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Abstract. A state-of-the-art report on the new finite elements formulated by the addition of nonconfor-
ming displacement modes has been presented. The development of a series improved nonconforming
finite elements for the analysis of plate and shell structures is described in the first part of this paper.
These new plate and shell finite elements are established by the combined use of different improvement
schemes such as; the addition of nonconforming modes, the reduced (or selective) integration, and the
construction of the substitute shear strain fields. The improvement achieved may be attributable to the
fact that the merits of these improvement techniques are merged into the formation of the new elements
in a complementary manner. It is shown that the results obtained by the new elements give significantly
improved solutions without any serious defects such as; the shear locking, spurious zero energy mode
for the linear as well as nonlinear benchmark problems. Recent developments in the transition elements
that have a variable number of mid-side nodes and can be effectively used in the adaptive mesh refinement
are presented in the second part. Finally, the nonconforming transition flat shell elements with drilling
degrees of freedom are also presented.
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1. Introduction

Continuous research efforts have been devoted in the recent years to the development of the
more efficient and accurate finite elements (Choi 1984, Kebari and Cassel 1991, Sze and Chow
1991).

The degenerated plate/shell elements have been successfully used in a wide range of structural
analysis problems, in particular for the moderately thick shells (Ahmad, et al. 1970). The inter-
element compatibility requirement in the degenerated plate/shell elements is easily satisfied be-
cause the shape functions require only C° continuity (Kim and Choi 1992, Mindlin 1951). Unfortu-
nately, however, for the thin plate/shell problems this element has one significant deficiency,
ie., the excessive flexural stiffness due to the transverse displacement constraints. The assumed
displacement shape functions used in the isoparametric element constrain the element to deform
in a shear mode imposing a large amount of the shearing strain in the behaviour of a plate/shell
element, which causes a very slow convergence (Pawsey and Clough 1971). In addition, since
the ratios of the shear stiffness and the membrane stiffness coefficients to the bending stiffness
coefficients are in general the order of (L/#)* and (L/f), respectively, the shear and membrane
stiffness become to dominate the global stiffness as the thickness of the shell becomes thin
(Fezans and Verchery 1982). The performance of the degenerated plate/shell elements, therefore,
deteriorates rapidly in the thin plate/shell structures, and these problems are known as the shear
locking and membrane locking phenomena (Parisch 1979, Tsach 1981).

In the past decade, a lot of research efforts has been directed at overcoming the locking
problems in the degenerated plate/shell elements, thus rendering them effective and reliable for
the thin plate/shell applications (Choi 1984, 1986, Hinton and Huang 1986, Huang and Hinton
1986, Hughes, er al. 1978, Lee and Wong 1982, Parisch 1979, Zienkiewicz, et al. 1971). As results
of these research efforts, several successful remedial schemes have been suggested; namely, the
reduced (or selective) integration technique (Hughes, et al 1978, Pugh, et al 1978, Zienkiewicz
et al. 1971), the addition of nonconforming displacement modes (Choi 1984, Choi and Schnobrich
1975), and the use of assumed shear strain fields (Hinton and Huang 1986). Efforts have been
also devoted to the development of the further improvement of plate/shell finite elements by
the combined use of the aforementioned schemes (Choi 1986, Choi and Kim 1988, 1989, Choi
and Yoo 1991a, Kim and Choi 1992). Thus, the evolution of the concept of combined use of
nonconforming modes and other schemes, and the development of new degenerated plate/shell
finite elements based on this concept are of the main concern of this paper.

The transition elements, which have a variable number of nodes in an element and are
improved by the addition of nonconforming modes, have been effectively used in the adaptive
mesh refinement for two dimensional problems (Choi and Park 1989, 1992, 1997, Choi and
Lee 1995, 1996). The present paper addresses the state-of-the-art of the defect-free plate/shell
elements developed by the addition of nonconforming displacement modes. The nonconforming
transition plate/shell elements with variable mid-side nodes for local mesh refinement are also
discussed.

2. Nonconforming displacement modes

2.1. Basic concepts

The approach to improve the basic behaviour of 2-D isoparametric element by eliminating
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Fig. 1 Restoring the actual behaviour of an element.

the excessive shear strains through the addition of nonconforming displacement modes was
first adopted by Wilson, er al. (1971). The transverse displacement constraints which cause the
excessive shear strains in the element can be eliminated by restoring the real displacement confi-
guration with the extra modes (Fig. 1). These additional displacement modes are of the same
form as the errors or what are missing in the original displacement approximation, and therefore

the actual displacement field can be better approximated by the addition of these nonconforming
modes.

