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Abstract.  Structural parameter evaluation and external force estimation are two important parts of 

structural health monitoring. But the structural parameter identification with limited input information is still 

a challenging problem. A new simultaneous identification method in time domain is proposed in this study 

to identify the structural parameters and evaluate the external force. Each sampling point in the time history 

of external force is taken as the unknowns in force evaluation. To reduce the number of unknowns for force 

evaluation the time domain measurements are divided into several windows. In each time window the 

structural excitation is decomposed by orthogonal polynomials. The time-variant excitation can be 

represented approximately by the linear combination of these orthogonal bases. Structural parameters and 

the coefficients of decomposition are added to the state variable to be identified. The extended Kalman filter 

(EKF) is augmented and selected as the mathematical tool for the implementation of state variable 

evaluation. The proposed method is validated numerically with simulation studies of a time-invariant linear 

structure, a hysteretic nonlinear structure and a time-variant linear shear frame, respectively. Results from 

the simulation studies indicate that the proposed method is capable of identifying the dynamic load and 

structural parameters fairly accurately. This method could also identify the time-variant and nonlinear 

structural parameter even with contaminated incomplete measurement. 
 

Keywords:  simultaneous identification; time-variant structure; nonlinear structure; extended Kalman 

filter; orthogonal decomposition 

 
 
1. Introduction 
 

The infrastructures in service may become aging even deteriorated. For the safety and 

maintenance purpose, it is important to assess the condition of structures in regular service or 

subjected to severe environmental excitation. Structural parameter identification as the inverse 

problem is commonly involved in the structural condition assessment, dynamic performance 

evaluation, damage detection, semi-active and active structural vibration control of infrastructures. 
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Solving the inverse problem is also an optimization process. One of the commonly used objectives 

is to predict the structural response close enough to the measured response. The dynamic structural 

response is determined by both the structural parameter and external excitation. The exact 

information of the dynamic excitation actually contributes to the structural design, condition 

assessment and structural parameter identification. But, in practice, the time history of the external 

force is always unknown and difficult to record. Although the simultaneous identification of 

structural parameter and external force are actually performed (Chen and Li 2004, Law and Ding 

2011, Feng et al. 2015, Sun and Betti 2013, Sun et al. 2015) structural identification with limited 

input information is still a challenging problem for time-variant structures and nonlinear 

structures. 

The evaluation of structural parameter and external force are two of the most important parts in 

the health monitoring of infrastructures, which is crucial to the disaster prevention and mitigation. 

Extensive literature views of health monitoring for infrastructures are provided (Ghanem and 

Shinozuka 1995, Doebling et al. 1998, Housner et al. 1997). Although there are extensive 

investigations related to the topics of structural system identification majorities of them focus on 

the system identification with known input. The input of infrastructures was always supposed to be 

measured by force transducer. But, it is impossible to measure all the excitations on a structure 

directly due to the lack of access to the loading position and the limited number of the force 

transducers. The external excitation estimation methods are increasingly investigated (Steltzner 

and Kammer 1999, Inoue 2001, Uhl 2007, Asnachindaa et al. 2008). 

Recently, the investigations in the field of structural parameter identification with unknown 

external excitation are actively carried out for linear structures. Chen et al. (2004) presented 

methods to identify structural parameters and input time history from output-only measurements 

iteratively. Lu and Law (2007) identify the physical parameters and the external excitation of 

linear structures based on the sensitivities of dynamic responses. Law and Ding (2011) proposed 

sub-structural condition assessment method for structural damage detection and external force 

identification of linear structural system. Online identification methods for linear substructures 

have been developed by Hou and Ou (2013) and the local damages can be accurately identified. 

Sun and Betti (2013) proposed a simultaneous identification method for linear structure with 

artificial bee colony algorithm. Lei et al. (2014) successfully identified the shear building based on 

partial output measurements with EKF and least-squares estimator. Li et al. (2015) proposed a 

damage assessment method for the shear connector based on power spectral density 

transmissibility for linear structural system with a good accuracy. The investigations on the 

parameter identification or damage detection for time-invariant linear structures introduced above 

supposed the external force to be unknown time history, which is consistent with the practical 

engineering. 

