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Dynamic responses of structures with sliding base

Jiin-Song Tsait and Wen-Ching Wang#
Department of Civil Engineering, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C.

Abstract. This paper presents dynamic responses of structures with sliding base which limits the transla-
tion of external loads from ground excitation. A discrete element model based on the discontinuous
deformation analysis method is proposed to study this sliding boundary problem. The sliding base is
simulated using sets of fictitious contact springs along the sliding interface. The set of contact spring
is to translate friction force from ground to superstructure. Validity of the proposed model is examined
by the closed-form solutions of an idealized mass-spring structural model subjected to harmonic ground
excitation. This model is also applied to a problem of a three-story structural model subjected to the
ground excitation of 1940 El Centro earthquake. Analyses of both sliding-base and fixed-base conditions
are performed as comparisons. This study shows that using this model can simulate the dynamic response
of a sliding structure with frictional cut-off quite accurately. Results reveal that lowering the frictional
coefficient of the sliding joint will reduce the peak responses. The structure responses in little deformation,
but it displaces at the end of excitation.
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1. Introduction

In attempts to mitigate the earthquake hazards on buildings, the concept of decoupling the
structures, and/or its contents, from potentially damaging earthquake induced ground motion
has been adopted in recent seismic resistance practices. Building with a sliding joint underneath
is probably the simplest type of these practices. The sliding joint offers a discontinuity to the
ground motion propagation and dissipates energy through horizontal frictional force. In practice,
a teflon coated surface or a layer of sand used in this joint would essentially provide a pure-
friction sliding base (Fig. 1). This idea, although some experiments may have shown its attractive
characteristics, has not been sufficient proven quantitatively to merge into conventional and
established design procedures. In fact, the responses of various sliding structures have not been
thoroughly understood yet. Since the seismic design is a concern of life safety through the uncertain-
ty study, engineering applications, such as structures with sliding base, must be subjected to
intensive studies. This conceptually simple idea of sliding base obviously requires much more
research to make it applicable.

Responses of sliding structures subjected to harmonic ground motion have been studied theoret-
ically by Westermo and Udwadia (1983) and Mostaghel, er al. (1983a). Experiments of a model
on a shaking table subjected to sinusoidal excitation have been carried out by Li, et al. (1989).
The effectiveness of sliding supports in mitigating structures damage from earthquakes has been
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investigated by Mostaghel and Tanbakuchi (1983b). In these early studies, a mathematical mass-
spring model (Appendix I) with two degrees of freedom has frequently been adopted for the
simulation of sliding structure. The mass-spring model is basically in the form of lumped masses
with springs to represent building of shear resistant type. Both the superstructure and the sliding
base are represented as two single degree-of-freedoms (SDOF). Adopting the similar mass-spring
concept, Yang, et al. (1990) has proposed a multi-degree-of-freedom (MDOF) model.

To further explore the applicability of the sliding base in the seismic design, this paper presents
dynamic response analyses of the sliding structures using the discrete element model. This model
has similar attraction of the finite element method to approximate the geometry of structure
using many individual elements or “blocks”. It is applicable to model structures besides those
of shear resistant type, and has better applicability than the existing models mentioned above.
In the present study, analyses are performed for comparisons using two different models, including
a mass-spring model and a discrete element model. '

The sliding joint is simulated as the inherent discontinuity surface between discrete elements.
Frictional effect along the sliding joint is modeled as the contact described by Coulomb frictional
law, which is independent of pressure and velocity, and no difference is expected between the
coefficients of static and dynamic friction. The commonly accepted fictitious-spring (or penalty)
concept is adopted to model the translation of friction force, which is simulated using a pair
of orthogonal contact-springs between elements.

In the discrete element model, the input and solution of a process occurred within a time
domain are treated as a series of discrete events and the governing equations of motion are
solved incrementally. Hence, virtually no restraint needs to be placed on the type of ground
motion for the sliding base problem. Theoretical formulations of the proposed model are based
on the discontinuous deformation analysis method (Shi and Goodman 1984) and are described
in the following section.