The total displacement field of the element with additional displacement modes can be expres-
sed as

[I=2NU+2NT ()

in which N; are the additional nonconforming modes and U, are the additional unknowns corres-
ponding to the additional displacement modes. These additional unknowns are not the physical
nodal displacements but can be taken simply as amplitudes of the respective nonconforming
modes.

The strain components in an element are expressed in a condensed form with the conforming
and nonconforming parts as

e | U
-8 B | ] @
Then, the element stiffness matrix can be obtained by the direct application of variational princip-

les. The resulting stiffness matrix has been enlarged over the original isoparametric element
matrix due to the additional modes and the corresponding unknowns and partitioned as

[ﬁﬁif Iﬂ [gHg] ®

K.= f B'DB4V, K,= f B'DBAJV, K,,= f B'DBdvV (3a)
14 Vv V

where

and ¢ denotes conforming whereas # denotes nonconforming part. The null vector in the lower
part of the load vector in Eq. (3) indicates that no nodal loads can be applied in association
with the nonconforming modes.

The enlarged element stiffness matrix in Eq. (3) can be condensed back to the same size
as the stiffness matrix of the ordinary degenerated plate and shell elements as (Choi and Schnob-
rich 1975, Taylor, et al. 1976) )
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The applications of the aforementioned approach and its modified versions could be found
in the plane stress/strain and axisymmetric problems (Choi and Kim 1989, Cook 1972, 1974,
1975, Taylor, et al. 1976, Wilson er al. 1971). Through various numerical studies, Choi, et al.
(1989) showed that the nonconforming elements behave much better than the conforming elements
when in particular the irregular meshes are used. Cochet and Dhatt (1978) also showed that
the nonconforming plane element gave the efficient solutions for an estimation of collapse loads
in plasticity problems.

2.2. Formulations of nonconforming plate/shell elements

Almost parallel to the application into the in-plane stress/strain problems, the degenerated
shell element which utilizes the concept of restoring the real deformation by the addition of
nonconforming modes was first proposed by Choi and Schnobrich (1975). The possible nonconfo-
rming displacement modes to be added to a 4-node degenerated shell element and an &-node
serendipity shell element are defined by the following set of shape functions (Choi and Schnobrich
1975) in Eq. (5) and in Eq. (6), respectively.

]‘\-’1:(1“52)’ sz(l_ﬂz)e N3:77(1—¢’2)

N={(—m). Ns=(1-&) (-1 ©)
N=£(1-8), sz_r_;(l— 7)., N=&n(1—¢)
Ne=¢n(i—m),  Ns=(1-&)(1-1n) (©)

The additional modes in Eq. (5) and (6) are selected to have zero values at each node and

© WV

Fig. 2 Non-conforming displacement modes in quadratic element.
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to eliminate the undesirable constraints present in an original isoparametric element. The first
two modes in Eq. (5) and (6) are to eliminate the transverse displacement constraints and the
third and fourth modes contribute to the softening of twisting constraints. The fifth mode adds
the bubble shape displacement in the element (Fig. 2).

The displacement fields of a nonconforming degenerated plate element and a nonconforming
shell element can be formed by adding nonconforming displacement components to the original
displacement of the element as given in Eq. (7) and Eq. (8), respectively (Choi and Schnobrich

1975, Choi 1982).
[ u " 20, _ z@xj
v =2 N| 28 [+2 N 28, @
w; w;

I_W.—
’-u_‘ _ui 1 ai _ EJ

v =2 N v,]+Z N~ Cd’:-[ ]+Z MI:VJ:I ®)
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where 6, and 6, are the rotations in the xz and yz planes at node i due to the plate bending,
respectively, ¢ is the direction cosine matrix at node i, ¢; and B; are two nodal rotations. It
should be noted that no rotational nonconforming modes are added in Eq. (8).

By the selective combinations of shape functions, Choi and Schnobrich (1975) established
a series of nonconforming plate/shell elements. Based on their investigations with several types
of structures using various combinations of nonconforming modes, it was observed that the
improvement obtained for 4-node element was more significant (See Fig. 3 and Fig. 4) than
that for 8-node element. However, since the 4-node element still need to be improved further
to become an effective element for the practical use, the research efforts are naturally focused
on the 8-node nonconforming elements.

2.3. Selective addition of nonconforming modes

Since the addition of nonconforming modes inevitably requires increased computational efforts,
it is therefore desirable to minimize the number of added nonconforming modes without signifi-
cant sacrifice in the accuracy of obtainable solutions. Choi (1984) suggested for his quadratic
plate/shell element that the additions to in-plane displacement components might be dropped
while nonconforming modes added to transverse displacement components should be retained
since the errors associated with the in-plane displacement in a quadratic element are much
less significant than the transverse displacement. This scheme, which is the earliest and simplest
modification made to the general nonconforming element concept, is more effective for the higher
- order elements for which the displacements are already expressed by higher order functions.

