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Abstract.  We employ the so-called problem-dependent linked interpolation concept to develop two cubic 

4-node quadrilateral plate finite elements with 12 external degrees of freedom that pass the constant bending 

patch test for arbitrary node positions of which the second element has five additional internal degrees of 

freedom to get polynomial completeness of the cubic form. The new elements are compared to the existing 

linked-interpolation quadratic and nine-node cubic elements presented by the author earlier and to the other 

elements from literature that use the cubic linked interpolation by testing them on several benchmark 

examples. 
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1. Introduction 
 

The concept of a linked interpolation, in which the displacement field depends not only on the 

nodal displacements, but also on the nodal rotations, has been largely exploited in the numerical 

simulations for the Mindlin-plate finite-element models (Zienkiewicz and Taylor 2000, Jelenić and 

Papa 2011, Zienkiewicz et al. 1993, Taylor and Auricchio 1993, Xu et al. 1994, Auricchio and 

Taylor 1994, Ribarić and Jelenić 2012). When used with no other provisions, the linked 

intepolation as the only plate problem interpolation, applied on the general quarlilateral element 

with 4 nodes is able to pass the constant bending patch test exactly (Jelenić and Papa 2011). This 

test is acctualy considered as the main consistence crtiteria for the convergence of a finite element 

model, but passing the test on its own does not mean that the convergence is at the same time 

acceptably fast (Chen et al. 2009). 

By “quadratic” linked interpolation we here mean such interpolation in which the displacement 

field is described by a linear interpolation of the nodal displacements onto which a quadratic 

interpolation of the nodal rotations is superimposed. At the same time the rotation fields are 

interpolated bilinearly (Lagrangean) and all interpolations are controled by 4+4 rotational degrees 

of freedom and 4 nodal displacement degrees of freedom. Since the element displacement and the 

rotations are interpolated independently, in deriving the element deformations and stress resultants 

only the first derivatives of the displacement and rotation fields are needed.  
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Many reasurchers have used the linked interpolation as a basis for developing their new plate 

elements and have found that the linked interpolation by itself is not sufficient for development of 

well-behaving finite elements, so they have attempted to improve it by introducing additional ideas 

(Hughes and Tezduyar 1981, NacNeal 1982, Crisfield 1984, Bathe and Dvorkin 1986 among 

others) 

Tessler and Dong (1981) introduced a shear constraint condition to eliminate free internal 

nodal degrees of freedom in the Timoshenko‟s beam higher-order displacement and rotation 

interpolations, as a better approach than the static condensation of those degrees of freedom. 

Inspired by this idea, Tessler and Hughes (1983) used continuous transverse shear edge 

constraints on serendipity 8-node displacement and 4-node rotation interpolations to derive a non-

uniform order kinematic interpolation scheme (here called the linked interpolation). Additional 

requirements on total strain energy were adopted to improve the rate of convergence by 

introducing what was termed the element-appropriate shear correction factors. 

The low-order quadratic linked interpolation, together with added higher order terms in the 

rotation interpolations and a mixed-type approach involving interpolation of the shear force field, 

were proposed by Zienkiewicz et al. (1993), Taylor and Auricchio (1993, 1994), Xu et al. (1994) 

in order to improve the accurcy of the plate model as well as to satisfy the necessary count 

conditions of the mixed-type approach. 

Crisfield (1984) started with a nine-node Lagrangian interpolation for the displacement field 

and an eight-node serendipity interpolation for the rotation fields and constructed a pure 

displacement-based plate element where some of the internal degrees of freedom were again 

eliminated by the use of shear constraints. The resulting element had twelve vertex degrees of 

freedom and four pairs of independent rotation degrees of freedom at the element side midpoints. 

In the present paper, the idea of Crisfield (1984) is developed further, and these midside rotations 

are going to be replaced by the projections of the normal-to-the-side hierarhical rotations together 

with additional bubble-type rotations needed to complete the quadratic rotation interpolation form. 

In his paper, Ibrahimbegović (1993) used the quadratic and the cubic linked interpolations to 

construct two parent types of elements as we do in the present work, but with shear strain 

independently assumed to take a linear interpolation form. He also leaves the hierarhical midside 

normal rotations as independent variables between adjacent elements and studies only undistorted 

element meshes. The same concept but with triangular elements was studied by Papadopoulos and 

Taylor (1990).  

Wanji and Cheung (2000) used a similar approach with the cubic linked interpolation, but they 

eliminated the midside rotations by constraining shear to be constant along the element sides. This 

allowed both the displacement and the rotation field to be expressed using only the boundary 

degrees of freedom, but came with the expense of introducing the material constants in the 

interpolation, which thus became problem-dependent (Dukić and Jelenić 2014) and linked not only 

in the displacement, but also in the rotation field. Shear strain was then assumed as an independent 

field and interpolated between the opposite element sides. Using identical displacement 

expressions as Wanji and Cheung (2000), Zhang and Kuang (2007) developed a nine-node 

element with improved results. 

Soh et al. (2001) took a similar approach, but expressed shear using nodal shear values derived 

from shear strains of adjacent sides to the regarded node. All their elements (RDKQM (Wanji and 

Cheung 2000) and ARS-Q12 (Soh et al. 2001)) derived using the cubic interpolation and the 

assumed shear concept showed excellent behaviour for regular and distorted meshes in the 

numerical tests. 
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More elements with excellent performance can be found among the hybrid-Trefftz plate 

elements of Choo et al. (2010), Rezaiee-Pajand and Karkon (2012) (QHT), Cen et al. (2014) 

(HDF-P4-11β), who also used the cubic linked interpolation as an element side constraint for the 

fundamental analytical solution of the displacement function by witch the deflection and rotation 

fields can be expressed. The unknown coefficients of the displacement function are determined by 

satisfying generalized conforming conditions on the element sides in terms of the nodal 

parameters. 