2. Theoretical formulations

In the mechanic analysis, the sliding boundary condition of the structure with a sliding base
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is a special problem of interest. In the present study, this problem is analyzed using a discrete
element model. The adopted discrete element model meshes the configuration of structure simila-
rly as finite element model does, except the introduction of discontinuous interfaces (or sliding
joints) between elements. The following paragraphs describe concept and formulations of the
discontinuous deformation analysis method. Simulation of the sliding joint for dynamic contact
interaction is also included.

For last two decades, many efforts have been spent on computational mechanics for the frictio-
nal contact problem (e.g, Cundall and Strack 1983 and Walton 1993). In general, two methodolo-
gies, the force method and the displacement method, are used. Based on the force method,
Cundall (1971) has introduced the distinct element method for the analyses of the mechanical
behavior of discrete materials and Goodman, er al. (1968) has proposed a joint element for
solving rock discontinuity problems. Using the displacement method, the discontinuous deforma-
tion analysis (DDA) has been proposed by Shi and Goodman (1984). This method is mainly
used for solving rock mechanics problems. In the present paper, it is the first time that the
DDA method is applied for solving the problem of sliding-base structure. In the following, theore-
tical bases of this method and some enhancements for the application of sliding structure analysis
are described.

Being a displacement method, the DDA can be treated as a generalization of the finite element
method. The discrete element (or block) used in the DDA is assumed to be constant stress
and strain. Displacement (x, v) of any point (x, y) within an element is represented by six variables

and formulated as a first order approximation form of y
0
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where (1o, vo) is the displacement of the center point (x,, yy) of an element; r, is the rotation
angle and ¢, g, ¥, are two axial and the shear strains. Similar to the nodal point in a finite
element mesh, the center (xo, yo) of each discrete element has six degrees of freedom. For a
system of n discrete elements, the global simultaneous equilibrium equations are as
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Each K; in Eq. (2) is a 6X6 submatrix which represents the stiffness between block 7/ and j.
Submatrix K; depends on the material properties of block /. Submatrices D; and F; are both
6X1 and are the deformation variables and the loadings, respectively.

The frictional contact is represented using a pair of stiff springs (a normal and a shear springs)
along the sliding interface. The contact between two individual elements is decomposed as a
normal component R, and a shear component R,. The transition of the sliding and non-sliding
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phases in the DDA method is governed by the Mohr-Coulomb criteria. Once the R, is greater
than the friction defined by Coulomb’s law, sliding occurs.

R,Z2pR,=R,tan 0 3)

The dynamic frictional force in sliding phase is equal to the product of the frictional coefficient
(p) and the normal contact force. The right hand side of Eq. (3) is the resistance of Coulomb’s
friction, ie., O is the frictional angle of contact interface. Kinetic energy of the sliding block
element dissipates along the contact interface. The static frictional force in the non-sliding phase
is equal to the shear spring force. Using a large spring constant, i.e., a hundred times the value
of Young’s modulus of discrete element, the elongation of the stiff spring along the sliding interface
will remain negligible in the non-sliding phase.

In the present analyses, the ground excitation is introduced in the horizontal direction. Seismic
loading is exerted onto the structural system through a large ground block underneath (Fig.
2). This loading is in the form of the inertia force of the ground block as an acceleration time
history. By solving the problem incrementally, the inertia force f.(t;) of the ground block (m,) .
at time step #; is represented as

&) =mguo (b)) 4

where m, is a chosen large mass to represent the ground and, u,(z) is constant acceleration
within time step i.