The displacement fields of a degenerated plate element and a shell element which are simplified
in accordance with the above discussion are now expressed as in Eq. (9) and Eq. (10), respectively.

u 26, 0
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Fig. 3 Geometry and material properties of  Fig. 4 Displacement for circular cylindrical shell
circular cylindrical shell. under uniform load.

A similar performance of these simplified nonconforming elements in Eqgs. (9) and (10) as
that of the original nonconforming elements in Egs. (7) and (8) has been reported (Choi 1984).
This fact can be explained by the basis of discrete Kirchhoff mode criterion (Hughes and Tezduyar
1981, Kim and Choi 1988). Since the transverse displacement is interpolated with one order
higher functions than rotations due to the addition of nonconforming modes, this simplification
may give satisfaction of the discrete Kirchhoff mode expressed by

Y= 6+ dw/dx=0, Y. =6,+Iw/dy=0 (11)

3. Improvement of plate/shell elements

In parallel to the development of schemes for nonconforming elements, the reduced integration
techniques are also used to improve the original degenerated element (Choi, er al. 1986, 1988,
1989, 1991, 1992, Pugh, et al. 1978). The coupled use of addition of nonconforming modes and
other improvement techniques in a complementary way may further increase the effectiveness
and versatility of the element. An element can avoid the shear locking phenomenon when the
interpolated shear strain function contains more variables than the number of equations obtained
when equating the shear strain to zero (Tsach 1981). Since the number of shear strain constraints
can be reduced by the use of reduced integration and the number of variables can be increased
by the addition of nonconforming modes, the coupled use of these two schemes is thus effective
to avoid shear locking (Kim and Choi 1992).

3.1. Selective nonconforming modes and selective integration

The combined use of the reduced integration and the addition of nonconforming modes can
be implemented rather simply by integrating each of the sub-matrices in Eq. (3) with reduced
orders. However, for the element that has all five nonconforming mode shapes in Eq. (6), a
uniform reduction of the integration order resulted in obtaining a singular matrix. In order
to avoid this difficulty, different orders of integration for the sub-matrices in Eq. (3), ie., 2X2
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integration for K, and K, and 3X3 rule for K,, are suggested (Choi 1986) for the element
stiffness formulation based on the displacement fields in Eq. (10). These elements do not possess
any spurious zero energy mode and gave improved results but produced locking phenomena
in thin plates and shells. The spurious zero energy mode can be avoided for these element
by applying the normal integration to the stiffness sub-matrix K, that has same effects as multiply-
ing K,,, by a factor (1+e¢) as suggested by Cook (1972). The latter, however, requires some experien-
ces in deciding the optimal value of an artificial factor (1+e) (Kim and Choi 1992).

It was found that the terms in the stiffness matrix pertinent to the nonconforming mode
shapes Ni and N, become zeros because the derivatives of these shape functions vanish (ie,
N~=N, n—Nz Sz—Nz,,—O) when computed at the reduced integration points (ie., {==* 1/\/ 3, n=%1
/\/ 3). Therefore, addition of these two nonconforming modes is of no consequences when reduced
integration is applied. This will explain why the uniformly reduced integration resulted in obtai-
ning a singular matrix as stated above. It is also noted that the derivatives of N; and N, with
respect to & and 7, respectively, are zeros (N;;=N.,=0) when integrated with reduced order,
but note that N;,#0 and N,##0. Therefore, their overall contribution to the element stiffness
may not be significant. Thus, based on the displacement field of Eq. (9) and Eq. (10), two other
types of the reduced integrated nonconforming plate/shell elements, ie., elements designated as
NC8-A and NC8-B which have three (N5, N,, Ns) or one (Ns) nonconforming modes, respectively,
are developed (See Table 1, Choi and Kim 1988). These elements give good results in plate/shell
problems, but because of the rank deficiency of their stiffness matrices the elements possess
spurious zero energy modes which can contaminate the solution (See Table 1 and Fig. 5).

3.2. Coupled use of nonconforming modes and reduced Integration

In order to overcome the aforementioned problems of the shear locking phenomenon and
the spurious zero energy modes, further improved degenerated plate elements are suggested (Choi
and Kim 1989). As the first step, the overall element stiffness was separated into the stiffness
pertinent to bending and shear, and then, the nonconforming displacement modes are added
only to the shear stiffness while no nonconforming modes are added to the bending stiffness.