Structures may be time-variant or even nonlinear when subjected to the severe external 

excitation, such as earthquake, load of blast or strong wind. Parameters evaluation with unknown 

external excitation is still a challenging problem for time-variant or nonlinear structures. In the 

past few decades, numerous methods have been developed for the model updating of time-variant 

or nonlinear structures, e.g., extended Kalman filter (EKF), unscented Kalman filters (UKF) or 

ensemble techniques with Monte Carlo methods (Chatzi and Smyth 2009, Ching et al. 2006). For 

the infrastructures, EKF is an alternative tool for damage detection although it is not the most 

accurate tool to deal with severe nonlinear system identification. It is noted that the strong 

nonlinear cracks or damages in infrastructures can usually be observed by visualization. Therefore, 

EKF can be used to identify the slight or medium nonlinear cracks. The extended recursive least-
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squares algorithms were considered for the identification of system parameter and the tracking of a 

chirped sinusoid with measurement noise (Haykin et al. 1997). The normal modes are studied 

considering the nonlinearity of the structural system with the time-frequency analysis (Kerschen et 

al. 2009). Various types of adaptive tracking techniques have been developed for the online 

identification of nonlinear hysteretic structures. Sequential weighted least-squares support vector 

machine technique has been presented to quantify the occurrence of the structural damage (Tang et 

al. 2006). Adaptive EKF is proposed and applied in structural parameter identification with 

measured ground motion (Yang et al. 2006). These methods do not require a priori knowledge of 

the occurrence time of the anomalies. Hence, these methods could be applied to conduct the online 

structural condition assessment for time-variant or nonlinear structures. More recently, Monte 

Carlo methods have been proposed and applied to the nonlinear structural identification. The 

Monte Carlo methods can identify the state variable with a large number of samples but the 

identification process are always time consuming. Most existing methods introduced above for 

parameter identification may require the structural response of displacement or velocity which is 

difficult to measure in practical engineering. The parameter identification methods for time-variant 

or nonlinear structures only with acceleration measurements are rarely seen in previous 

investigation. 

In this paper, a new method is proposed to evaluate the structural parameters and external 

excitation with the orthogonal decomposition iteratively. The structural parameters to be evaluated 

include stiffness, damping and the parameters of nonlinear model. With this method, the excitation 

time history can be decomposed with orthogonal polynomials. The coefficients of orthogonal 

polynomials as well as the structural parameters are taken as state variable to be evaluated. The 

EKF is augmented and selected as the implementation tool. In case of complicate excitation, it 

may require a number of orthogonal polynomials to represent the excitation. In this condition, a 

large number of unknowns including the structural response, decomposition coefficients and the 

structural parameters cannot be identified efficiently. An improvement with moving time window 

is proposed for this simultaneous identification method. The measured structural response is 

divided into several time windows and the length of the discrete data is equal to the order of the 

orthogonal polynomial. This set is to ensure the polynomial can represent the time history of the 

excitation accurately. In the identification process, the time window moves from the beginning to 

the end of the sampled data. In each window, an iteration procedure (Hoshiya and Saito 1984) is 

applied to identify the structural parameters and decomposition coefficients with better accuracy. 

The proposed method was validated numerically with the simulation studies of a time-variant 

linear shear frame, a hysteretic nonlinear shear frame and a time-variant linear shear frame. 

Results from the numerical simulation studies indicate that the proposed method can be used to 

identify structural parameters and external excitations effectively based on incomplete 

contaminated structural responses measurements. This method is available for both linear and 

nonlinear structures. 

 

 

2. Equation of motion for structural system 
 

The equation of motion of an N dofs linear structural system subjected to external excitation is 

LFKxxCxM  )()()( ttt                              (1) 

where M, C and K are the mass, damping and stiffness matrices of the structural system 
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respectively. F is the external force acting on the structure and L is the location matrix of external 

excitation. ẍ, ẋ and x are the acceleration, velocity and displacement responses of the structural 

system, respectively. When the structural system is subjected to the earthquake excitation, the 

equation of motion can be written as follows. 

gttt xMLKxxCxM   )()()(                         (2) 

where ẍg denotes the acceleration of ground motion. The equation of motion of the linear structural 

system shown in Eq. (1) can also be expressed in the state space generally as Eq. (3). The system 

equation of structure subjected to earthquake excitation is similar to Eq. (3) and is not listed in this 

paper. 

