Structural Engineering and Mechanics, Vol. 6, No. 2 (1998) 143-159 143
DOI: http://dx.doi.org/10.12989/sem.1998.6.2.143

Progressive failure of symmetric laminates under
in-plane shear : I-positive shear

S. B. Singht, Ashwini Kumarf and N. G. R. lyengar}t

Indian Institute of Technology Kanpur, Kanpur-208016, India

Abstract. The objective of this present work is to estimate the failure loads, associated maximum
transverse displacements, locations and the modes of failure, including the onset of delamination, of thin,
square symmetric laminates under the action in-plane positive (+ ve) shear load. Two progressive failure a-
nalyses, one using the Hashin criterion and the other using a Tensor polynomial criterion, are used in con-
junction with finite element method. First order shear deformation theory along with geometric non-
linearity in the von Karman sense have been employed. Variation of failure loads and failure charac-
teristics with five type of lay-ups and three types of boundary conditions has been investigated in detail. It
is observed that the maximum difference between failure loads predieted by various criteria depends
strongly on the laminate lay-up and the flexural boundary restraint. Laminates with clamped edges are
found to be more susceptible to failure due to transverse shear (ensuing from the out of plane bending)
and delamination, while those with simply supported edges undergo total collapse at a load slightly higher
than the fiber failure load. The investigation on negative (- ve) in-plane shear load is in progress and will
be communicated as part-II of the present work.

Key words: progressive failure; laminated plate; failure criteria; in-plane positive shear.

1. Introduction

There have been many investigations in literature which deal with the nonlinear/postbuckling
response in terms of the load versus lateral displacement of laminated plates. However, there are
not many studies available which deal with the failure of composite plastes subjected to in-plane
and/or transverse loadings. Early investigations related to the failure of laminated plates were dis-
cussed by Turvey (1980a, b, c, 1981, 1982, 1987) in which analytical solutions for the first-ply
failure' load are presented for both symmetric and antisymmetric laminates considering simply
supported boundary conditions and subjected to transverse loads. The finite element procedure
for the prediction of linear first-ply failure loads of composite laminates subjected to transverse
and in-plane(tensile) loading was presented by Reddy and Pandey (1987). Another study by Red-
dy & Reddy (1992) used the first order shear deformation theory in the finite element modeling
to present the linear and nonlinear failure analysis. Engelstad, et al. (1992) investigated the post-
buckling response and failure characteristics of graphite-epoxy panels with and without a cir-
cular hole, in axial compression, using a progressive damage failure mechanism in conjunction
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with a 3-D degenerated shell element. Lee and Hyer (1993) studied postbuckling failure charac-
teristics: of a square, symmetrically laminated plate with a circular hole, under uni-axial com-
pression, using the maximum stress failure criterion. Kam and Sher (1995) studied the nonlinear
behaviour and the first ply failure strength of centrally loaded laminated composite plates with
semi-clamped edges using a method developed from the von Karman-Mindlin plate theory in
conjunction with the Ritz method. Very recently. Singh, et al. (1997) have presented progressive
failure results of symmetric laminates subjected to uni-axial compression for various failure cri-
teria.

The present study is, infact, an extension of the work of Singh, et al. (1997). It deals with the
investigation of the first-ply failure and the subsequent progressive failure (till the ultimate
failure) of thin, square and symmetrically laminated composite plates with various lay-ups
(Table 1) and boundary conditions(Fig. 1) under the action of positive in-plane shear load. It is
to be noted that in-plane restraints at the edges x =0, y =0, will give rise to normal edge stresses
under in-plane shear and, therefore, results should not be compared with those for the pure shear
case. However, the results obtained for boundary conditions in Fig. 1 are validated with those of
Kosteletos (1992) based on the stress function approach. Two progressive failure procedures are
used, one with the Hashin (1980) failure® criterion and the other with the Tensor polynomial
forms of the maximum stress, maximum strain, Tsai-Hill, Hoffman and Tsai-Wu criteria, with
the primary objective to evaluate all these failure criteria. Different material property degradation
models for the failed lamina have been considered; the model for the Tensor polynomial criteria
is based on Engelstad, ef al. (1992) whereas the for the Hashin criterion is based on Tsai (1986).