The strain components of the degenerated plate element are expressed in the following form.

i B, 6. .0 0
[ [
8 'si w; ij wj

N. 0 07 N, O N, 00 N,
I:Bbi:l = O NI 0 B [Bsx:l ) s [EX ] - _ (123)
Ny No 0_ 0N, N, ’ 00N,

In the evaluation of shear stiffness of an element with nonconforming displacement mode,
the normal order Gaussian quadrature (3X3 integration) is used since the reduced integration
for the shear stiffness may cause spurious zero energy modes (Choi and Kim 1988) while the
bending stiffness is computed with a reduced integration order (2X2 integration).

Indicating the integration orders by numbers in the parenthesis, the final element stiffness
matrix K° is computed by the following scheme.

where
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Table 1 Quadratic degenerated plate element

CK. Choi, SH. Kim, YM. Park and KY. Chung

Element Shape Functions for Integration Scheme |DOF/Element Number of Zero
Reference D Displacement Components Kee | Ken | Kan | Before/After Eignvalue
w 6.6 |B|S|B|S|B|s Condensation| Toal | Spurious
Pugh, e al. QSR 8-node 8node [R|R|-|-1[-1- 24/24 4 1*
(1978)
Hughes, et al. QLS 9-node 9node |N|R|-]-]-]- 27727 4 1
(1978)
Hughes and QHS 8-node 9-node |N|R|-|-]|-1- 26/26 3 0
Cohen(1978)
Choi(1986) | NC84.1 | 8node+N,~N; | 8node |[R|R|R|R|N|N 28/24 3 0
NC8-4.2 8-node +N,~Ns 8node |[R|R|R|R|N|N 29/24 3 0
Choi and Kim | NC8-A | 8node+N:~Ns | 8node |R|R|R|R|R|R| 27/24 7 4
(1988) NC8-B 8-node + Ns 8node |[R|R|{R|R|R|R 25/24 5 2
Choi and Kim | NC8-AS | 8-node+N:~Ns | 8node |R|N|-|[N|-IN| 27/24 3 0
(1989) NC8-BS 8-node+Ns 8node |R|N|-|N|-|N 25/24 3 0
NC8-CS | 8-node+N,N:Ns 8node |R|N|-|N|-|N 27/24 3 0
NC8-DS | 8-node+N,~Ns 8node |R|N|-|N|- [N 29/24 3 0
Kim and Choi | NC-QH 8-node 8node |[N|R|N|R|N|R 30/24 3 0
(1992) J + NN N5 l
R: Reduced Integration (2X2)
N: Normal Integration (3X3)
*: Not communicable in a mesh of two or more elements
S: shear part of stiffness matrix
B: Bending part of stiffness matrix
r/R
0.0 0.5 1.0

1.0

167D
PR?

2.0

3.0

$bwd tbg

Fig. 5 Displacement results for thick circular plate (R/t=2.5).
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Ke:Ki(zx2)+K§(3><3) (13)
where
Kiox= f (B, J'LD,](B)'1dV, Kiax3)= f (B/TIDJLB/JdV (13a)
vV V
[B,1=[B, 0].  [B/1=[B, B] , (13b)

Based on the detailed versions of Eq. (13), the establishment of a series of new degenerated
plate elements are proposed (Choi and Kim 1989). The element has been designated as NC8-
AS which is a selectively integrated version of NC8-A. The element has three additional modes
(N, N, and Ns) applied only to the transverse displacement (w) and the stiffness is obtained
by the selective integration. The elements designated as NCS8-BS, NC8-CS and NC8-DS are
established in a similar manner. These elements have one (Ns), three (V,, N, and N;) and five
nonconforming modes (N;~Ns), respectively (See Table 1). The behavior of the elements has
been improved and the degeneracy in the accuracy of the distorted element and the shear locking
phenomenon (in the regular mesh) do not exist any longer. The elements do not possess any
spurious zero energy modes either (See Table 1 and Fig. 5). These elements also passed the
patch test (See Table 2 and Fig. 6).

3.3. Coupling of nonconforming modes to rotations and reduced Integration

The two major problems associated with the coupled use of reduced integration and addition
of nonconforming modes are; 1) the singularity of the derivatives of the nonconforming shape
functions and 2) the occurrence of spurious zero energy modes when the full reduced integration
is used for nonconforming element(Choi and Kim 1988).