In Ribarić and Jelenić (2012) the linked interpolation is expanded from the four node 

quadrilaterals to the higher order elements (nine- and sixteen-node elements) increasing the 

interpolation polynomial order, resulting in the increased accuracy and faster convergence rates, 

while remaining strictly within the realm of the pure displacement approach. Since higher-order 

polynomials employed there to construct higher-order linked-interpolation elements resulted in 

significaly better finite-element performance, here we want to answer to the question of whether it 

is posible to use higher-order poynomials with the same result on lower-order elements. In 

particular, we shall investigate if four-node qudrilateral elements may be improved by increasing 

the order of the linked interpolation from quadratic to cubic. 

 
 

2. Linked interpolations on four-node plate element 
 

The key ingredients of the Minlin plate theory involving kinematic and constitutive equations 

as well as the weak form are given in Zienkiewicz and Taylor (2000). In Ribarić and Jelenić 

(2012) the following linked interpolation for the transverse displacement field w along with two 

standard Lagrangian interpolations for the rotations around the global co-ordinate axes have been 

proposed for the lowest-order linked-interpolation element Q4-U2 
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In this basic linked interpolation for a four-node quadrilateral element, the complete second-

order polynomial expansion is involved in interpolating displacement over the element domain (9 

items in Pascal‟s triangle). All existing nodal parameters w1,…,w4, θx1,…,θx4, θy1,…,θy4, are 

involved together with the extra internal parameter wB0. The Q4-U2 element obtained in this way 

is capable of passing the standard patch test for general constant bending state exactly. We can 

describe such an interpolation form as full “quadratic”. Conformity with adjacent elements is 

fulfilled along every element side where interpolations are expressed only by the nodal degrees of 

freedom (d.o.f.) of that particular side and where the shear strain along the side is constant and also 

expressed by the same d.o.f. (shear strain continuity).  

In Ribarić and Jelenić (2012) it has been also shown how such an approach may be generalised 

to design a higher-order element Q9-U3 involving full cubic interpolation of the displacement 

field (and quadratic interpolation of the rotation fields). This generalisation builds on the 

interpolation concept termed in Jelenić and Papa (2011) the problem-independent linked 

interpolation, which, when applied to plates, necessarily invloves additional degrees of freedom 

inside the element and on its sides. In the case of beams, the same solution may be obtained 

alternatively, using the approach termed in Dukić and Jelenić (2014) the problem-dependent 

interpolation in which (i) the rotational field becomes linked to the nodal displacements, (ii) the 

shape functions become dependent on the geometric and material properties of the cross section 

and, very importantly, (iii) both fields are completely defined in terms of only the boundary nodal 

degrees of freedom. In this work, such a problem-dependent linked interpolation will be 

generalised to plates in order to develop new four-node elements Q4-U3 and assess their 

performance against the problem-independent linked-interpolation nine-node element Q9-U3 of 

the same order given in Dukić and Jelenić (2014). 

Following the complete Timoshenko beam homogeneous solution (see Appendix A) and 

generalising it to plate elements, interpolations along the element side can take a full form (cubic 

in displacement and quadratic in rotations), in which conformity along the element sides is still  

 

 

 
Fig. 1 Vectors of the nodal rotations (d.o.f.), and vectors of the normal-to-the-side hierarchical rotations 
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preserved together with the shear strain continuity, constraining shear along the element side to be 

constant again. In this way we obtain 
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In expressions (2a), (2b) and (2c) the “Δκij” are the element side curvature increments per side 

lengths, added to the global coordinate rotations as hierarchical projections of the normal midside 

rotations (Fig. 1) and expressed by nodal d.o.f. of that side (see Appendix A) 

   
2

2

6

)(

12
1

1

22 ij

ij

ij

yjyi

ij

xjxi

ijij
L

GtkL

D
xxyyww



















 .                     (3) 

Or, for the first side of the element connecting node 1 with node 2 
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In above expressions D is a plate bending rigidity, D=Et³/(12(1-ν²)), Lij is the length of the side 

between the nodes i and j and a plate shear rigidity is Gtk (E and G being the elasticity and shear 

modulus, ν being the Poisson coefficient, t a plate thickness and k shear section correction factor, 

usually taken k=5/6). 

Following the same approach as in Ribarić and Jelenić (2012) a new plate element named Q4-

U3 is developed based on the existing element Q4-U2 with interpolation polynomials of an order 

higher by one - namely (2a), (2b) and (2c). This implementation does not affect the ability of the 

element to pass the constant bending patch test, because all the side curvature increments Δκij, will 

vanish, as the shear strains along the element side vanish in the patch test. Better behaviour and 

faster convergence is expected since higher interpolation polynomial forms are involved even 

though the total number of the degrees of freedom remains unaltered. 

Further, more polynomial terms can be added to the interpolation functions, to fulfill the 

quadratic form for both rotations (one additional term per rotation, missing in the Pascal‟s 

triangle), and the cubic form in displacement interpolation (additional three terms missing in the 

Pascal‟s triangle for cubic form), all associated to additional new bubble degrees of freedom. In 
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this way we obtain 
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The plate element formulated in this way as an improvement of the cubic linked-interpolation 

element Q4-U3 is denoted as Q4-U3R5. 

Additional terms in (4a), (4b) and (4c) do not affect the ability of the element to pass the 

constant bending patch test, because all the added bubble functions satisfy the element stiffness 

matrix criteria from Ribarić (2012) resulting in zero bubble parameters when applied on the patch 

test, including the bubble functions added in the rotation fields. Also, any of the above five bubble 

functions can be added individually improving the element behavior to some extent, but the best 

result is achieved by adding them all, as can be seen in the following numerical results. 

 

 

3. Numerical examples 
 

In the following numerical experiments the new developed elements Q4-U3 and Q4-U3R5 are 

compared with the already presented elements with the linked interpolations in Ribarić and Jelenić 

(2012): Q4-U2 (four-node element with quadratic interpolations) and Q9-U3 (nine-node element 

with cubic interpolations) and with the mixed element Q4-LIM of Auricchio and Taylor (1994), 

which also uses the linked interpolation in modeling displacement and rotation fields and is 

incorporated in their FEAP program. The 3x3 integration scheme is used to form the element 

stiffness matrix of Q4-U2 and Q4-LIM, while 4x4 is used for Q4-U3 and Q4-U3R5 elements. 

