =[E]{ds (14)
d Yy d Yy
where
1v 0
E
[E]l= il 1 0 (15)

=910 0 a-vy2

E is Young's modulus, v is Poisson's ratio. The total change in stresses after the formation of
cracks (Chen and Saleeb 1982) is

Aoy, d & Ox ,
Ao, =[EbWIbWI'14dg p —[T-[bWIY W50 (16)
At d Yy Ty

where G,, 6,, 7, are the current stress components at the point just prior to the formation of a
crack, and

cos*(Y) cos’ (W) 100
bwl=13 sin'(y) ¢, P'(W)= sin’() [/]=1010 (17)
cos(y) sin(y) 2cos(y) sin(y) 001

in which v is the angle between the cracked direction and x-axis.

3. Results and discussion

The modified DDA method is verified first by comparing the current numerical results with
previous research. Fig. 4 shows a masonry wall constructed with 71 bricks (Ali and Page 1988).
The dimension of a brick is 4.5 inX 1.5 inX2.1 in (or 11.43 cm X 3.81 cm X 5.33 cm), and the
thickness of mortar is 0.2 in (or 0.51 cm). The tensile strength of the mortar is 42 psi (or 289.38
kN/m?), and the shear strength depends on the status of the normal stress @,

1=-0.660, +25.58 42 psi>0,>0 (18)
1=-0.870, +25.58  0>0,> — 334 psi (19)
T=-0.110,+28142 -334psi>o, (20)

or
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Fig. 4 Schematic configuration of a masonry wall (Ali and Page 1988).

7=-0.660, +0.176  0.289 N/mm’>0,>0 (21)
1=-0.870,+0.176  0>0,>-2.3 N/mm’ (22)
7=-0.110, +1.94  —2.3 N/'mm’>0, (23)

Referring to Fig. 4, the bricks of the masonry wall are modeled as block elements, while the in-
terface elements are used to model the mortar. The failure of the mortar is determined either by
its tensile strength or shear strength in Eq. (18)-(20) or Egs. (21)-(23). The block kinematics
used in DDA is adopted. The distributions of vertical normal stress o, of fifth layer and com-
parison of current result with those by Ali and Page (1988) are shown in Fig. 5. Note that the
layers are numbered from the bottom up, and the distance X is measured from the left edge. The
failure of the masonry wall predicted by this study is shown in Fig. 6. Referring to Fig. 5, one
can see that the stresses calculated by the currently modified DDA method agree well with the
experimental measured values. In addition, referring to Fig. 5, there is a sharp rise in normal
stress. This high stress state is caused by the failure of mortar (Fig. 6), and the failure of mortar
induces the discontinuous and nonlinear structure behavior.

Referring to Fig. 7, a RC beam was studied by the finite element method and the ex-
perimental method (Suidan and Schnobrich 1973). This RC beam is analyzed by the currently
modified DDA method. Half of this beam is divided into 418 blocks and the element mesh is
shown in Fig. 8. The load-deflection relation and comparison of present results with those by
Suidan and Schnobrich (1973) are shown in Fig. 9. Referring to Fig. 9, it is found that the cur-
rent results agree well with the experimental result. The discrepancy between the current result
and the experimental result increases for the RC beam with yielding of reinforced steel. This dis-
crepancy is induced by the rapid growth of depth of crack penetration and complex change of
stress after the yielding of steel. The constant stress element can not simulate the complex stress
change exactly, but it can be improved by refining the element mesh.

The proposed numerical method is thus demonstrated to be appropriate for the analysis of
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Fig. 5 Comparison of current result with previous research (Ali and Page 1988): Distribution of vertical
normal stress 6, (The distance X is measured from the left edge).
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Fig. 9 Comparison of current result with previous research (Suidan and Schnobrich 1973): Load-deflec-
tion relation of a RC beam.
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Fig. 10 Layout of the infilled frames.