In order to mesh a larger piece using the adopted discrete elements, the connection between
elements is accomplished using bolt and connection elements. The usage of bolt element is
the simplest way to allow tension in-between the discrete elements. If P, v) and Q;(u;, v))
are displacement vectors of the two ends of a bolt which connects two different elements i
and j. The strain energy of the bolt is expressed as

= =)+ L~y ©)

where k is the spring constant of the bolt, and « and v are the two relative displacement compo-
nents of P; and @, at previous time step as the Eq. (2) is solved incrementally. The stiffness matrix
and the force vector of the bolt can be derived through minimization of total potential energy
of the Eq. (5) and should be added into the global stiffness matrix and the global force vector
in the Eq. (2).

The connection element is a constant strain triangular element which has nodal points located
in two or three different discrete elements. Through the procedure of minimizing total potential
strain energy, the stiffness matrix and the force vector of the connection element can also be
added into the global stiffness matrix and the global force vector in the Eq. (2). In the current
practices, four triangular elements are used for each connection in the numerical model. The
strain energy for a single element is

Ly (L2 &
neZ%j J Lece Ky][E]{ & }-]dleLz (6)
0oJo Yo

where L, and L, are the shape functions used in the constant strain element. J is defined
as
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in which J,,=x;—x3, Ju=y1— 3, Ja=x2—x3 J»=y>—p; and (x;, y1), (x2 V1), (X3, y3) are coordinates
of the nodal points of the connection element.

3. Numerical results

In this section, numerical analyses to describe the dynamic responses of structures with sliding
base include a simple two-element problem (Fig. 2) and a three-story-structure problem (Fig.
3). Validity and accuracy of the DDA results are examined first using the simple two-element
problem. Analytical solutions of this problem obtained using the mass-spring model are taken
as the benchmarks. In the present study, material damping is not of concern. Parameters adopted
for the computations are

(1) natural frequency of the system w,=1 Hz:

(2) frequency ratios for the harmonic ground excitation (%w,=0.1~10.0;

(3) amplitude of the ground acceleration a,..=03g;

(4) mass ratios of the two-element system a=m/(M+m)=0.1, 0.5, 0.9,

(5) frictional coefficients p=0.01, 0.05, 0.1, 0.25;.

(6) duration of excitation=100 seconds (100 cycles).

Computed results of both the analytical solutions and the DDA results for the two-element
system simulation are shown in Figs. 4 to 9. With different mass ratio a, each figure of Figs.
4, 6 and 8 contains the comparisons of two different measurements: (a) the maximum relative
displacement between the base and the ground |u,l,... D and (b) the maximum relative displace-
ment between the roof and the base |u,l,., D. These measurements are normalized using a
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Fig. 3 The three-story-building model.
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Fig. 4 Comparisons of analytical and numerical solutions for a=0.1. (a) the miximum relative displace-
ment between the base and the ground. (b) the maximum relative displacement between the
roof and the base.
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Fig. 5 Comparisons of analytical and numerical solutions for ¢=0.1. (a) the maximum ratio of the
base acceleration to the ground acceleration. (b) the maximum ratio of the roof acceleration
to the ground acceleration.
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Fig. 6 Comparisons of analytical and numerical solutions for a=0.5. (a) the maximum relative displace-
ment between the base and the ground. (b) the maximum relative displacement between the
roof and the base.

factor D=a,,../$2°. For Figs. 5, 7 and 9, each figure has comparisons of the other two measureme-
nts: (a) the maximum ratio of the base acceleration to the ground acceleration |@pu/@goumdl ma
and (b) the maximum ratio of the roof acceleration to the ground acceleration |@,,/@gound! mas-

All the comparisons shown in Figs. 4 to 9 indicate that the DDA method can generate reliable
answers for simple model simulation. In the following, the DDA model is further used to analyze
the three-story structure subjected to a seismic loading. The configuration of the structure is
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Fig. 8 Comparisons of analytical and numerical solutions for =09. (a) the maximum relative displace-

ment between the base and the ground. (b) the maximum relative displacement between the
roof and the base.