When the sampling point is needed in calculation of the stress resultants, for example in 

calculation of the extreme values for bending moments, the same points are used, with the 

exception for Q4-LIM element, where the central Gauss integration point is used by the program 

FEAP. 

The expressions for the shear strains derived in Q4-U3 and Q4-U3R5 elements have cubic 

forms, including terms that are responsible for over stiffening of the element matrix and the 

locking effect for very thin models in coarse meshes. When the reduced integration of the shear 

terms in presented elements is preformed, with 3× 3 integration points, the results are slightly 

better in all numerical examples. With 2× 2 integration points a numerical instability is observed.  

The results for the selected numerical examples are also compared with the results of other 

elements and from the data taken from the referenced literature, when they are comparable in mesh 

geometry or material data. 

 

3.1 The constant bending patch test 
 

Consistency of the linked interpolation elements is tested for the constant strain conditions on 

the patch examples with five elements, covering a rectangular domain of a plate as shown in Fig. 2 

1076



 

 

 

 

 

 

Problem-dependent cubic linked interpolation for Mindlin plate four-node... 

 
 

and Fig. 3. The displacements and rotations for all internal nodes within the patch are checked for 

the specific displacements and rotations given at all external nodes (Chen et al. 2009). The plate 

properties are E=10
5
, ν=0.25, k=5/6, while two different thicknesses corresponding to a thick and 

a thin plate extremes are considered: t=1.0 and t=0.01. 

The constant bending state is analysed (Chen et al. 2009). Displacements and rotations are 

expressed respectively by 

2/)21( 22 yxyxyxw  ,   2/)22( yxx     and   2/)21( yxy  . 

The exact displacements and rotations at the internal nodes and the exact strains and stress 

resultants at every integration point are expected. The moments are constant Mx=My=-11111.11 t³, 

Mxy=-3333.33 t³ and the shear stress resultants vanish (Sx=Sy=0).  

For the given values for the displacements and rotations at the external nodes calculated from 

the above data (12 parameters), the displacements and rotations at the internal nodes, the bending 

and torsional moments and the shear stress resultants at the integration points and the problem 

strain energy are computed and checked if they correspond to the analytical values. 

The results of the patch tests for all proposed elements are given in Table 1 for the 

displacement at node 1 with coordinates (0.04, 0.02) and for the strain energy of the problem. 

When exact, the results are not altered if any of the internal nodes changes its position in the mesh. 

 

 

 
Fig. 2 Patch for consistency assessment of four node elements 

 
Table 1 The patch test results for the proposed elements on the patch geometry from Fig. 2 and Fig. 3, for 

zero constant shear patch test-constant curvature 

Elements 
Displacement at node 1 of the patch Strain energy 

Result 
t=1.0 t=0.01 t=1.0 t=0.01 

Q4-LIM 0.5414021 0.5414002 0.3679993E+03 0.3679998E-03 close pass 

Q4-U2 0.5414000 0.5414000 0.3680000E+03 0.3680000E-03 pass 

Q4-U3 0.5414000 0.5414000 0.3680000E+03 0.3680000E-03 pass 

Q4-U3R5 0.5414000 0.5414000 0.3680000E+03 0.3680000E-03 pass 

Analytical 0.5414 0.5414 0.3680000E+03
 

0.3680000E-03
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Fig. 3 Element patch for consistency assessment of four node elements with convex distortion 

and negative Jacobian determinant at some element integration points 

 
Table 2(a) Eigenvalues of a central element in the patch test from Fig. 2, for t=1.0 

1.1 Element 
1 2 3 4 5 6 

7 8 9 10 11 12 

Q4-LIM 
6.6693E+04 2.7748E+04 1.8138E+04 1.6697E+04 8.3345E+03 5.7079E+03 

4.0838E+03 3.2616E+03 8.8782E+00 -6.6265E-12 -3.3583E-12 -1.0851E-12 

Q4-U2 
6.6728E+04 2.7795E+04 1.8138E+04 1.6710E+04 8.3345E+03 6.4810E+03 

4.0838E+03 3.7063E+03 8.8820E+00 -5.1792E-12 -2.1934E-12 6.6293E-13 

Q4-U3 
6.6678E+04 2.7832E+04 1.8138E+04 1.6664E+04 8.3028E+03 6.4753E+03 

4.0838E+03 3.7038E+03 8.8778E+00 -2.5676E-12 -1.0974E-12 1.8844E-13 

Q4-U3R5 
6.6678E+04 2.7832E+04 1.8138E+04 1.6663E+04 8.3028E+03 5.7076E+03 

4.0838E+03 3.2686E+03 8.8778E+00 -6.7442E-12 3.9096E-12 -1.9294E-12 

 

 

When the patch test is passed, the elements are not sensitive to the position of the vertex nodes, 

even if an element has a negative determinant of the Jacobian transformation matrix in some 

integration point, like some of the elements in Fig. 3 have. 

The eigenvalues of the central element from the patchwork of Fig. 2 are calculated next. First a 

regular form (distortion level 0) of the element is analyzed (with the free internal nodes: (0.06, 

0.03), (0.16, 0.03), (0.06, 0.08) and (0.16, 0.08)) together with three different plate thicknesses 

t=1.0, t=0.01 and t=0.0001, corresponding to the very thick, thin and extremely thin plates. Then 

the eigenvalues are calculated for the distorted central element shown in Fig. 3, again with the 

same three different thicknesses. The eigenvalues are given in Tables 2 and 3. 