The addition of nonconforming modes to rotational displacements (6, 6,) does not require
the derivatives of nonconforming shape functions for the calculation of the stiffness matrix in
the degenerated plate elements. Thus, the first problem can be solved easily by this approach.
The second difficulty which is associated with the rank deficiency of the element stiffness matrix
can be avoided by the selective integration technique in which the bending and shear parts
of element stiffness are computed with different integration order, i.e., 3X3 integration for bending
and 2X2 integration for shear (Kim and Choi 1992). The displacement field in a new degenerated
plate element can be expressed by

u ZOX,- . Z_—_é_v’{l'
[v]=2 M-[ 26, ]+Z N[ 28, ] (14)
w w; 0

Based on the expression in Eq. (14), the establishments of various new elements are possible.
The element which has three nonconforming modes (V,, N> and Ns) applied to the rotational
displacement and uses the selective integration scheme for the calculation of the element stiffness
has shown neither the shear locking phenomenon for both the irregular and regular meshes
nor the spurious zero energy modes (Kim and Choi 1992). This element has been designated
as NC-QH which indicates “Non-Conforming Quadratic Heterosis” element because the QHS
element (Hughes and Cohen 1978) can be achieved by adding a bubble mode (Ns) only to
the rotational displacements of the 8node element. The NC-QH element does not pass the
Irons’ patch test (Table 2), but passes the weak patch test which uses a sequence of refined
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Table 2 Summary of patch test

C , ' . -
N Bending ~ Shearing  Twisting ~ Remarks

QSR fail pass fail fail
QLS pass pass pass fail
QHS* fail fail fail fail
NC8-AS pass pass pass pass
NCS8-BS pass pass pass pass
NC8-CS pass pass pass pass
NC8-DS pass pass pass pass
NC-QH* fail fail fail fail
NC8-DC fail fail fail fail
NC8-CC fail fail fail fail

*pass the weak patch tests (Park and Choi 1997)

y
(0,10) (10,10)
'y @
E=3.0x10 psi
v=03
10 t=0.001 in
al "o .
(0.,0) | 10 ~1(10,0)
(a) patch of elements
Mxy/6 2Mxy/3 Mxy/6
w=0 =0 ' '
6.=0 } we w=01 Q6 61{:0 . — Mxy/6
At all nodes )
0=0 —% ol 2M3 wo0p6=06-0@ 203 6,=0 ¢ ¢— 2Mxy/3
w=0 M/6 Y Q6 W= 0 . ——— Mxy/6
6.=0 ' w zng 6.=0 w=0
y Bx = O
Bending case Shearing case Twisting case

(b) load cases
Fig. 6 Mesh patterns for patch test.

meshes in Fig. 7 and the convergence is guaranteed (Park and Choi 1997).

Table 3 shows the behaviors of some typical quadratic Mindlin plate elements, ie. the fully
reduced integrated 8-node clement QSR (Pugh, ef al. 1978), selectively integrated 9-node element
QLS (Hughes, er al. 1978), and heterosis element QHS (Hughes and Cohen 1978). Although
the NC-QH element and the heterosis element (QHS) give the similar behavior in the plate
bending problem with the regular mesh, the former is superior over the other elements studied
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for the problem with irregular mesh (See Table 3 and Fig. 8) (Kim and Choi 1992, Lee and
Wong 1982).

34. Reduced integrated nonconforming modes and substitute shear strain

In the formulation of the degenerated shell elements, research continued to establish even
better elements by the use of several schemes simultaneously (Choi and Yoo 1991a). The overall
element stiffness is separated into the transverse shear stiffness and the in-plane stiffness (ie.,
the combined effects of the membrane and bending actions) at first. Then, the substitute shear
strain fields are formulated by interporating the values at sampling points. Locations of the
sampling points for the substitute shear strain fields are the points where each of the transverse
shear strain becomes zero for very thin plate/shell in an average sense (Hinton and Huang
1986) so that the shear locking problems can be eliminated . In the case of in-plane stiffness,
the stiffness is computed with reduced integration (i.c., 2X2 integration) to avoid the membrane
locking problems. In addition, the nonconforming displacement modes are added to the transla-
tional displacement components to improve the overall performance of the element. In the evalua-
tion of transverse shear stiffness of an element, the 2X3 integration in one direction and 3X?2
in the other direction is used while the in-plane stiffness is computed with the single reduced
integration order (see Table 4, Huang and Hinton 1986).

The relationship between strain and the displacements for the element formulation is expressed
as

e=BU=Y [3‘%] U+y [gf] [ (15)

where U=[u, v, w, a, B1", U=[u, v, w, @, B]". B, is the strain-displacement matrix of in-plane
displacement, B, is that of the substitute shear displacement, B, and B, are those related to noncon-
forming displacement modes, and U is the additional degrees of freedom corresponding to the
nonconforming displacement mode.

Based on Eq. (15), two new types of elements, namely, NC8-DC and NC8-CC are developed.