)()()( ttt BLFAZZ                               (3) 
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The equation of motion for a hysteretic nonlinear structure subjected to external force can be 

written as 

)()()()( tttt LFKzxCxM                             (4) 

where  ( ) ( ) ( ) ( )
T

t t t t1 2 iz = z z z  is the hysteretic component vector. Bouc-Wen model is a 

typical nonlinear model and one of the usually used nonlinear models. It is selected in this paper 

for the validation of the simultaneous identification. Other nonlinear models can also be chosen 

according their detailed cases in the simultaneous identification process if necessary, which is 

similar to the Bouc-Wen model used in this study. The hysteretic component with Bouc-Wen 

model can be represented as 

ii n

iiii

n

iiiii zxzzxxz   
1

                          (5) 

where subscript i represent the ith story. ẋi and zi are respectively the ith story velocity and hysteretic 

component, β,   and n are the nonlinear parameter of Bouc-Wen model. The equation of motion 

shown in Eq. (5) can also be expressed in the state space generally as following equation 
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where ( ( ) ( ))f t tZ ,F  is a nonlinear function of Z in state space and Z is the state variable as 

Z(t)=[x(t)T, ẋ(t)T, z(t)]T. For the linear and nonlinear structures, responses can be recursively 

calculated by Eq. (4) or Eq. (6) respectively. 

 

 

3. EKF for structural system identification 
 

For the general case including the linear structure and nonlinear structure, the equation of 

motion of a structure subjected to external load can be written as 
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)())(),(())(()( ttttt LFzxFxFxM rd                        (7) 

where ))(( txFd
  denotes the damping force and 

r ( ( ))tF x
 

is the resistant force. The state variable 

can be set as Eq. (8) 

TTTTT
θzxxZ ],)(,)(,)([)( tttt                           (8) 

where T

1 2[ , , , ]m  θ L  denotes the unknown parameters of the structure, including damping, 

stiffness, or nonlinear parameters and m is the number of the unknown parameters. Eq. (7) can be 

written in discrete state space as 

1 ( )k k k kf  Z Z ,F w                             (9) 

where Z, F, w are the state variable, the external force and the process noise vectors. The 

observation equation at discrete time steps tk=kt can be written as 

( )k k kh y Z v                               (10) 

where yk and vk are the measurement response and measurement noise vectors. The Eqs. (9) and 

(10) constitute a classical system with discrete time evolution of discrete state variables and 

measurements. Both process noise and measurement noise are assumed to be uncorrelated zero-

mean Gaussian random processes. With the EKF, Eqs. (9) and (10) can be linearized as Eqs. (11) 

and (12). 

1 | | |
ˆ ˆ( ) ( )k k k k k k k k kf    Z Z ,F A Z Z w                      (11) 

1 1| 1| 1 1|
ˆ ˆ( ) ( )k k k k k k k k kh       y Z H Z Z v                     (12) 

where Ak|k is the linearized matrix of 
|

ˆ( )k k kf Z ,F , 
|

ˆ
k kZ  denotes the state estimation at kth time step 

given h(Zk+1) and 
1|

ˆ
k kZ  is the state estimation given h(Zk), Hk+1|k is the linearized matrix of 

1|
ˆ( )k kh Z . Ak|k and Hk+1|k are defined as follows 
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The recursive optimal evaluation for Zk at the k th time step is implemented as follows 

1| 1 1| 1 1 1|
ˆ ˆ ˆ[ ( )]k k k k k k k kh       Z Z K y Z

  
                   (15) 
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                 (16) 
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                (17) 
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               (18) 

| | 1 | 1 | 1[ ] [ ]T T
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where Kk+1 is the Kalman gain matrix, Pk+1|k is the error covariance matrix of posteriori state vector 

1|
ˆ

k kZ , kQ  is the covariance matrix covariance matrix of process noise at t=(k+1)t. 1|k kΦ  is  

the state transition matrix of the linearized system and I is the identity matrix. Pk|k in Eq. (17) is the 

error covariance matrix of priori state vector 
1|

ˆ
k kZ  given by 1| |k k k kt    Φ I A . 