2. Methodology

A special purpose computer program is developed to carry out the present study which is bas-
ed on the finite element formulation using the first order shear deformation theory with a nine
noded Lagrangian element having five degrees of freedom per node. Geometric nonlinearity bas-
ed on von Karman's assumptions (Fung 1965), which imply that derivatives of in-plane dis-
placements u and v with respect to x, y and z are small, has been incorporated. The nonlinear
algebraic equations are solved using the Newton-Raphson technique. The calculation of stresses
is done on the nodal points. Due to connectivity of a particular node to various elements, nodal
point stresses are calculated taking the average value of stresses at that node from various ele-
ments associated with that node. All the six stress components are calculated at each node point.
However, to predict the failure of a lamina only five stress components (three in-plane stress
and two transverse shear stress) are used in the selected failure criterion. To prediet the onset of
delamination, transverse stresses (two shear stress components and one normal stress component)
are used in the maximum stress failure criterion. Delamination at any interface is said have oc-
curred when any of the transverse stress components in any of the two layers adjacent to in-
terface becomes equal to or greater than its corresponding strength. The ply failure is said to
have occurred when the state of stress at any point within the lamina satisfies the selected
failure criterion. The first-ply failure refers to the situation at which one or more than one plies
fail first as the load is increased. After the first-ply failure, the progressive failure analysis is car-

" The definition of failure is stated in the methodology
* Failure criteria are presented, in brief, in the appendix for the sake of ready reference.
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Fig. 1 Details of various boundary conditions for full plate.

ried out using two progressive failure procedures described below:
2.1. Tensor polynomial progressive failure procedure

At each load step, nodal point stresses are used in the selected tensor polynomial failure cri-
terion. If failure occurs at a node point in a layer, a reduction in the lamina stiffness is in-
troduced in accordance with the mode of failure which causes the changes in the overall lam-
inated stiffness. Following failure indices are used to determine failure modes.

H1=F101+F110-12; H2=F20-2+F220-22
H,=Fyo}; Hs=Fs0}; H¢=F0f

Notations in above expressions are defined in the appendix. Failure indices (H,, H, ")
represent the weightage of various principal stress terms in the failure index (L.H.S. of the
failure criterion) of tensor polynomial failure criterion and the largest H; term is selected to
represent the dominant failure causing stress and the corresponding mode of failure. For ex-
ample, if H, is the largest then o; is the failure causing stress and the corresponding failure
mode is fiber failure. Similarly, H, corresponds to the transverse mode of failure (failure due to
in-plane normal stresses transverse to the fiber direction). H, to 7, (transverse shear) mode of
failure. Hs to 7,; (transverse shear) mode of failure and H; to 7, (in-plane shear) mode of
failure. After the identification of the mode of failure, the corresponding elastic moduli of the
failed lamina is reduced to a negligible value. The fiber mode of failure corresponds to moduli
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E,, v,,; the transverse mode of failure corresponds to E,, Vy; the transverse shear (7,;) mode of
failure corresponds to G,;; the transverse shear (7,5) mode of failure corresponds to G,; and the
in-plane shear mode of failure corresponds to G,;, An outline of the steps required is as fol-
lows:
(1) After nonlinear iterative convergence is achieved, calculate the stresses at the middle of
the each layer and at its interfaces with the adjacent layers at each of the nodal point.
(2) Transform the stresses to that in planes of the material property symmetry.
(3) Compute failure indices, H,, Hy - ’
(4) If failure occurs reduce the appropriate lamina moduli and recompute laminate stiffness
and restart nonlinear analysis at the same load step.
(5) If no failure occurs, proceed to the next load step.
(6) Final failure is said to have occurred when delamination occurs or when the plate is no
longer able to carry any further increase in load due to large transverse deflection.

2.2. Hashin progressive failure procedure

As per the Hashin criterion, failure of the lamina occurs if any of a set of four failure criteria
is satisfied (the fiber/the matrix fail in tension/compression, see appendix) at any point in a lam-
ina of the laminate and the corresponding mode of failure is also determined with the possibility
of occurrence of two modes (fiber and matrix) of failure, simultaneosly. An outline of the steps
required in this procedure is as follows:

« Steps (1) and (2) are the same as with Tensor polynomial criteria.

o If matrix failure occurs, reduce the lamina moduli as per recommendations in (Tsai 1986)
which are based on the logic that the equivalent properties of the damaged element will lie
somewhere between the properties of the original undamaged clement and a property value
of zero. Hence the properties of the equivalent damaged element are assumed to be a con-
stant multiple of the properties before degradation. Also, this scheme of stiffness reduction
results in the gradual and partial unloading of an element and allow repeated failures of the
same element (accumulation of damage in the element) until it is unloaded sufficiently (no
more failure occurs).

The stiffness reduction scheme based on the above recommendations is given below:

1. Reduce E, to 45% of its original value.

2. Reduce shear modulus to 35% of its original value.

3. Reduce major Poisson's ratio to 30% of its original value.

o If fiber failure occurs reduce E, to zero.

« Recompute the laminate stiffness and restart nonlinear analysis at the same load step.

» Steps (5) and (6) are the same as with the Tensor polynomial criteria.