directly meshed by discrete elements. The mesh and dimensions of the structure are shown
in Fig. 3. Triangular connection clements are used wherever the connection is needed. The Young’s
modulus and the Poisson’s ratio of the element’s material are 20X 107 kpa and 0.15, respectively.
Natural frequencies of the structure for the first three modes are 0.638 Hz, 1.788 Hz and 2.583
Hz For the sliding phase, frictional coefficient (o) of the sliding joint is chosen as 0.01. For
the non-sliding (or fixed) phase, the stiffness for both the normal and shear springs used to
represent the contact of sliding joint is as 20X 10° kN/m. Acceleration time history of the 1940



Dynamic responses of structures with sliding base 71

8 T T 1 T rrerr T T F T TT1 717 16| T T rrrrrg T T T rrrir
@) p analytical ppa (b) P analytical DDA
F 025 -—— - N F 025 - —
0.10 ----- . 0.10
L1005 oo - 0.05
12F 0.01
o] =
N 3
_ 8 &} i
E
H < gl 4
o g\
Y]
< 3
o 8 3 4
j<}
5 =
= 4F .
r»«aww"*)""{“*y e
Tarrgsphat ity —
01 1 10

Q/w

L

Fig. 9 Comparisons of analytical and numerical solutions for ¢=09. (a) the maximum ratio of the
base acceleration to the ground acceleration. (b) the maximum ratio of the roof acceleration
to the ground acceleration.

El Centro earthquake with time increment of 0.001 second (Fig. 10) is the seismic input. Fourier
spectrum of the chosen seismic input is shown as Fig. 11, in which the predominant frequency
is about 1.5 Hz. Structural responses under two different conditions. sliding-base and fixed-base,
are computed for comparisons.

As can be seen in Fig. 12, the computed sliding of the structure under the seismic ground
excitation is presented in the form of the relative displacement of the base to the ground, in
which the maximum slip during the excitation is about 0.3 m. At the end of the excitation,
the structure displaces about 0.18 m from its origin. Comparing to the chosen El Centro earth-
quake record (Fig. 10), the seismic excitation which is exerted on the sliding structure from
the base through the sliding joint is very limited (Fig. 13). In Fig. 14, the Fourier spectrum
of the sliding base excitation indicates that the response predominant frequency is about 0.35
Hz. Comparing to the frequency of 1.5 Hz for the chosen El Centro earthquake record, the
predominant frequency of input motion for the sliding structure has been significantly reduced,
and is below the natural frequency of the structure itself. For the fixed-base condition, responses
of the structure at the roof are presented in Figs. 15 and 16, in which the time history of the
roof acceleration and the relative displacement of the roof to the base are shown, respectively.
On the other hand, with p=0.01 for the sliding-base condition, the acceleration of the roof
vibration reduces to about one hundredth (Fig. 17), and the amplitude of the vibration is also
obviously decreased (Fig. 18). The decrease of both the acceleration and the amplitude of the
roof vibration indicates that the sliding base can successfully isolate the structure from a severe
ground excitation. The effectiveness of using the sliding base to avoid damaging earthquake
is shown by not only the limit acceleration exerted on the structure, but the similarity of accelera-
tions for the base and the roof (Figs. 13 and 17). The shown results reveal that the structure
behaves with very little deformation (Fig. 18).
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Fig. 18 Relative displacement of the roof to the base for the sliding structure (p=0.01).

4. Conclusions

The effectiveness of applying a sliding base in reducing the peak responses of structures has
been studied using the discontinuous deformation analysis method. This study shows that using
this method can simulate the dynamic response of a sliding structure with frictional cut-off
quite accurately.

Computations for a simple two-element mass-spring system indicate that results obtained using
the DDA model have similar accuracy as those of the analytical solutions using the idealized
mass-spring model. Seismic response analysis for a three-story structure with a sliding base reveals
that the sliding interface can reduce the ground acceleration or the seismic loading exerted
on the structure. This study shows that, for instance, sliding base with frictional coefficient of
0.01 will successfully eliminate the most severe excitation which may be exerted on the structure.
The sliding structure may therefore behave with very little deformation. Nevertheless, an irrecove-
rable displacement for the structure may exist after the seismic excitation.
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Appendix I: Formulations of mass-spring mode!