In all cases the elements have the correct rank and only the three eigenvalues, corresponding to 

the solid body motions are zero. There are no additional spurious zero modes responsible for 

instability of the finite element models. The eigenvalues for the very thick elements belong to a 

relatively small subset of real numbers, in regular or distorted geometry thus giving a better 

conditioned problem. The eigenvalues are getting smaller as the plate thickness is reduced and the 

better performances can be expected for the elements with eigenvalues in greater proportion to the 

thickness. 
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Table 2(b) Eigenvalues of a central element in the patch test from Fig. 2, for t=0.01 

1.2 Element 
1 2 3 4 5 6 

7 8 9 10 11 12 

Q4-LIM 
9.5984E+01 3.7956E+01 1.4638E+01 3.0158E-02 1.8138E-02 5.7085E-03 

4.6884E-03 4.0838E-03 3.2617E-03 1.1999E-14 -2.6063E-15 1.5871E-15 

Q4-U2 
6.6727E+02 2.7792E+02 1.6709E+02 1.4201E-01 4.0729E-02 1.8138E-02 

8.7957E-03 5.2137E-03 4.0838E-03 3.5312E-14 2.0054E-14 5.7841E-15 

Q4-U3 
7.5721E+01 6.4926E+01 5.1823E+00 2.0214E-01 2.0760E-02 1.8930E-02 

1.8138E-02 4.3624E-03 4.0838E-03 8.0639E-14 5.7082E-15 -1.3211E-15 

Q4-U3R5 
7.5721E+01 6.4926E+01 5.1823E+00 2.0760E-02 1.8138E-02 1.5550E-02 

8.6580E-03 4.3624E-03 4.0838E-03 7.5043E-14 -2.7079E-15 2.6460E-15 

 
Table 2(c) Eigenvalues of a central element in the patch test from Fig. 2, for t=0.0001 

1.3 Element 
1 2 3 4 5 6 

7 8 9 10 11 12 

Q4-LIM 
1.1211E-04 7.3477E-05 1.6044E-05 3.6279E-08 1.8138E-08 5.7085E-09 

4.8160E-09 4.0838E-09 3.2617E-09 6.6332E-21 -3.6242E-21 1.3526E-21 

Q4-U2 
6.6727E+00 2.7792E+00 1.6709E+00 1.3889E-03 3.7027E-04 2.3153E-05 

1.8138E-08 5.3307E-09 4.0838E-09 5.7369E-16 -2.7128E-16 1.5136E-16 

Q4-U3 
1.5904E-01 2.2222E-03 1.3890E-04 8.5385E-05 7.9337E-05 5.3466E-06 

1.8138E-08 5.3295E-09 4.0838E-09 -5.5884E-16 6.9793E-18 1.3609E-18 

Q4-U3R5 
1.5904E-01 8.5423E-05 7.9337E-05 2.4695E-05 1.2356E-05 5.3455E-06 

1.8138E-08 5.3295E-09 4.0838E-09 -5.5382E-16 7.4190E-18 -4.9468E-18 

 
Table 3(a) Eigenvalues of an irregular central element in the patch test from Fig. 3, for t=1.0 

1.4 Element 
1 2 3 4 5 6 

7 8 9 10 11 12 

Q4-LIM 
7.2803E+04 3.0391E+04 1.9800E+04 1.4848E+04 8.9441E+03 6.2422E+03 

4.2385E+03 3.0221E+03 1.0143E+01 -3.7733E-12 2.2417E-12 -9.9541E-13 

Q4-U2 
7.3241E+04 3.1327E+04 1.9811E+04 1.4505E+04 9.0171E+03 7.0887E+03 

4.4838E+03 3.2068E+03 1.0724E+01 5.7283E-12 2.7508E-12 1.1753E-12 

Q4-U3 
7.3178E+04 3.1379E+04 1.9811E+04 1.4481E+04 8.9441E+03 7.0791E+03 

4.4802E+03 3.2065E+03 1.0730E+01 -3.9317E-12 3.6111E-12 -1.1807E-12 

Q4-U3R5 
7.3172E+04 3.1047E+04 1.9802E+04 1.4471E+04 8.8804E+03 6.3678E+03 

4.2471E+03 3.0327E+03 1.0645E+01 -6.7439E-12 2.3665E-12 -1.5341E-12 

 

 

3.2 Cylindrical bending of simply supported strip 
 

In this numerical test the ability of the linked interpolation elements to model constant shear 

stress state is checked, when the regular element mesh is applied, which corresponds to the 

orientation of the cylindrical linear bending (Fig. 4). The same test was performed in Auricchio 
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Table 3(b) Eigenvalues of an irregular central element in the patch test from Fig. 3, for t=0.01 

1.5 Element 
1 2 3 4 5 6 

7 8 9 10 11 12 

Q4-LIM 
9.0171E+01 3.3633E+01 1.0707E+01 3.3586E-02 1.9798E-02 6.4333E-03 

4.2690E-03 4.1803E-03 3.0219E-03 1.6081E-14 -2.5197E-15 -1.0114E-18 

Q4-U2 
7.3239E+02 3.1324E+02 1.4502E+02 1.9604E-01 6.3482E-02 1.9837E-02 

1.0173E-02 4.7120E-03 3.6416E-03 2.2270E-14 -8.4562E-15 5.3577E-15 

Q4-U3 
1.3317E+02 1.0045E+02 1.0045E+02 2.7533E-01 4.0928E-02 1.9640E-02 

1.0477E-02 4.2408E-03 3.6246E-03 8.8104E-15 -3.6379E-15 9.3347E-17 

Q4-U3R5 
9.8129E+01 7.5352E+01 4.1124E+00 2.7194E-02 2.2634E-02 1.9121E-02 

8.9980E-03 4.1655E-03 3.6241E-03 1.2018E-14 5.0270E-15 -2.7670E-15 

 
Table 3(c) Eigenvalues of an irregular central element in the patch test from Fig. 3, for t=0.0001 