A total of five symmetric lamination schemes are employed to understand the progressive
failure. The individual laminates are designated from A to E for identification. The details of the
lamination schemes are shown in Table 1. The ply and the interface numbering scheme within
the laminate is shown in Fig. 2. Properties of the material of the laminate (Reddy and Reddy,
1992) are presented in Table 2.

In the Table E,, E,, E, are the principal Young's moduli while G,, G5, G,; are the shear mo-
duli corresponding to the planes 1-2, 1-3, and 2-3 respectively and vy, Vis, Vi are the cor-
responding Poisson's ratios. In this study a full square plate of width b is used with 25 element
mesh, the details of which are shown in Fig. 3a. Three types of flexural boundary conditions,
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Table 1 Lamination schemes of symmetric laminates

Lamination
scheme

Type A B C D E

*The terms within the parenthesis are the fiber orientations of the ply-group and
digit in the subscript represents the repetition of the ply-group on one side of the
mid-plane of the laminate while s represents ths symmetry of the laminate about the
mid-plane

*(£45/0/90),,  (£45/0,),, (£45),, (£45/0),  (0/90),,

() Ply Number (1 to N)

Interface Number ( 1 to N-1)

o Mid - Plane of the Laminate

Fig. 2 Ply and interface numbering within the laminate.

Table 2 Material properties of T300/5208 (pre-peg)éB graphite-epoxy

Mechanical Strength

properties Values properties Values
E, 132.58 Gpa X, 1.515 Gpa
E, 10.8 Gpa X, 1.697 Gpa
E, 10.8 Gpa Y,=Z, 43.8 Mpa
G13=Gl3 57 Gpa YC=ZC 43.8 Mpa
V12=V13 0.24 R 676 Mpa
Vs 0.49 §=T 86.9 Mpa
@® Pre-Peg refers to the graphite fibers impregnated with epoxy resin and available in
tape form

namely BC1, BC2, BC3, have been considered; BC1- refers to a plate with all edges simply sup-
ported. BC2- refers to a plate with two logitudinal edges (y=0 and y=b) simply supported and
the other two edges clamped and BC3- refers to a plate with all edges clamped. In all the three
cases the in-plane boundary conditions (Fig. 1) are identical and the shear load is applied on all
the four edges as shown in Fig. 3b. Results for failure loads and corresponding displacements
are presented in the following nondimensionalized forms:

In-plane shear load=N,, b”/E,h’

Maximum transverse displacement=w,,,./h

where & is the total thickness of the laminate and N,, is the applied in-plane shear load per
unit length.
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Fig. 3 Finite element mesh for full plate and the sign convention for applied shear load.

3. Results and discussion
3.1. Laminates with BC1 boundary condition

Progressive failure results are presented in Tables 3a-3e. The first-ply failure loads predicted
by various failure criteria are found to differ from one another by a maximum of 8.7 percent for
laminate A, 10.5 percent for laminate B, 7.6 percent for laminate C, 11 percent for laminate D,
and 30 percent for laminate E, while the ultimate loads are found to differ by a maximum of 24.
4 percent for laminate A, 21.8 percent for laminate B, 22.4 percent for laminate C, 32.6 percent
for laminate D, 58 percent for laminate E. The first-ply failure locations and the modes of
failure predicted by various failure criteria in the case of laminate A are found to be identical
and the same holds good for laminates B, C, and D as well. However, in the case of laminate E,
the Hashin criterion and the Tensor polynomial criterion prediet different first failed ply number.
Moreover, all criteria prediet the same first failed nodal point number in all laminates. It is ob-
served that the progressive failure starts primarily due to in-plane normal stresses transverse’ to
the fiber direction in all the laminates followed by fiber failure in case of laminates A and B;
wide spread in-plane shear mode of failure in case laminate C; transverse shear mode of failure
in case of laminate D; and the in-plne shear mode of failure in case of laminate E. It is further
observed that the fiber failure occurs at a load closer to the ultimate load in all laminates except

*In table transverse mode of failure refers to the matrix failure due to in-plane normal stresses transverse to the fiber
direction



Progressive failure of symmetric laminates under in-plane shear . I-positive shear 149

Table 3a Progressive failure results of (+45/0/90),,, laminate with BC1 boundary condition

Failure First-ply ~ Ultimate Woan \& . Mode of —_—
criteria failure failure [ P ) FL FP first-ply l : 1
load load failure
Maximum 59.38 116.18 1.31 1 1 Transverse -
stress (0.0)* (0.0
Maximum 56.30 87.78 1.16 1 1 Transverse
strain (-52) (-244)
Tsai-Hill 59.38 116.18 1.31 1 1 Transverse
0.0) 0.0
Tsai-Wu 59.38 116.18 1.31 1 1 Transverse
0.0) (0.0)
Hoffman 59.38 116.18 1.31 1 1 Transverse
0.0) (0.0)
Hashin 54.21 102.84 1.04 1 1 Compressive
(=87 (—115) matrix