Table 3 Results of shear locking test for clamped square plates subjected to uniform load (NEL=16);
normalized values of maximum transverse displacement

Mesh Type Regular mesh Irregular mesh
L o 10-2 10 10~ 102 jo+  Remarks

Element

QSR 1.505 1.259 0.122 1.505 1.242 0.011 fail
QLS 1.505 1.268 1.266 1.506 1.264 1.236 pass
QHS 1.505 1.264 1.257 1.505 1257 0457 fail
NC8-AS 1.491 1.205 1.195 1.492 1.187 0.038 fail
NC8-BS 1.490 1.205 1.195 1.493 1.186 0.030 fail
NC8-CS 1.496 1.260 1.195 1.500 1247 0.052 fail
NC8-DS 1.496 1.267 1.196 1.500 1.267 0.384 fail
NC-QH 1.505 1.267 1.265 1.506 1.267 1.263 pass

Theory 1.500* 1.265 1.500* 1.265

*Thick plates which include shear deformation
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Fig. 7 Weak patch model.
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Fig. 8 Square plate models.

The last letter C indicates “Combined use of improvement schemes”.
It is shown that the results obtained by these two elements give reliable solutions without

any defects for the linear and nonlinear benchmark problems (See Table 5 and Figs. 9 and
10, Choi and Yoo 1991b).

4. Nonconforming transition elements

For an efficient analysis of the structures that have non-uniform stress distribution, it is a
usual practice to use a finer finite element grid in the area of the higher stress gradients. The
variable node transition element which has mid-side nodes, can be used effectively to connect
the rather coarser grid to the finer grid (Fig. 11). The behavior of this variable node element
has been improved also through addition of modified nonconforming modes in a similar way
(Choi and Park 1989, 1997, Choi 1992, Choi and Lee 1995).

4.1. Plane stress elements

To ensure the compatibility of the sides where two 4-node elements are connected to one
side of the transition element with mid-side node (Fig. 11), a special shape functions with the
slope discontinuity at the mid-side node are used as in Eq. (16).
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Table 4 Quadratic degencrated shell element
Shape Function Integration Scheme Number of
Element| for Displacement Conforming Nonconforming DOF/ Zero
Reference | Name Componeent  |Stiffness Shape Shape Functions Element | Eigenvalues
Functions
uv.w a,ﬂ N|~N8 Ns N}, Ng N}, Nd, Befoxt:/Aﬂer Total Spuri-
- — I --_ [ - - - ICondensa- ous
uvw.a.f ulviw|uvw | uyw <
tion modes
Zienkiewicz | QSR 8-node | 8-node (In-plane R -0 - - 40/40 8 2%
(1971) Shear R - - -
Parisch QLR | 9-node |9-node [In-plane R - - - 45/45 13 |5+2%
(1979) Shear R - - - - -
QLS 9-node | 9-node |In-plane N - - - - 45/45 9 12+1*
Shear R - - - - - )
QLN | 9-node | 9-node [In-plane N - - - 45/45 6 0
Shear N -l - - - -
Choi and |NC8-DC| 8-node | 8-node |In-plane R R{R{R| N N 55/40 7 1*
Yoo(1991a) +N,~Ns Shear M N|N|M| N N
NC8-CC| 8-node | 8-node |In-plane R R|{R|{R| N - 49/40 7 1*
+ N\N>Ns Shear M N|N|M| N -
R: Reduced integration (2X2)
N: Normal integration (3X3)
M: Modified integration (2X3/3X2)
*: Not Communicable in a mesh of two or more elements
z
E=0.29x108
v=0.22
Length=12.0
Width=1.1
Twist=90°
Thickness=0.32 or 0.32x10-2
2x12 Mesh
P(in-plane)
P(out-of-plane)
x
Fig. 9 Twisted beam subjected concentrated load at tip.
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Ny=N/, Ns=—(1=I¢h1=mn). Ne=~ (1+¢X1—1nl) (16)

where,
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Table 5 Normalized solution for twisted beam

Thickness Thick(t=0.32) Thin(t=0.0032)
Load Case In-Plane Out-of-Plane In-Plane Out-of-Plane
Element

QLR 0.5424 0.1754 0.5309 0.1294
QLS 0.5370 0.1736 0.0105 0.0039
QLN 0.5316 0.1719 0.0053 0.0013
NC8-DC 0.5424 0.1772 0.5256 0.1294
NC8-CC 0.5424 0.1754 0.5203 0.1294
Beam Theory 0.5424 0.1754 0.5256 0.1294

4.0
R=2540
30 - =508
E=3.10275
- h=12.7
& - v=0.3
] «=0.1 rad
3
g 20
=
8
=
=3 —
5]
1.0 k
—&— NC8-DC
L —8— NC8-CC
—A— QSR
—&O— Surana(1983)
00 g1 | | 1 | |
0.0 100 200 30.0

Central Deflection (Wc)

Fig. 10 Load-deflection relation for hinged cylindrical shell subjected to concentrated load.