 

 

4. Orthogonal decomposition of excitation 
 

The dynamic external force is always difficult to be directly identified with EKF since the force 

is non-stationary and the amplitude is time-variant. The input is a kind of random process which 

can be decomposed by standard orthogonal polynomial if the order of the polynomial is high 

enough (Zhang and Zhu 1996, Zhu and Law 2001). Since the orthogonal polynomials are 

determined, the input history will be re-constructed as if the orthogonal parameters can be 

identified. Therefore, the input identification transforms to the polynomial parameters 

identification based on input orthogonal decomposition method. The total external excitation can 

be decomposed as follows 

1 1

( )= ( )
f m

N N
i i

m m

i m

F t w T t
 

                             (20) 

where wm
i is the polynomial coefficients of the ith input. Tm

i is the mth orthogonal polynomial of the 

i
th 

input. Nm is the order of input decomposition. Nf is the number of inputs. The orthogonal 

polynomial Tm
i and order of input decomposition Nm can affect the accuracy of input 

approximation. The order of input decomposition Nm is closely related to input history length and 

complexity. The orthogonal polynomial Tm
i can be selected based on different decomposition 

methods. Chebyshev decomposition method is one of the generally used decomposition methods. 

The m th order polynomial Ti
m for the i th external excitation can be written as follows 
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               (21) 

where Linp is the length of the input history and Nm is the order of decomposition. Based on the 

Chebyshev standard orthogonal polynomial decomposition, Eq. (7) can be written as follows 


 
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f m
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N

m

m
ii

msc tTwttt
1 1

)())(())(()( xFxFxM                     (22) 

The input can be re-constructed if the polynomial parameters wm
i can be identified. 
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5. Simultaneous identification of structural parameter and decomposition 
coefficients 
 

A new time domain simultaneous identification method is proposed in this section based on 

orthogonal decomposition of excitation and EKF. The time history of the input is firstly 

decomposed by Chebyshev standard orthogonal polynomial as Eq. (21). Then, the structural 

parameters and polynomial parameters will be identified by extended Kalman estimator based on 

structural measurements, as Eq. (15) to Eq. (19). 

 

5.1 Equations in state space for the n-storey structures 
 

For n-storey linear shear frame, the equation of motion can be written in state space as Eq. (23) 
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where k and c denote the stiffness and damping of each storey of the shear frame, respectively. 

And the state vector is defined as 

TTTTTT
wckxxZ ],,,,[)( t                           (24) 

For n-storey hysteretic structure the equation of motion are given by 
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( )iz t  in Eq. (25) are the inter-storey displacement and hysteretic component of i th storey unit 

respectively. 
i

mT  is the orthogonal polynomial which is given by Eq. (20). The state vector is 

augmented as 

T
zxxZ ],,,,,,,[)( 11111111 mNnstnstnstnstnstnstnst wckt                  (26) 
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where the subscript 1 to nst denotes the first storey to the n-th storey of the structure and the  

subscript of 1~Nm represent the order of the orthogonal decomposition coefficients from the first 

tothe Nm th. Consider the 0111   Nmnm wck  , Eq. (25) can be written in state space as follows 










































































 



0

0

0

0

0

x

kzxcLM

x

w

γ

β

c

k

z

x

x

i

1-

ii

iiiiiii

Nf

i

Nm

m

m
ii

m

zxzzx

Tw


 





















1
1 1

])]([

                     (27) 

When the acceleration response is taken as measurement, the observation equation is nonlinear in 

state space. The discrete linearized observation matrix can be calculated by Eq. (12). 

In general, excitation may be complicate and contain high order frequency component, which 

needs more coefficients and higher order polynomial to represent. But large number of coefficients 

in state variable will affect the identification accuracy. An improvement is proposed for this case. 

The sampled structural response would be divided into several time windows without overlapping. 

In the first time window, the initial guess of structural parameter and coefficients for 

decomposition are provided by users while the initial guess for other time windows are set as the 

identified value of the last previous time window. The order of the orthogonal decomposition is 

taken as the length of the time history window for accurate identification result. Therefore, there 

are enough pre-determined polynomials to represent the excitation in each time window. The 

proposed simultaneous identification method then can be used iteratively for the identification. 

Convergence is considered achieved in each time window if the following criterion is met 

1

1

i i

i

Tol






X X

X
                              (28) 

where i is the number of iteration and Tol is set as 10-4 in the following study, and  X denotes the 

all the structural parameter included in the state variable. In the first time window, the initial value 

can be set as the initial guess while in the following time window the initial value are set as the 

identification results of the previous time window. 

 

5.2 Implementation procedure of the simultaneous identification 
 

The identification procedure can be implemented as follows. 

Step 1: Obtain the mass, damping and stiffness matrices of the initial structural model, which 

may be inaccurate with model errors or initial structural damage. 

Step 2: Determine the order of the Chebyshev standard orthogonal polynomials and decompose 

structural excitation by Chebyshev standard orthogonal polynomials.  