© Non-dimensionalized maximum transverse displacement in the plate at the first-ply failure.
t First failed layer number; I First failed nodal point number
* Percentage difference based on Tsai-Wu criterion

Table 3b Progressive failure results of (+45/0,),,, laminate with BC1 boundary condition

Failure First-ply Ult?mate Woan \& . Mode of —_—
criteria failure failure ( P ] FL FP first-ply ‘ 1
load load failure Y [h.nd
Maximum 58.82 99.40 1.30 1 1 Transverse ’—
stress (-0.73)*  (0.43) '
Maximum 55.94 79.60 1.14 1 1 Transverse
strain (=51 (-19.6) ’
Tsai-Hill 58.52 105.85 130 1 1 Transverse
(-0.73) (6.95) )
Tsai-Wu 58.95 98.97 1.33 1 1 Transverse
0.0) (0.0) :
Hoffman 58.52 98.97 1.30 1 1 Transverse
(—0.73) 0.0) )
Hashin 53.36 101.123 0.96 1 1 Compressive
(-10.5) 2.2) ’ matrix

& Non-dimensionalized maximum transverse displacement in the plate at the first-ply failure.
t First failed layer number;  First failed nodal point number
% Percentage difference based on Tsai-Wu criterion

for the laminate C in which wide spread in-plane shear modes of failure after the first-ply failure
leads to the total collapse. The On-set of delamination is not predicted in any laminate except
the laminate B in which it takes place just after the fiber failure. Average values of the first-ply
failure loads predicted by the various failure criteria are found to be 1.3 times the buckling load
for laminate A, 1.24 times for laminate B, 1.5 times for laminate C, 1.03 times for laminate D
and 1.2 times for laminate E; the corresponding values for ultimate loads are found to be 2.5
times the buckling load for laminate A, 2.1 times for laminate B, 1.9 times for laminate C, 1.64
times for laminate D and 2.7 times for laminate E. It is to be noted that the maximum strain cri-
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Table 3c Progressive failure results of (+45),,, laminate with BC1 boundary condition

Failure First-ply  Ultimate Wonan )& . Mode of —
criteria failure failure [ h ] FL FP first-ply l t
load load failure ¥ [Ld
Maximum  70.14 89.50 2.73 1 1 Transverse -
stress (3.2)* (-10.3)
Maximum 65.40 86.06 243 1 1 Transverse
strain (-38) (—-138)
Tsai-Hill 70.57 86.92 2.75 1 1 Transverse
(3.8) (-12.9)
Tsai-Wu 67.99 99.83 2.60 1 1 Transverse
0.0) (0.0)
Hoffman 70.14 86.49 2.73 1 1 Transverse
(3.1) (-13.4)
Hashin 67.13 77.45 2.54 1 1 Compressive
(-13) (—-22.4) matrix

® Non-dimensionalized maximum transverse displacement in the plate at the first-ply failure.
t First failed layer number; } First failed nodal point number
% Percentage difference based on Tsai-Wu criterion

Table 3d Progressive failure results of (3-45/0),, laminate with BC1 boundary condition

Failure First-ply  Ultimate Woan \& . Mode of —
criteria failure failure (—h—- } FL FP first-ply l T
load load failure e
Maximum 49.06 76.59 0.47 3 1 Transverse D
stress (-3.4)* 0.0)
Maximum 46.04 64.54 0.0° 3 1 Transverse
strain (-9.3) (-15.7)
Tsai-Hill 48.63 77.03 0.41 3 1 Transverse
(—-42) 0.57)
Tsai-Wu 50.78 76.59 0.71 3 1 Transverse
(0.0) (0.0)
Hoffman 49.06 77.45 0.47 3 1 Transverse
(-34)  (1.12)
Hashin 45.18 89.50 0.0° 3 1 Compressive
(-11.0) (16.9) matrix

@ Non-dimensionalized maximum transverse displacement in the plate at the first-ply failure.

T First failed layer number; § First failed nodal point number

% Percentage difference based on Tsai-Wu criterion; O First-ply failure occurs before buckling
® No transverse deflection occurs till the ultimate load is reached

terion predicts the first-ply failure load of laminate D before the buckling load and no transverse
deformation is predicted till the ultimate failure for Hashin criterion. The absolute maximum
value of transverse deflections (w,,/h) obtained for various failure criteria just before the ul-
timate load is found to be for laminate B and is equal to 4.39.