Finer elements Coarser element
@ coner nodes
O mid-side nodes

Fig. 11 Configuration and usage of transition element.
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Fig. 12 Locally refined mesh for semi-infinite elasticity problem.

Table 6 Test result for semi-infinite elasticity problem

El d h Ref Number of Vertical Vertical
ement and mes clerences elements deflection at A  stress at B
C4+C5+C6 Gupta (1978) 52 0.6513 —-574.7
NC4+NC5+NC6 Choi (1992) 52 0.6791 —630.1
NC4 Bathe, er al. (1974) 1024 0.6857 —631.5
M’::I;(Héf)(Hmnl for i=1, 2, 3. 4 (16a)

In order to improve the behavior of the elements, the special nonconforming displacement modes
in Eq. (17) are added to the original displacement fields.

N=(1-¢), N=(1-n),
N=(1=O)—(A=1EDA—m2,  Na=(1—n)—(1+&X1—Inl)2 (17)

Considering the slope discontinuity in the domain of transition element, the modified quadra-
ture formula was used to numerically integrate the stiffness matrix (Gupta 1978, Choi and Park
1992).

The inplane transition elements developed do not produce any spurious zero energy modes.
The accuracy and applicability of the transition elements to local mesh refinement for an efficient
solution of a plane stress problem was shown in the semi-infinite elasticity problem under a
concentrated load (See Fig. 12). The results obtained by the nonconforming transition model
(Choi 1992) is better than that obtained by the conforming model (Gupta 1978). The solution
by 1024 nonconforming 4-node elements (Bathe, er al. 1974) is given as a reference solution
(See Table 6).

4.2. Plate bending elements
For the formulation of the variable node transition plate bending element which is based

on the Reissner-Mindlin plate theory, the shape functions for the mid-side nodes are written
as
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=74

N, =(1-&)(1-m)/2 n  N=01+&)(1~-0")/2
4
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N, =(1-8)(1+n)/2 N, =(-50-7°)/2

Fig. 13 Non-conforming modes for transition plate bending element.
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Fig. 14 Clamped square plate; A quarter model.

Table 7 Test result for clamped square plate

Element and mesh Reference Number of elements Vertical deflection™®
C4+C5+Co** - 124 0.0185403
NC4+NC5+NC6  Choi and Park (1989) 124 0.0524307
Thin plate/shell
HCT(16X16) Clough, er al. (1968) 256 0.0521213
Thin plate theory Timoshenko (1959) - 0.0521830

*Deflection at loaded point
**This variable node plate element is formulated without non-conforming modes

N=2(1=&XI—n.  Ne=(+&X1-17) (19)

and the same shape function in Eqgs. (16) and (16a) are used for the four corner nodes. For
the element sides with mid-side nodes, the curved deformation is already expressed by the original
shape functions. Therefore, it is desirable to add the nonconforming modes to the sides without
any mid-side nodes so that the deformations in an element can be consistent. Thus, the noncon-
forming displacement modes shown in Fig. 13 are selectively added to the 5-node and 6-node
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transition elements, and also to the regular 4-node element. The nonconforming displacement
modes are added only to the transverse displacement (w) mainly to remedy the excessive shear
strains in the direction of thickness (Choi and Park 1989). The added nonconforming modes
are N\~N, for 4-node element, N;~N, for 5-node element, and N; and N, for 6-node element
and the normal 2X2 Gaussian quadrature is used for evaluation of the individual element
matrices.

To show the effectiveness of these transition elements for plate bending problems, a clamped
square plate under a concentrated load at the center was tested (See Fig. 14(a), (b)) and the
test results are listed in Table 7. The accuracy of results is satisfactory when compared with
the results by HCT (16X 16 thin plate/shell element, Clough and Johnson 1968) where a larger
number of elements in the HCT model (256 elements) is used compared with a small number
of elements in the transition model (124 elements).

5. Drilling degrees of freedom and nonconforming modes

A good reason for using the drilling degrees of freedom in the plane stress/strain elements
is found in modeling shells as an assembly of flat elements. In a typical finite element method,
degrees of freedom allowed at each node consist of three translational displacements and three
rotations. If flat shell elements which do not include drilling degrees of freedom are connected
to a node where six degrees of freedom are assigned, then the drilling degree of freedom at
that node is not resisted and the stiffness matrix becomes singular. This difficulty is neatly
avoided by including drilling degrees of freedom in the element stiffness formulation.