Using lumped masses (m,) on a sliding base (m,), a mass-spring model (Fig. 19) 1is usually
adopted to represent a sliding shear-resistant building of single or multi-degree-of-freedom subjec-
ted to a horizontal excitation. Frictional effect along the sliding base is simulated using a fictitious
spring. Different spring constants are introduced for sliding and non-sliding phases. In early
SDOF models, the spring is modeled in rigid-plastic behavior (Westermo and Udwadia 1983),
while it has been improved as an elasto-plastic spring in a more recent MDOF model (Yang
et.al. 1990). The usage of fictitious spring simply avoids the difficulty of solving a sliding boundary
problem, and the number of equations remains the same in either the sliding or non-sliding
phase. Similar to a typical structural dynamic problem, the equation of motion for typical mass-
spring sliding model is

(M] {ub+[CT {ab+ K Hut=1{P} ®)

where [M] is the mass matrix, [C] is the damping matrix and [K] is the stiffness matrix,
and {u} and {P} are displacement and external loading vectors, respectively. It should be mentioned
that the stiffness- matrix with the fictitious spring is as

-k| '_kl 0 seee 0 0 ]
k1+k2 “kz 0 0
katks 0 0
(K]= ke
Ssymim. kN_1+kN _kN '
- kntk,~ )

where k; is the fictitious spring constant. According to Yang, et al. (1990), this constant is a
chosen large number for the non-sliding phase and is zero for the sliding phase. The horizontal
seismic loading is described as

P:{ —MyUgy i=N
! —MpUy I=N+1 (10)

Analytical solutions can be derived using the mass-spring model. For instance, as shown in
Fig. 2, a single-degree-of-freedom structure of mass m and stiffness k supported by a base raft
M that can slide horizontally is chosen to illustrate the theoretical derivation in follows. In
this figure u,, uy and u, are the displacements in an absolute frame of reference, the base
raft and the roof, respectively, u, is the sliding displacement of the base raft relative to the
ground, and u, is the displacement of the roof relative to the base raft. The coefficient of sliding
friction is p. If the structure slides under the ground excitation, under Newton’s second law,
the equations of dynamic equilibrium are:

mi,,+ku,=0 (11)
Muy=F—mu,, (12)

where F is the friction force mobilized in-between the base-raft and the ground. The maximum
value of F during sliding is

F=8p(m+Mg (13)
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where & is either +1 or —1 depending on the sign of the velocity, ie, §=* Sgn wu, This is
a coincidence between the direction of response inertia of the structure and the direction of
the ground acceleration. As 6= +1, they are in opposite directions.

Using the relationships of the displacements defined above, Egs. (11) and (12) can be reformula-
ted as

(@, + i+ t10) — 0*u,=0 (14)
=6pg— ait,— o (15)

where a is the mass ratio and is equal to m/(M+m). Substituting for u, from Eq. (15) into
the equilibrium equation Eq. (14), it can be shown that during the sliding phase

U+ w’u,=—8pg+ai, (16)
(1—a)u,+w*u=—5pg 17)
—dpg
2., —
i+ 0 2u,= > (18)

_ @ . . . . .
where w"—_\77—=a' The solution for the sliding phase is thus obtained by solving Eq. (18)

when

—lau,+uyt+i, | =0 19
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On the other hand, in the non-sliding phase, #,=0 and the ground moves with an acceleration
up=asin N2¢t, Eq. (14) thus becomes

u,+w*u,=— —asinf2t (20)
The solution for the non-sliding phase can be obtained by solving Eq. (20) when
pg—|a u+ie >0 21

The incremental dynamic analysis for solving the above equations can be performed by follo-
wing the algorithm of Mostaghel, et al. (1983b). It is assumed that the structure is in equilibrium
at the time step for each increment. Transition of starting and end times of the sliding and
non-sliding phases can be obtained as the solution process progresses.
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