The progressive failure responses for three typical laminates are shown in Figs. 4 and 5 using
the Tsai-Wu and the Hashin criteria, respectively. In general, the responses with these two cri-
teria are quite different. A drastic difference in the response is observed in the case of cross-ply
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Table 3e Progressive failure results of (0/90),,, laminate with BC1 boundary condition

Failure F ir§t—ply Ultimate Woan & . Mode of —
criteria failure failure ( h ) FL FP! first-ply 1 1
load load failure : i
Maximum 42.17 89.07 1.03 1 1 Transverse D
stress (-10.9*  (0.0) :
Maximum 40.44 76.16 0.96 1 1 Transverse
strain (-146) (-144)
Tsai-Hill 41.74 88.21 1.01 1 1 Transverse
(-11.8) (-097)
Tsai-Wu 47.33 89.07 1.22 1 1 Transverse
(0.0) (0.0)
Hoffman 42.17 89.07 1.07 1 1 Transverse
(- 10.9) (0.0
Hashin 33.14 37.43 0.58 2 1 Compressive
(-300) (-58.0 matrix

¢ Non-dimensionalized maximum transverse displacement in the plate at the first-ply failure.
t First failed layer number; } First failed nodal point number
% Percentage difference based on Tsai-Wu criterion

laminate (E). It is worth noting that he Tsai-Wu criterion predicts a change in configuration in
case of laminates C and E before ultimate failure, whereas the same dose not hold good with
Hashin criterion. In these figures, kinks in the load-deflection curve represents the failure points
during progressive failure. The first kink refers to the first-ply failure of laminates.

3.2. (+45/0/90),, laminate with different boundary conditions

Progressive failure results of this laminate for three boundary conditions are presented in
Tables 4a-4c. First-ply failure loads predicted by various failure criteria differ from one another
by a maximum of about 8.7 percent for BC1, 10.1 percent for BC2 and 20.6 percent for BC3,
while the corresponding values for ultimate loads are found to be about 24.4 percent for BC1,

T T T T 7

(+45/-45/0/90)2s — |
(+45/-45)45 - -~

(0/90)s - - - 1

(+45/-45/0/90)2s —
(+45/-45)4s ~--
(0/90)4s - -

YRS T DAY SR TR A |

- 8r s 71  Tgsrr S emmeeemammee- q
E‘"" ab=l & bm=129 =l & 129 |
N; ey Boundary condition BC1 Boundary condition : BC1 |
:‘ 50 sS SS
Z 40t ——= P T
1 ' [l '
30 Ss [! iss Ss |t HE .
20 ---! b 20 Lot B
10 Ss 4 10 SS N
0 1 1 L 1 - g N E— 1 1 i1 o 1 1 1 i 1 A1 1 1 1 1
05 00 05 10 15 20 25 30 35 40 45 50 55 60 00 05 10 15 20 25 30 35 40 45 50 55 60
W¥max / h Wmax/ h
Fig. 4 Progressive failure response using Tsai- Fig. 5 Progressive failure response using Hashin
Wu criterion for different lay-ups with criterion for different lay-ups with BC1

BC1 boundary. boundary.
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Table 4a Progressive failure results of (£45/0/90),,, laminate with BC1 boundary condition

Failure First-ply ~ Ultimate Woan \& . Mode of —
criteria failure failure [ h j FL FP* first-ply l I
load load failure e
Maximum 59.38 116.18 1.31 1 1 Transverse D
stress 0.0)* 0.0)
Maximum 56.30 87.78 1.16 1 1 Transverse
strain (-52) (244
Tsai-Hill 59.38 116.18 1.31 1 1 Transverse
0.0) (0.0)
Tsai-Wu 59.38 116.18 1.31 1 1 Transverse
0.0 (0.0)
Hoffman 59.38 116.18 1.31 1 1 Transverse
(0.0) (0.0)
Hashin 54.21 102.84 1.04 1 1 Compressive
(-87) (—-115) matrix

@ Non-dimensionalized maximum transverse displacement in the plate at the first-ply failure.
t First failed layer number; § First failed nodal point number
% Percentage difference based on Tsai-Wu criterion

Table 4b Progressive failure results of (+45/0/90),,, laminate with BC2 boundary condition

. First-ply  Ultimate @ Mode of _
fzi‘ﬁ: failure  failure [ s ] FL'  FP*  firstply
load load failure 1 ?
Maximum 82.19 87.78 1.28 16 23 Transverse -
stress Qn* (0.0)
Maximum 78.30 80.90 1.12 16 12 Transverse
strain (2.7 (-7.9)
Tsai-Hill 80.03 86.49 1.19 16 12 Transverse
(-0.5) (- 15
Tsai-Wu 80.47 87.78 1.21 16 23 Transverse
(0.0) (0.0)
Hoffman 80.03 84.77 1.13 16 12 Transverse
(—0.5) (—3.6)
Hashin 74.01 111.88 0.84 16 12 Compressive
(-8.0) (27.5) matrix