Step 3: Conduct measurement on the structure. The “measured” data for the simulation studies 

is obtained from the solution of Eq. (4) or Eq. (6). 
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Fig. 1 A three-storey shear frame 
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(a) Stiffness of the 1st floor (b) Stiffness of the 2nd floor 
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(c) Stiffness of the 3rd floor 

Fig. 2 Identified stiffness of linear structural system 

 

 

Step 4: Simultaneously identify structural parameter and polynomial parameters with the 

iterative EKF algorithm from time window to time window with Eq. (23) to Eq. (28).  

F(t) 
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6. Numerical simulation studies 
 

In this Section the proposed system identification method is validated numerically by the 

investigations of three structures: a linear shear frame, a nonlinear 3-storey shear frame and a time-

variant linear shear frame as shown in Fig. 1. The structural parameters and external force are 

simultaneously identified with measured accelerations. The sampling rate is 1000Hz and 3 seconds 

measurements are collected for the identification in the first two cases. The sampling rate is set as 

100Hz and 30 seconds acceleration are measured for the identification in the third case. The length 

of the time window is set with 30 sampled points in all these three cases. 

 

6.1 Case 1-Three-storey linear structure subjected to periodic excitation 
 

A linear three-storey shear frame subjected to external force as F(t)=sin(4t)+2cos(2t)  

+sin(5t) kN on the top of the floors is studied in this case. The equation of motion with excitation 

decomposition is shown as Eq. (20). The value of real parameters are m1=m2=m3=500kg, 

c1=c2=c3=1 kNs/m, k1=38 kN/m, k2=36 kN/m and k3=37 kN/m. In the identification process, the 

mass is taken as known constant. The initial guess of the stiffness is 4 0kN/m and the initial 

damping is taken as zeros. The horizontal accelerations on the first and third floors are measured. 

The “measured” accelerations for this simulation are obtained from the solution to Eq. (1) with 5% 

RMS noise. 

The excitation history is decomposed with thirty-order orthogonal polynomial. The unknown 

parameters are ki, ci, and the decomposition coefficients wj,, (i=1,2,3 and j=1,2…,30). The 

augmented state vector is expressed as 1 3 1 3 1 3 1 3 1 30( ) , , , ,t x x k c w    

T
Z = [ ]& . The initial guess of 

displacement and velocity in state variable are supposed to be zeros. Fig. 2 compares the identified 

structural stiffness to the real values and the identified damping is shown in Fig. 3. In the 

beginning of the identification results of stiffness and damping, the fluctuations are a little large 

partially due to the influence of measurement noise. But the identified results converge to the real 

value efficiently as shown in Figs. 2 and 3. The identified force for the target linear structural 

system is shown as Fig. 4. The external force is identified accurately and the fluctuations in the 

force identification result are not very large as shown in Fig. 4. It is demonstrated that for the 

linear case, structural parameter and external force can be identified accurately based on the 

proposed method in this paper. 

 
6.2 Case 2 - Three -storey hysteretic nonlinear structure subjected to periodic force 

 

A three-storey hysteretic nonlinear shear frame subject to  F(t)=4sin(6t)+2cos(2t)+sin(4t) 

kN on the top of the floors is investigated. The real value of the parameters are m1=m2=m3=500kg, 

c1=c2=c3=1 kNs/m, k1=48 kN/m, k2=43 kN/m, k3=40 kN/m, β1=β2=β3=4, 1=2=3=2 and 

n1=n2=n3=2. The mass and parameter n is also taken as known constant. The other parameters 

including stiffness, damping and the parameters of β and  are supposed as the unknowns to be 

identified. Only the horizontal accelerations on the first and third storey are measured for the 

structural identification in this case study. The “measured” accelerations for this simulation are 

obtained from the solution of Eq. (3) with 5% RMS noise. The excitation history is also 

decomposed with thirty-order orthogonal polynomial. The unknown parameters are ki, ci, wj,, 
(i=1,2,3 and j=1,2…,30), the extended state vector is T

zxxZ ],,,,,,,[)( 30131313131313131  wckt  ,  
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(c) Damping of the 3rd floor 

Fig. 3 Identified damping of linear structural system 
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Fig. 4 Identified force of linear structural system 
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(a) Stiffness of the 1st floor (b) Stiffness of the 2nd floor 
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(c) Stiffness of the 3rd floor 

Fig. 5 Identified stiffness of nonlinear structural system 

 

 
the initial guess for ki, ci, wm are ki=35 kN/m, ci=0 kN s/m, wm=0. Initial guess of nonlinear 

parameter β and  are taken as 3 and the initial values of structural response are zero. 