1.6 Element 
1 2 3 4 5 6 

7 8 9 10 11 12 

Q4-LIM 
1.0350E-04 6.5769E-05 1.1522E-05 3.9015E-08 1.9799E-08 6.4418E-09 

4.3298E-09 4.2190E-09 3.0219E-09 6.2238E-21 -2.8074E-21 -6.5979E-22 

Q4-U2 
7.3239E+00 3.1324E+00 1.4502E+00 1.9212E-03 5.9407E-04 2.7647E-05 

1.9645E-08 4.9200E-09 3.6480E-09 3.0867E-16 -1.3298E-16 -5.1774E-17 

Q4-U3 
1.0063E+00 3.6560E-01 3.0024E-02 2.7299E-03 3.8814E-05 2.8545E-06 

1.9644E-08 4.9177E-09 3.6480E-09 -1.0681E-15 -1.2556E-17 -1.6159E-18 

Q4-U3R5 
3.9180E-01 2.6470E-01 8.1248E-03 3.7637E-05 3.1985E-06 4.1845E-08 

1.9643E-08 4.8561E-09 3.6465E-09 -9.8346E-16 -2.7539E-17 -5.3689E-19 

 

 

Fig. 4 Simply supported plate strip under symmetric force load, F=400. Vertical displacement for the 

strip with shear energy included (lower line) and without shear energy (upper line), for t/L=1 
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Table 4(a) The simply supported strip results for linear bending from Fig. 4 (non-zero constant shear test), 

displacement at the center, wtot=wb+ws 

Mesh 
Q4-LIM Q4-U2 Q4-U3  and  Q4-U3-R5 

t=1.0 t=0.01 t=1.0 t=0.01 t=1.0 t=0.01 

1×2 0.33352 0.93543E+05 0.315000 0.75024E+05 0.34000 1.00024E+05 

1×4 0.33880 0.98825E+05 0.333750 0.93774E+05 0.34000 1.00024E+05 

1×10 0.33983 0.99853E+05 0.339000 0.99024E+05 0.34000 1.00024E+05 

1×50 0.33999 1.0002E+05 0.339960 0.99984E+05 0.34000 1.00024E+05 

1×100 0.34000 1.0002E+05 0.339990 1.00014E+05 0.34000 1.00024E+05 

Exact 0.34000 1.00024E+05 0.34000 1.00024E+05 0.34000 1.00024E+05 

 
Table 4(b) The simply supported strip results for linear bending from Fig. 4 (non-zero constant shear test), 

total energy of the model, Etot=Eb+Es 

Mesh 
Q4-LIM Q4-U2 Q4-U3 and  Q4-U3-R5 

t=1.0 t=0.01 t=1.0 t=0.01 t=1.0 t=0.01 

1×2 1.334074E+02 3.741701E+07 1.260000E+02 3.000960E+07 1.360000E+02 4.000960E+07 

1×4 1.355202E+02 3.952980E+07 1.335000E+02 3.750960E+07 1.360000E+02 4.000960E+07 

1×10 1.359317E+02 3.994127E+07 1.356000E+02 3.960960E+07 1.360000E+02 4.000960E+07 

1×50 1.359973E+02 4.000693E+07 1.359840E+02 3.999360E+07 1.360000E+02 4.000960E+07 

1×100 1.359993E+02 4.000893E+07 1.359960E+02 4.000560E+07 1.360000E+02 4.000960E+07 

Exact 1.360000E+02 4.000960E+07 1.360000E+02 4.000960E+07 1.360000E+02 4.000960E+07 

 

 

and Taylor, 1994 and none of the elements tested there could pass the test when elements of finite 

size were used. Here all cubic elements, the Q4-U3 and Q4-U3R5 are capable to reproduce the 

analytical solution exactly with only two elements in the mesh for any thickness (see Tables 4(a) 

and 4(b)). The material properties are: E=1000, ν=0.0. 

 It is interesting to notice that in this example all five bubble terms in Q4-U3R5 turn out to be 

zero by the imposed equilibrium conditions, so the parameters engaged are equal to the parameters 

in Q4-U3. 

Furthermore, when distributed load is applied, the cubic interpolated plate elements give exact 

results for transverse nodal displacement and rotation in every node and close approximations for 

the moment and shear resultants in every integration point and for the total strain energy. In fact, 

the solution exact at nodes will be obtained for any type of loading, as described by Tong (see 

Zienkiewicz and Taylor 2000 and Appendix A). 

 

3.3 Simply supported square plate with regular meshes 
 

A square plate with simply supported edges is a standard test example in which displacements 

and nodal rotations around the normal on the model edge are set to zero (SS2 support condition) 

and plate is subjected to a central point force of magnitude P=100.0. The plate material properties 

are E=10.92 and ν=0.3. Because of the double symmetry only one quarter of the plate is modeled 

and appropriate boundary conditions are imposed on the symmetry lines (Fig. 5). All elements in 

the model are regular (distortion of the level 0 in Ribarić and Jelenić 2014) and the rate of  
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Fig. 5 A quarter of the square plate under central point force at point C (16-element mesh) 

 
Table 5 Simply supported square plate (SS2) with the central point force: the displacement (w*) at the center 

Element L/t 
Element mesh density 

Reference 
2×2 4×4 8×8 16×16 32×32 64×64 

Q4-U2 

10 

1.13428 1.27851 1.34276 1.38407 1.41847 1.45082 

no reference 

Q4-U3 1.24314 1.31198 1.35179 1.38667 1.41923 1.45104 

Q4-U3R5 1.25911 1.31202 1.35218 1.38685 1.41928 1.45106 

Q4-LIM 1.24682 1.31092 1.35238 1.38688 1.41928 1.45105 

Q9-U3 1.32542 1.36876 1.40309 1.43531 1.46700 1.49856 

Q4-U2 

100 

0.43610 1.03267 1.14118 1.15777 1.16148 1.16266 

no reference 

Q4-U3 0.26088 0.85562 1.13375 1.16066 1.16245 1.16290 

Q4-U3R5 0.92408 1.13560 1.15899 1.16177 1.16245 1.16291 

Q4-LIM 1.11040 1.14605 1.15740 1.16103 1.16230 1.16289 

Q9-U3 1.11724 1.15606 1.16142 1.16260 1.16310 1.16345 

Q4-U2 

1000 

0.07686 0.14280 0.80227 1.11913 1.15584 1.15954 

1.160 

(Kirchhoff solution) 

Q4-U3 0.00499 0.04031 0.35006 0.99598 1.14518 1.15901 

Q4-U3R5 0.05123 0.47876 1.05075 1.13704 1.15926 1.16003 

Q4-LIM 1.10901 1.14435 1.15540 1.15874 1.15972 1.16000 

Q9-U3 1.03422 1.12816 1.15492 1.15935 1.16001 1.16010 

 

 
convergence is tested. The results are given in Table 5 for three different span-to-thickness ratios. 