@® Non-dimensionalized maximum transverse displacement in the plate at the first-ply failure.
t First failed layer number;  First failed nodal point number
% Percentage difference based on Tsai-Wu criterion

35.4 percent for BC2 and 84.6 percent for BC3. Such a high difference of ultimate loads for BC
3 boundary condition is attributed to the fact that for the Hashin criterion no transverse de-
flection is observed (see Fig. 7). Figs. 6 and 7 represent the progressive failure response of the
laminate using the Tsai-Wu and the Hashin criteria, respectively for different boundary con-
ditions. It is observed the there is a drastic difference in the response of laminate with clamped
boundary conditions (BC3), for two failure criteria. Moreover, it is worth poting that the Hashin
criterion predicts the first-ply failure before the buckling load is reached and no transverse de-
flection is observed until the ultimate failure for BC3 boundary condition. Average values of the
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Table 4c Progressive failure results of (+45/0/90),,, laminate with BC1 boundary condition

Failure First-ply  Ultimate Woan \& . Mode of -
criteria failure failure [ P J FL FP' first-ply
load load failure 1 T
Maximum 98.11 100.26 1.0 16 3 Transverse -
stress (1.8)* (-0.4)
Maximum 94.24 95.10 0.91 16 3 Transverse
strain (-22) (—-5.6)
Tsai-Hill 95.96 98.54 0.98 16 3 Transverse
(-0.5) (-2.1)
Tsai-Wu 96.39 100.7 1.0 16 3 Transverse
(0.0) (0.0)
Hoffman 95.96 99.40 0.98 16 3 Transverse
(-05) (-13)
Hashin 78.32 180.30 0.0° 4 1 Compressive
(- 18.8) (79.0) matrix

@ Non-dimensionalized maximum transverse displacement in the plate at the first-ply failure.

t First failed layer number; § First failed nodal point number

% Percentage difference based on Tsai-Wu criterion

O First-ply failure occurs before buckling load is reached and no transverse deflection is
observed till the ultimate load is reached

200
L E 180 4
i ] 160 J
= ] - o R
<=
B o~ 120 4
I w
I R ~ 100 h
%
L : %0 - 4
. £
I . a a 60 1
30 ab=l & Wh=129 N w0h
20 (+45/- 45/0/90), . laminatc wk (+45/- 45/ 0/ 90, laminate 1
10 :
0 1 1 1 L 1 1 L L 1 A 1 0 1 1 L 1 L. 1 1
00 05 10 15 20 25 30 35 40 45 50 55 60 05 00 05 10 1S 20 25 30 35 40
Wmax / h “max / h

Fig. 6 Progressive failure response of (+45/0/ Fig. 7 Progressive failure response of (+45/0/
90),, quasi-isotropic laminate with Tsai-Wu 90),, quasi-isotropic laminate with Hashin
criterion for different boundary conditions. criterion for different boundary conditions.

first-ply failure loads predicted by various criteria are found to be 1.3 times the buckling load
for BC1, 1.2 times for BC2 and 1.1 times for BC3. Similarly, the average value of ultimate
loads are found to be 2.5 times the buckling load for BC1, 1.4 times for BC2 and 1.3 times for
BC3. It is observed that the progressive failure gets initiated by martix cracking primarily due to
in-plane normal stresses transverse to the fiber direction for all boundary conditions followed by
transverse shear mode of failure leading to the onset of delamination for BC2 and BC3 and the
fiber failure in the case of BC1 boundary condition.

4. Concluding remarks

Based on the results obtained following conclusions can be made:
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1) The maximum percent difference in first-ply failure loads and ultimate loads predieted by
various failure criteria occurs for the cross-ply laminate while the corresponding minimum
values occur for (£45),,, and (£45/0,),, laminates, respectively.

2) The maximum percent difference in first-ply failure loads and ultimate failure loads of (+
45/0/90),, laminate predicted by various failure criteria occurs in the case of clamped boun
dary condition and the minimum is observed for the simply supported boundary condition.

3) Among all the tensor polynomial criteria, the maximum strain criterion is found to give in-
consistent results. Hashin criterion predicts even more inconsistent failure loads, especially
for cross-ply laminates.

4) Failure mode at the first-ply failure is associated with localised matrix cracking and occurs
primarily due to in-plane normal stresses transverse to the fiber directions irrespective of
the laminate lay-ups and boundary conditions.

5) Laminates with two opposite edges or all edges clamped are more susceptible to ultimate
failure due to transverse shear and delamination.

6) Maximum value of the transverse displacement (w,,/h) just before the ultimate failure is
found to be 5.0 irrespective of boundary conditions and types of laminate. Hence, the use
of non-linear theory in the von Karman sense is justified for laminates under consideration.