Figs. 5 and 6 show the identification results of stiffness and damping for the nonlinear 

structural system, respectively. Similar to Case 1, there is a large fluctuation in the beginning of 

the identified time history but the stiffness and damping are fairly accurately identified with 

contaminated measurement. Fig. 7 shows the identified parameter of β and . Although the 

fluctuation at the beginning is a little large in the identified parameters of  and  , the nonlinear 

parameters of Bouc-Wen model are identified with acceptable accuracy as shown from Fig. 7. The 

identified external force is also identified accurately as shown in Fig. 8. It is indicated that the 

proposed system identification method with EKF and excitation decomposition are suitable for the 

hysteretic nonlinear structures subjected to unknown external force. It is also demonstrated that the 

proposed method is also robust to the measurement noise. 

1048



 

 

 

 

 

 

Structural identification based on incomplete measurements with iterative Kalman filter 

0 0.5 1 1.5 2 2.5 3
-0.5

0

0.5

1

1.5

2

D
a
m

p
in

g
 o

f 
th

e
 1

s
t  f

lo
o

r 
(k

N
/(

m
/s

))

Time (s)

 

 

Real value

Identified value

 

0 0.5 1 1.5 2 2.5 3
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

D
a
m

p
in

g
 o

f 
th

e
 2

n
d
 f

lo
o

r 
(k

N
/(

m
/s

))

Time (s)

 

 

Real value

Identified value

 

(a) Damping of the 1st floor (b) Damping of the 2nd floor 
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(c) Damping of the 3rd floor 

Fig. 6 Identified damping of nonlinear structural system 
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(a)  of the 1st floor (b)  of the 2nd floor 

Fig. 7 Identified nonlinear parameters of the nonlinear structural system 
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(c)  of the 3rd floor (d)  of the 1st floor 
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(e)  of the 2nd floor (f)  of the 3rd floor 

Fig. 7 Continued 
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Fig. 8 Identified external force of nonlinear structural system 
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Fig. 9 Simultaneous identification of structural parameter and earthquake excitation without noise 
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Fig. 10 Simultaneous identification of structural parameter and earthquake excitation with 5% noise 

 

 

6.3 Case 3 - Three-storey time-variant linear structure subjected to earthquake 
 

For the first two cases the excitations consist of low frequency component and can be 

decomposed with a few order of orthogonal basis. In this case, a 3-storey linear structure subject to 

scaled El-Centro (1940, NS) earthquake excitation is investigated with the improvements of time 

window and iteration. The initial guesses of structural parameters are the same as the real value. In 

the simulation study, a ramped stiffness reduction 20% reduction in the stiffness of the 1th storey 

occurred due to the peak ground motion. The peak ground acceleration is taken as 0.3g. Sampling 

rate is 100 Hz. The length of the time window is set as 0.3 second with 30 sampling points. The 

time history in each time window is decomposed with thirty orthogonal polynomials. In the first 

scenario the measurement noise is not considered. The identified stiffness of the 1th storey is 

shown in Fig. 9(a) and the excitation identification result is shown in Fig. 9(b). The identified 
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stiffness can track the real one accurately when the damage occurred. After the damage the 

identified stiffness can also converge quickly to the decreased stiffness. In this process, identified 

excitation coincides with the real excitation well. When the 5% measurement noise is considered 

the parameter and excitation identification results are shown in Fig. 10(a) and 10(b). The structural 

parameter can still identify the reduction of the stiffness of the first storey and converge to the 

decreased stiffness after the process of damage, but with larger fluctuations as shown in Fig. 10(a) 

than the identification result in Fig. 9(a). The earthquake excitation can also be identified but with 

large error as the comparison of Fig. 9(b) and Fig. 10(b). 

In this simulation study, the order of the polynomial is taken as the length of the window to 

obtain an accurate identification result. For the civil infrastructures with unknown base excitation, 

the order can be reduced but further studies should be conducted. The length of the time window is 

recommended to be less than 100 sampled points with the sampling rate no more than 1000 Hz. 