In the table, dimensionless transverse displacement w*=w/(PL
2
/100D) is given. As the moment 

at the center should theoretically reach infinity and the model has singularity at the center point, it 

challenges the tested elements in the neighborhood to the center point. The best behavior and the 

greatest bending moment is reached again by the new Q4-U3R5 element, with some advantage 

even to the full cubic interpolated element Q9-U3. 
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Fig. 6 A simply supported (SS1) skew plate under uniform load 

 
Table 6 Simply supported skew plate: displacement w*=w/(qL

4
/100D) at the center with regular meshes for 

span to thickness ratio, L/t=100 and L/t=1000 

Element L/t 
Element mesh density 

Reference 
4×4 8×8 16×16 32×32 48×48 96×96 144×144 

Q4-U2 

100 

0.1629 0.2917 0.3745 0.4054 0.4133 0.4203 0.4223 

0.423* 

Q4-U3 0.3118 0.3855 0.4044 0.4119 0.4152 0.4200 0.4221 

Q4-U3R5 0.3397 0.4030 0.4147 0.4171 0.4183 0.4213 0.4229 

Q4-LIM 0.4257 0.4210 0.4231 0.4262 0.4278 0.4294 0.4299 

RDKQM 0.757 0.504 0.441 0.423    

ARS-Q12 0.7535 0.5033 0.4402 0.4230    

HDF-P4-11β 0.463 0.427 0.421 0.420    

QHT 0.425 0.413 0.414 0.416    

Q9-U3 0.3297 0.3872 0.4090 0.4155 0.4218 0.4241  

Q4-U2 

1000 

0.0094 0.0810 0.2030 0.3136 0.3535 0.3873 0.3969 

0.408* 

Q4-U3 0.1444 0.2624 0.3473 0.3824 0.3930 0.4028 0.4058 

Q4-U3R5 0.1507 0.2684 0.3523 0.3890 0.4000 0.4085 0.4102 

Q4-LIM 0.4185 0.4094 0.4073 0.4080 0.4090 0.4109 0.4119 

RDKQM 0.760 0.507 0.443 0.424    

ARS-Q12 0.7563 0.5059 0.4424 0.4243    

HDF-P4-11β 0.462 0.426 0.419 0.416    

QHT 0.422 0.409 0.408 0.408    

Q9-U3 0.2425 0.3105 0.3567 0.3740 0.3927 0.4034  

*Reference results are from Zienkiewicz et al. (1993) 

 
 
3.4 Simply supported skew plate 
 

In this example the uniformly load rhombic plate with very sharp skew angle of 30° is  
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Fig. 7 A quarter of the circular clamped plate under a uniform load (12-element mesh) 

 

 

considered with the simply supported edges (this time, of the so-called soft type SS1) to test 

performance of the rhombic shaped elements. Since there is a singularity in the moment field at the 

obtuse angle vertex, this test example is a difficult one. Furthermore, the Morley‟s series solution 

(Tessler and Hughes 1983) reveals that moments around the principal directions near that vertex 

have opposite signs.  

The problem geometry and material properties are given in Fig. 6, where an example of an 8×8-

element mesh is shown. 

The same elements as before are tested and the results are given in Table 6, together with some 

elements from literature: Q4-LIM (Auricchio and Taylor 1994), Q4-U2 and Q9-U3 (Ribarić and 

Jelenić 2012),  RDKQM  (WanJi and Cheung 2000), ARS-Q12 (Soh et al. 2001), QHT (Rezaiee-

Pajand and Karkon 2012) and HDF-P4-11β (Cen et al. 2014), for the thick and the thin plate, 

respectively. The dimensionless result w*=w/(qL
4
/10

4
D), is related to the central displacement of 

the plate. 

Very good result can be observed for the proposed elements on both the thick and the thin plate 

model. 

 

3.5 Clamped circular plate 
 

In this example the proposed elements will be tested on problems which necessarily involve 

irregular meshes like the one shown in the Fig. 7. In this example the reference solution can be 

found analytically and the amount of error in particular field can be evaluated for various mesh 

densities. The plate is loaded by a uniformly distributed loading q=1.0. The material properties are 

the same as in the previous examples. 

The exact solution for the transverse displacement and the radial rotation of the problem can be 

derived in polar coordinates (Wang et al. 2000) and these results consist of the bending part (“B”) 

and the shear part (“S”). The index “M” stands for the total (Mindlin) expressions 
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The total strain energy of the problem is 
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Again only one quarter of the plate is modeled with appropriate boundary conditions along the 

chosen axes of symmetry. On the outer boundary clamped state is simulated by enforcing all nodal 

d.o.f. to be zero. The results are given in Table 7 for all element types and typical meshes and 

mesh densities used in the literature. A 12-element mesh is depicted in Fig. 7. The dimensionless 

values of the central point displacement is presented in Table 7: 
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In Table 7 the influence of different number of bubble terms used in the interpolation functions 

for the enrichment of the basic Q4-U3 element is also investigated. When only first two bubble 

terms in rotation fields (4a) and (4b) are employed the results are given as the Q4-U3R2 element. 