7) 1t is observed that the fiber breakage precedes very closely the ultimate loads for simply
supported laminates and this mode of failure is not predicted in laminates with clamped
edges.

8) The first-ply failure loads and the ultimate failure loads for (+45/—45/0/90),, laminates
(with respect to the buckling load) are found to be largest for simply supported laminates.

Appendix
Hashin criterion (1980)

In this criterion four distinect failure modes-tensile matrix, tensile fiber, compressive matrix
and compressive fiber are modelled separately, resulting in a piece-wise smooth failure surface.
Another unique feature of this failure criterion is that it avoids prediction of multi-axial tensile
(compressive) modes in terms of compressive (tensile) failure stresses. The four criteria cor-
responding to the different failure modes are:

(1) Tensile fiber mode o; > 0.0

o |2, 1
(}El_] + oz (od+08) =1 @

(i) Tensile matrix mode o, + 05> 0.0

1 1 1
—l—ﬁ(62+o3)2+-§7(0}—0203)+77(62+og =1 )

(iii) Compressive fiber mode o; < 0.0
O, = Xc (3)

(iv) Compressive matrix mode 6, + 0; < 0.0
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2
;C ( ;’R ) _1|(gt0)+ 412 (G+) "+ 7 Ly 0203)+-]-}7(ag+052)= 1 @
In above expressions 0;, 0, O; are the normal siress components; 0,, Os, Os are the shear stress
components in the principal material directions (the subscript 1 refering to the fiber direction); X,
Y, are the tensile strengths of the lamina along and transverse to the fiber directions; X., Y, are the
corresponding compressive strengths. R and T are the shear strengths of lamina in planes 2-3 and 1-
2 respectively. The shear strength in plane 1-3 will be designated by S in the expressions to follow.

Tensor polynomial failure criteria

The most general polynomial failure criterion, as proposed by Tsai (1984), contains linear,
quadratic and higher order terms of stresses and is expressed as

F,00+F,0,+F,0,+2F |, 0, 0, +2F ; 0, 0, + 2F ,; 0, 05 +
Fll0'12+F220-22+F33032+F440.42+F55G52+F660-62+"'21 (5)

wherein F;, F;; are the strength tensors of the second and fourth rank. It is a phenomeno-
logical failure criterion which predicts the imminence of failure but says nothing about the mode
of failure. It is the simplest presentation of the failure criterion which can fit the data reasonably
well and in view of the significant scatter of the failure test data, cubic of higher order ap-
proximations are not employed. Particular cases of the above criterion differ from one another

by their strength tensors F; and F;;. Various degenerate cases of this criterion are given below;
(a) Maximum stress criterion

This criterion is an independent failure criterion. This is based on the fact that there is no in-
teraction between modes of the failure. As per this criterion, the failure is said to have occured
when stresses in principal material directions are greater than or equal to the respective strengths.
Tensor polynomial form of this criterion can be obtained by using following tensor strength fac-
tors in Eq. (5).

1 1 11 11
X X Y, Y.’ "7 Z
Fu= lx » F== Y,ln » Fa= z,lzc

Fo=— F12F2’ F13——F12F3, F23=—F22F3 ©)

The remaining strength tensor terms are zero.

In the above expressions Z;, and Z. are the tensile and the compressive strength. respectively,
in the principal direction 3 of the lamina and the other strength terms are the same as described
in the Hashin criterion.
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(b) Maximum strain criterion

This criterion is similar to the maximum stress criterion except that the strain quantities in the
principal material directions are used in the failure criterion inplace of stresses. Tensor po-
lynomial form of this criterion can be obtained by using the following strength tensors in Eq. (5.)

St Sn
F,=F{+=2F,+—2F}
1 1 S, 2t S 3
F2=&F1+F2 S23F3
S S
F3:§'1‘3‘F1 S23FA+FA
Su S»
Foo L Se | 1 [ Ss \" L Supapa Sepaps SuSs g
H A’t Xc S22 },; Yc S33 Zx Zc S33 S22 S22SZ3
Foo= 1 + S 2 1 4 S 2 _S12FAFA SzzF A FA SIZS13FAFA
2 Y; Yc Sll IYz Xc S33 Zt Zc Su ! : S33 2 Slls33
Fo= 1 4 S1s ! + AP 1 SHFAFA S23FAFA S13S23FAFA
BT 7.7, Su X X, S Y. Sy S SuSx» the
1 1 1
F44=R—2; F55="S"2‘; Fﬁs—‘T—z
F :Su 1 +Su 1 +513323 1 __1_ St +1 |FAFA -
12 Sn XXC S22 ),th S323 Zth 2 S11S22 ! 2
1 5135'12+§33_ FA A 1 S35 & FA A
2 SuSs Su | 7 2| SpSy S |t
F =S13 1 +Sl3 1 +Slzszs 1 1 SE 11 |pAFA
8 Su X Xe S Zi Z: S3 Y. Y. 21 8SuSx the
1 S;ZS_E_F_Sﬁ FAFA_l 5138 +h FAF4
14 3
2| SuSn Sx 2| $nSy Sun |’
F zsza 1 +Sz3 1 +512513 1 __1_ S 41 |FAFA
P78, VY. Sy ZZ 2 XX 2| SpSy e
S1Sun  Su 1 S:zaSn St