There are several methods suggested to establish the plane stress element with drilling degrees
of freedom (Cook 1986, Ibrahimbegovic, er al. 1990, MacNeal and Harder 1988, Yunus 1988,
Choi and Lee 1995). The drilling degrees of freedom for these elements are associated with
the parabolic shaped deformation of the element sides (See Fig. 15). When these parabolic modes
are applied to the displacement interpolation, the deformation of the element side can not be
fully expressed by nodal rotations only since the deformation in the tangential direction of element
side needs to be better approximated by additional displacement mode. Thus, the normal compo-

Fig. 15 Side displacement produced by drilling degrees of freedom.
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Table 8 Tip displacement of Cook’s problem

Element Nodes/element  2X2 mesh 4X4 mesh Remarks
Q4 4 11.845 18.299 basic 4-node element
Ibrahimbegovic 4 20.683 23.668 w/ bubble mode
et al. (1990)
CLM-1 4 19.442 22.734
Choi and Lee 5 19.669 22.863 w/o tangential non-
(1995) 6 20932 23.133 conforming modes
7 22967 23.577
CLM-2 4 19.689 22.816
Choi and Lee 5 19.877 22953 w/ tangential non-
(1995) 6 21.120 23.205 conforming modes
7 23334 23.694
Reference value* - 2391 -

*Reference value is obtained from a fine mesh

ry B '
| |
H%

Fig. 16 Cook’s membrane.

48

v

nents of the mid-side displacements is expressed by the nodal rotations

A, =N4(E 1)L (¥~ ¥) (19)
and the tangential components of the mid-side displacements are retained as nonconforming
modes. In these formulation, the normal component of displacement along the element side
acts like the additional nonconforming mode and the retained tangential nonconforming modes
are used as another tool for improving the behavior of the element.

The displacement field of the transition membrane element is defined as

[:]ZZN,» ut Y Auy it Y Augti+N,Au, 20)

where Au, is defined in Eq. (19), Au, is tangential component of the mid-side displacements
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by nonconforming modes, N, is the bubble mode, n; and ¢ are normal and tangential vectors
to the corresponding side (Choi and Lee 1995). The inplane transition element which does not
have tangential nonconforming modes is denoted as CLM-1 and the element which has tangential
nonconforming modes is denoted as CLM-2.

The numerical results of the membrane problem in Fig. 16 solved by the original variable
node membrane element with drilling degrees of freedom (CLM-1) and that of the element
with additional tangential modes (CLM-2) are listed in Table 8. It is shown that the addition
of tangential nonconforming modes also improve the behavior of the element with drilling degrees
of freedom.

Choi and Lee (1996) also established variable node transition flat shell element with drilling
degrees of freedom as a combination of the variable node membrane element CLM (Choi and
Lee 1995) and the variable node plate with substitute shear strain fields (Choi and Park 1992).

6. Conclusions

A state-of-the-art on the development of a series of finite elements by the addition of nonconfor-
ming displacement modes is presented. The general behavior of these nonconforming plate and
shell finite elements ranging from four to eight node elements is best improved by the combined
use of the addition of nonconforming modes, the application of reduced (or selective) integration,
and construction of substitute shear strain fields even though the individual schemes can improve
the behavior of the elements to some extent. The improvement is attributable to the fact that
the merits of each technique are merged into the formation of new elements in a complementary
manner. ,

When the elements are formulated by the combined use of the multiple improvement techni-
ques, it was also shown that these elements give the reliable solutions without any defect such
as locking and spurious zero energy modes for linear as well as nonlinear benchmark problems.

Among these nonconforming elements, NC-QH and NC8-DC showed the best performances
in 8-node degenerated plate/shell elements. The improvement obtained for 4-node element by
addition of nonconforming modes was more significant than that obtained for 8-node element.
However, the 4-node element still need to be improved further to become an effective element
for the practical use.

The behavior of the transition elements with variable node can also be improved by the
addition of nonconforming displacement modes in the same manner that an element without
variable node is improved. There are no problems associated with locking and spurious zero
energy modes in the behavior of the transition elements for moderately thick plate. These transi-
tion elements with a variable number of nodes are more versatile and can be effectively used
in the adaptive mesh refinement in practical problems.

To formulate a new versatile transition flat shell element incorporating the concept of non-
conforming modes, the combination of a variable node transition membrane element with drilling
degrees of freedom (CLM) and transition plate bending element was also suggested.

The concept of the combined use of the different improvement schemes discussed in the
present paper can be applied to the three-dimensional problems which is beyond the scope
of this paper.
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