When other two bubble terms from (4c) are added in displacement field the results are given as the 

Q4-U3R4 element. When all bubble terms are used then the Q4-U3R5 element is obtained and 

tested.  

The rate of convergence towards the exact solution may be evaluated by calculating error 

measure of the strain energy for the finite element solution (uh) compared to the strain energy of 

the reference solution (ur) 
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In this expression εr and Er denote the reference strain and the reference strain energy (for the 

clamped circular plate it is the analytical solution (9)), while εh and Eh are the strain and the strain 

energy from the finite element solution, respectively. C denotes the constitutive matrix. 

It is often more convenient to analyse the relative error measure: 
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The error measure for the 2D elements with four nodes is proportional to the square of the 

element density (1/N) (Lee and Bathe 2010) 
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where N is the number of elements per model side and c is a constant. The coefficient  
2

1









N
 

will 

be the reference measure for comparing the convergence behavior of the presented elements as 

well as the reference measure for comparison with the results from literature – see Fig. 8 where 

both values are logarithmically scaled. 
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Table 7 Clamped circular plate: displacement wc* at the plate center  

Element 2R/t 
Mesh density (number of  the elements in a mesh) 

Reference 
3 12 48 192 768 

Q4-U2 

10 

0.0806344 0.1063609 0.1132119 0.1149365 0.1153693 

0.1155134 

Q4-U3 0.0894061 0.1094969 0.1139128 0.1150988 0.1154087 

Q4-U3R2 0.0929097 0.1095449 0.1139429 0.1151128 0.1154127 

Q4-U3R4 0.0931750 0.1095478 0.1139432 0.1151128 0.1154127 

Q4-U3R5 0.0930929 0.1095479 0.1139436 0.1151129 0.1154127 

Q4-LIM 0.09160 0.11063 0.11533 0.11649 0.11678 

RDKQM 0.12303 0.11748 0.11604   

ARS-Q12 0.123434 0.117584 0.115989 0.115629  

HDF-P4-11β 0.09472 0.10988 0.11402 0.11513  

QHT 0.0946 0.1099 0.1140   

Q9-U3 0.1155342 0.1155166 0.1155128 0.1155133  

Q4-U2 

100 

0.0187898 0.0747157 0.0944037 0.0971967 0.0976901 

0.0978348 

Q4-U3 0.0059686 0.0497918 0.0910725 0.0972421 0.0977428 

Q4-U3R5 0.0576750 0.0900175 0.0963267 0.0974890 0.0977468 

Q4-LIM 0.073635 0.091985 0.096406 0.097490 0.097760 

RDKQM 0.107709 0.100793 0.098695   

ARS-Q12 0.107685 0.100781 0.0985873 0.0980133  

HDF-P4-11β 0.07812 0.09279 0.09657 0.09752  

QHT 0.0777 0.0928 0.0966   

Q9-U3 0.0969626 0.0978155 0.0978339 0.0978348  

Q4-U2 

1000 

0.0002611 0.0047363 0.0438103 0.0899167 0.0970286 

0.0976580 

Q4-U3 0.0000649 0.0021103 0.0214904 0.0753062 0.0953238 

Q4-U3R2 0.0004593 0.0068514 0.0490272 0.0912598 0.0971433 

Q4-U3R4 0.0010042 0.0251863 0.0816792 0.0962204 0.0975028 

Q4-U3R5 0.0021279 0.0252207 0.0816849 0.0962207 0.0975028 

Q4-LIM 0.073455 0.091799 0.096216 0.097299 0.097569 

Q9-U3 0.0560415 0.0962369 0.0976332 0.0976575  

Q4-U2 

10000 

0.0000026 0.0000502 0.0008634 0.0121891 0.0659465 

0.0976563 

Q4-U3 0.0000065 0.0002305 0.0054419 0.0120170 0.0537687 

Q4-U3R5 0.0000219 0.0003574 0.0060313 0.0494853 0.0919406 

Q4-LIM 0.073453 0.091797 0.096214 0.097297 0.097567 

Q9-U3 0.0013335 0.0441348 0.0961874 0.0976279  

 

 

Looking at the results from Table 7 and diagrams in Fig. 8, the best performance of the 

presented elements can be again noticed for the refined cubic element Q4-U3R5. It is notable that 

all pure displacement elements suffer from a locking phenomenon when applied to very thin plates 

modelled by coarse meshes. On the contrary, the mixed element Q4-LIM is insensitive to the ratio 

of span to plate thickness, with the exception for the very thick model, where the element  

1086



 

 

 

 

 

 

Problem-dependent cubic linked interpolation for Mindlin plate four-node... 

 
 

 

 

Fig. 8 Convergence curves for the circular clamped plate problem. The relative error measure is 

used for the analysed elements on typical meshes from Fig. 7 

 

 

overestimates the analytical deformations as well as the strain energy. Slightly better performance 

can be noticed also for all compared elements from the literature.  
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4. Conclusions 
 

In this paper the problem-dependent cubic linked interpolation for the four-node Mindlin plate 

finite elements is presented. In comparison with the problem-independent cubic linked 

interpolation implemented in Q9-U3, the nine-node plate element from Ribarić and Jelenić (2012), 

significantly less degrees of freedom are employed in the model while retaining the interpolation 

conformity between adjacent elements. In the problem-independent linked interpolation, the 

interpolation functions are independent of any problem material parameters and the rotation fields 

are not expressed in terms of the nodal displacement parameters. On the contrary, in the problem-

dependent linked interpolation, the interpolation functions depend on the material parameters and 

the rotation fields are expressed in terms of the nodal displacement parameters. 

Two new elements are presented, named Q4-U3 and Q4-U3R5. The first one is modelled with 

one displacement and two rotation degrees of freedom in every of the four element nodes and the 

second element has five additional internal degrees of freedom which can be statically condensed 

within the element. Both elements are able to pass the constant-bending patch test exactly as well 

as the non-zero constant-shear patch test on the oriented regular mesh geometry in the case of 

cylindrical bending. 