masonry and reinforced concrete structures. Then the structural behavior of reinforced concrete
frame infilled with masonry wall subjected to horizontal force is studied. Both the infilled
frames with or without opening are 1nvest1gated Fig. 10 shows the layout of the infilled frame.
The compressive strength of concrete f/ is 210 kg/cm the modulus of rupture f; 1s 28.98 kg/
cm’, and the yield stress of steel f, is 2800 kg/cm’. The size of the brick is 21 cm X5 cm X 10
cm, and the thickness of mortar is 1.5 cm. The Young's modulus of brick and mortar are 2.13 X
10° kg/em’, and 1.65% 10° kg/em®, respectively. The Poisson's ratio of brick and mortar are
0.165 and 0.17. The tensile resistance of brick-mortar interface is 4.52 kg/cm’, and the shear
resistance is
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T=1,—otan(¢,) 4.52 kg/em’>0>0 (24)
T=T—otan(¢,) 0<0 (25)

where 7,=9.28 kg/cm’ is cohesion, ¢,=66.13° and ¢,=45.29° are the internal frictional angles.

On the analysis of infilled frame, each brick is represented by a block and the reinforced con-
crete frame is divided into blocks. The adjacent blocks are connected by the interface elements
and their separation is determined by the failure analysis. The equivalent diagonal strut (Smith
1966) is investigated by matching the principal direction and the effective region of the e-
quivalent strut defined by the following formulas (Smith 1966).

4/ 4E I.h
n e
*7 2 N E,.tsin20 (26)
4 4E I,h '
=n\/————f : 27
% Eot sin20 @7

where o, and oy are the contacted lengths of the equivalent strut to the column and beam,
respectively; E,, and E; represent the elastic moduli of the masonry wall and frame material; ¢, A,
and L are the thickness, height, and length of the infill wall; /, and I, are the moments of inertia
of the column and the beam of the frame; and @=tan™ (h/L).

The element mesh of infilled frames without opening of masonry wall is shown in Fig. 11.
Fig. 12 shows the distribution of principal stress of this frames if the cracking and separation
phenomena are neglected. Referring to Fig. 12, it is found that the principal direction is uniform,
and the effective region of the equivalent strut approximately matches the principal direction.
The application of the equivalent strut is justified. However, the principal direction of masonry
wall is no longer uniform if the cracking and separation of bricks are considered (Fig. 13). Ref-
erring to Fig. 13, it is found that the masonry wall is fractured around the upper region and the
compressive principal direction tends to be a horizontal one. The equivalent struts seem inap-
plicable for masonry wall with cracking and separation. Similar study on the stress distribution
of masonry wall with opening is shown in Figs. 14-15. Fig. 14 shows the element mesh of this

Fig. 11 Element mesh of infilled frame without opening.
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Fig. 15 Principal stress distribution of masonry
wall (cracking and separation considered)
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frame, and its distribution of principal stress is shown in Fig. 15. The cracking and separation of
masonry wall are considered. It is found that the stress distribution becomes more complicated

Fig. 14 Element mesh of infilled frame with ope-
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and there is stress concentration around the corner of the opening. The cracking and separation
phenomena make the principal direction of masonry wall no longer uniform and cause multiple
regions of stress distribution. According to the principal stress distribution shown in Figs. 13 and
15, it is noted that the approximate equivalent strut (Smith 1966) sounds inapplicable for the
masonry wall with separation or opening. The equivalent multiple struts (Thiruvengadam 1985)
seem more appropriate for that type of masonry wall.

4, Conclusions

The modified DDA method is proposed to study the structural behaviors of reinforced con-
crete frames with masonry walls. An interface element is developed and it is incorporated into
DDA to analyze the continuous and discontinuous behaviors of the masonry structure. The num-
erical solutions are verified first by being compared with previous research and they possess sa-
tisfactory agreement with each other. The proposed method is demonstrated to be appropriate
for the analysis of masonry and reinforced concrete structures. Then the structural behavior and
stress distribution of a reinforced concrete frame with a masonry wall subjected to a horizontal
force are studied. The numerical results show that the behavior of the masonry structure is high-
ly influenced by the failure of mortar. On the basis of the distribution of principal stress of the
masonry wall in the reinforced concrete frame, the equivalent strut (Smith 1966) can be ap-
proximately substituted for the masonry wall without separation and opening. However, ap-
plication of the equivalent strut to the masonry wall with separation and opening needs further
study. The equivalent multiple struts (Thiruvengadam 1985) sound more appropriate for the
masonry walls with separation or opening.
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