1 A A A
— +=—= |F{F5 —— +—= |F,F 7
2| SuS» Sy 2| 8uSy S, | 27 @)
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In the above expressions S,;, S, etc, are the components of the complicance matrix and F?, F;,
A 11> Y12
F5 are the expressions given for F,, F,, F; in the maximum stress criterion.

(c) Tsai-Hill criterion

Tsai (1965) modified the failure surface equation of Hill (1948) as an interaction criterion and
so the modified criterion is called Tsai-Hill criterion. In this criterion a considerable interaction
exists among failure strengths of the lamina as against the non-interactive criterion. Tensor po-
lynomial form of this criterion can be obtained by using the following strength tensors in Eq. (5).

1 1 1
F,=F,=F;=0; F11=F; Fzz—:F; F33=_Z‘2‘
1 1 1 1 1 1 1
Fu=ges Fu=g Fe=qs Fu:‘?(?*?“7]
1 1 1 1 1 1 1 1
Fu:‘?(?*?‘?} F23=_E(F+7—?J ®

The values of X, Y, Z are taken as either X,, Y,, Z, or as X, Y, Z,, depending upon the sign
of 0y, 05, Gs.

(d) Hoffman criterion

Hoffman (1967) modified the failure criterion of Hill (1948) by adding linear stress terms so
as to account for the unequal failure stress in tension and in compression with a single quadratic
expression. Tensor polynomial form of this criterion can by obtained by using following

strength tensors in Eq. (5).

1 1 1 1 1 1
Fi=——-—; =—-—; F;=—-
X X 7Y, Y. =7 Z
1 1 1
F, = F,, = ; Fa.=
11 XXC, 22 K)’c 33 Zth
1 1 1
Fu—'k_z, FSS_TS,_{; Fss—}i
1 1 1
Fip=-— -
2\ XX YY. Z2Z
Foo Ll 1, 1 1
2 X;‘Xc Zth I,IIIC
1 1 1 1
Fp=—— + - 9
P21 zz. VY. XX ©)

The other strength tensor terms are zero.
(e) Tsai-Wu criterion

This criterion is based on the thesis that the correlation between theory and experiment can be
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improved by increasing the number of terms in the failure prediction equation. This increase in
the curve fitting ability plus the added feature of representing the various strengths in tensor
form was presented by Tsai and Wu (1971). In this criterion also considerable interaction exists
between various failure strengths and linear tensors. Tensor polynomial form of this criterion
can be obtained by using following strength tensors in Eq. (5).

Flz_l_— ! > F2=”}“"L; F3=i— !
X, X. Y. Y. z. 7
1 1 1

Fy= . Fyu= . Fayu=
11 AX,XC 22 )’th 33 Zth
1 1 1
F44=E‘2’; F55=?; F%=F
Fo=_L1l__ 1
YT 2| KXY,
F 1 1
N ) DR S
P2\ XX ZZ
1 1
Fro=—1| L _ (10)
’ W, Y. Z Z.

All other strength tensor components are zero.
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Notations

E, young's modulus of elasticity in the principal material direction-1 (fiber direction)
E, young's modulus of elasticity in direction transverse to the fiber direction

E, young's modulus of elasticity in principal material direction-3

G1y, Gis, Gy shear moduli in the planes 1-2, 1-3 and 2-3, respectively
Viz, Vizs Va3 major Poissons’s ratios in the plantes 1-2.1-3 and 2-3. respetively

0y, Oy, O3 normal stress components in principal material directions 1, 2, and 3 respectively

T T13s Tos shear stress components in planes 1-2, 1-3 and 2-3, respectively

X, X, tensile and compressive strength of lamina in fiber direction, respectively

Y, Y. tensile and compressive strength of lamina in direction transverse to the fiber
direction, respectively

Z,Z, tensile and compressive strength of lamina in principal material direction-3,
respectively

R shear strength of lamina in plane 2-3

S shear strength of lamina in plane 1-3

T shear strength of lamina in plane 1-2

F, F; strength tensors

%]

=

components of compliance matrix