The locking problem exists even for the new elements applied on coarse model meshes and 

very thin plate models, but they behave better than Q4-U2 (Ribarić and Jelenić 2012) although the 

improvement for Q4-U3 is not substantial.  On the other side Q4-U3R5 has significantly better 

behavior in comparison to Q4-U2 and in some cases is comparable to or even better than Q9-U3 

element which has as many as 12 more external degrees of freedom. A significant improvement 

can be noticed in particular when modeling very skew plates as well as circular plates.  

The elements designed using simpler shear expressions, like the assumed shear elements, 

RDKQM (Wanji and Cheung 2000) and ARS-Q12 (Soh et al. 2001) and the hybrid-Trefftz 

elements, QHT (Rezaiee-Pajand and Karkon 2012) and HDF-P4-11β (Cen et al. 2014) still behave 

much better in most numerical examples. By retaining only the favorable terms in the shear 

expressions of the Q4-U3R5 element, a new assumed strain element may be developed, which will 

be investigated in future. 
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Appendix A. Straight Timoshenko beam 
 

Here we derive the solution of differential equations for the Timoshenko beam element in 2D 

plane depicted in Fig. 9. The beam element has the length L, constant bending rigidity EIy (around 

the out-of-plane y direction) and constant shear regidity GkA. The reference coordinates are x, 

along the element axis and z, in the transverse direction. 

 

 

 

Fig. 9 Two-node straight beam element loaded in z direction. 

 

 

The equilibrium equations for the diferential segment of the beam are (Jelenić and Papa 2011) 

0Z :     
zq

dx

dV
 ,                                                    (A1) 

0 yM :     0V
dx

dM B ,                                                  (A2) 

where V and MB are the stress resultants (shear force, section bending moment). Kinematic and 

constitutive equations are 

yzx
dx

dw
                                                              (A3) 

GkA

V
zx  ,                                                               (A4) 

dx

d y

y


   ,                                                               (A5) 

y

B
y

EI

M
 ,                                                               (A6) 

where γzx 
denotes a shear strain and κy

 
a bending curvature. 

The two-node beam element is considered, assuming the four nodal degrees of freedom are 

21

y
y

 

z
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known (transverse displacements w1 and w2, and section rotations θy,1 and θy,2 at each end of the 

element). In the following expressions, the local position variable x measured from the beam 

midpoint can be replaced by a natural co-ordinate ξ such that 
2

L
x  . 

The state with no distributed load along the beam segment ( .0 0 constVVqz  ) is now 

considered (the homogeneous part of differential equation (A1)) in more detail. Substituting the 

kinematic equations in the constitutive equations and the result in the equilibrium equations, gives 

the following differential equations of equilibrium in terms of the unknown displacement and 

rotation fields 

0
3

3


B

zy

EI

q

dx

d 
,                                                        (A7) 

y
GkA

V

dx

dw
 0 .                                                          (A8) 

For qz=0, differential Eqs. (A7) and (A8) have the following general solution 

32

2

1
2

CxC
x

Cy                                                       (A9) 

4
0

3

2

2

3

1
26

Cx
GkA

V
C

x
C

x
Cw 








 .                                 (A10) 

For some known kinematic boundary conditions for the node 1 and together with the 

transformation to the natural co-ordinates we can express the nodal values in (A9) and (A10) as 

32

2

11,
28

C
L

C
L

Cy  , 

4
0

3

2

2

3

11
2848

C
L

GkA

V
C

L
C

L
Cw 








  

and similarly for the node 2: 

32

2

12,
28

C
L

C
L

Cy  , 

4
0

3

2

2

3

12
2848

C
L

GkA

V
C

L
C

L
Cw 








 . 

Now the integration constants can be expressed in terms of the nodal boundary displacements 

and rotations as 

L
C

yy 1,2,

2

 
 , 

82

2

02,1,

3

L

EI

V
C

B

yy






, 

242

1,2,21
4

Lww
C

yy  



 , 

BEI

V
C 0

1   

and also the constant V0 can be expressed from (A3) and (A4) as 
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Using (A9) and (A10), there follows 
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where θy,2N is the standard two-node Lagrangian interpolation for θy and w2L is the two-node 

(quadratic) linked interpolation for w and 

  
LL

ww

GkAL

EI
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B

6

212
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


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is a curvature increment between nodes 1 and 2. 

Using (A5) and (A6) gives 





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
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 


12
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L
EIM

yy

BB
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Furthermore from (A2) and (A15) expression for shear force follows, which has already been 

derived in (A11) 

120

2


L
EIV B

.                                                      (A16) 

Eqs. (A12) and (A13) show that the unknown fields are expressed not only through the 
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independent natural co-ordinate and their nodal values but also by the material properties of the 

problem analysed (EIB, GkA) in the highest-order polynomial terms. In Dukić and Jelenić (2014) 

this type of linked interpolation was named problem-dependent. 

 

 

 

Fig. 10 Two-node straight beam element with general orientation in x-y plane and loaded in z direction 

 

 

Assuming a more general orientation of the beam (Fig. 10), in which it still remained subject to 

the force loading in the direction of the co-ordinate axis z and the  moment loading around an axis 

orthogonal to the beam axis (a new axis of the beam lying in the co-ordinate plane x-y, closing an 

angle φ with respect to the co-ordinate axis x), the cross-sectional rotation θy
 

in the above 

expressions would only need to be replaced by a new normal rotation θn=θycosφ−θxsinφ of which 

the componential rotations around the co-ordinate axis would be θx=−θnsinφ
 

and θy=θncosφ. 

Clearly, above expressions (A12) and (A13) would then turn into 

 
4

1
sin

2

122,





 LNxx

,                                              (A17) 

 
4

1
cos

2

122,





 LNyy

,                                                 (A18) 

 
4

1

6

22

122







L
ww L

,                                                  (A19) 
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  and  1,1  as the natural co-

ordinate of a cross-section position. 
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