This is because civil infrastructure is always low-frequency structure and they are not very 

sensitive to the high frequency excitation. It should be noted that the number of the iterations will 

be reduced in the time windows when the identified parameter converges to the real one in case of 

the linear time-invariant structures. Fewer coefficients of the polynomials and shorter length of 

time window can promote the computational effect. The identification results of structural 

parameters in this study with fluctuations are due to the measurement noise as shown in the 

comparison between Fig. 9(a) and Fig. 10(a). But it is illustrated that the identification results still 

converge to the real value in the end. The results in this paper are consistent to the results of Yang 

et al. (2006). 

 

 

7. Conclusions 
 

A new method in time domain was proposed in this paper for the inverse identification of 

structural parameter and external excitation with EKF and orthogonal polynomials decomposition. 

The structural excitation is decomposed by orthogonal approximation. Then the structural 

parameters and coefficients of orthogonal polynomial are simultaneously identified with EKF. 

This method is also improved with time window and iteration process for better identification 

accuracy. Numerical simulations of time-invariant linear structure, time-variant linear structure 

and hysteretic nonlinear structure are utilized to study the effectiveness of the proposed method. 

From the simulation results, the proposed system identification method can conduct the structural 

parameter identification and force evaluation accurately and effectively even with contaminated 

measurement. However, the severe nonlinear parameter, such as the nonlinear parameter n of 

Bouc-Wen model is taken as known in this paper. New identification method dealing with the 

severe nonlinear system identification will be developed in the future research. 

 

 

Acknowledgements 
 

The work described in this paper was supported by Projects nos. 51308160 of National Natural 

Science Foundation of China, and Project 2013M541383 and 2014T70342 of China Postdoctoral 

Science Foundation. This work was also supported by Open Research Fund Program No. 

LEM16A06 of Jiangsu Key Laboratory of Engineering Mechanics, Southeast University. 

 

1052



 

 

 

 

 

 

Structural identification based on incomplete measurements with iterative Kalman filter 

References 
 
Asnachindaa, P., Pinkaewa, T. and Lamanb, J.A. (2008), “Multiple vehicle axle load identification from 

continuous bridge bending moment response”, Eng. Struct., 30(10), 2800-2817. 

Chatzi, E.N. and Smyth, A.W. (2009), “The unscented Kalman filter and particle filter methods for 

nonlinear structural system identification with non-collocated heterogeneous sensing”, Struct. Control 

Hlth. Monit., 16, 99-123.  

Chen, J. and Li, J. (2004), “Simultaneous identification of structural parameters and input time history from 

output-only measurements”, Comput. Mech., 33(5), 365-374. 

Ching, J., Beck, J.L., Porter, K.A. and Shaikhutdinov, R. (2006), “Bayesian state estimation method for 

nonlinear systems and its application to recorded seismic response”, J. Eng. Mech., 132(4), 396-410. 

Doebling, S.W., Farrar, C.R. and Prime, M.B. (1998), “A summary review of vibration-based damage 

identification methods”, Shock Vib. Diag., 30(2), 91-105.  

Feng, D.M., Sun, H. and Feng, M.Q. (2015), “Simultaneous identification of bridge structural parameters 

and vehicle loads”, Comput. Struct., 157, 76-88. 

Haykin, S., Sayed, A.H., Zeidler, J.R., Yee, P. and Wei, P.C. (1997), “Adaptive tracking of linear time-

variant systems by extended RLS algorithms”, IEEE Tran. Signal Pr., 45(5), 1118-1128. 

Hoshiya, M. and Saito, E. (1984), “Structural Identification by Extended Kalman Filter”, J. Eng. Mech., 110, 

1757-1770. 

Hou, S. and Ou, J.P. (2013), “An online substructure identification method for local structural health 

monitoring”, Smart Mater. Struct., 22(9), 095017. 

Housner, G.W., Bergman, L.A. et al. (1997), “Structural control: Past, present, and future”, J. Eng. Mech., 

ASCE, 123(9), 897-971. 

Kerschen, G., Worden, K., Vakakis, A.F. and Golinval, J.C. (2006), “Past, present and future of nonlinear 

system identification in structural dynamics”, Mech. Syst. Signal Pr., 20(3), 505-592. 

Kerschen, G., Peeters, M., Golinval, J.C. and Vakakis, A.F. (2009), “Nonlinear normal modes, Part I: A 

useful framework for the structural dynamicist”, Mech. Syst. Signal Pr., 23(1), 170-194. 

Law, S.S. and Ding, Y. (2011), “Substructure methods for structural condition assessment”, J. Sound Vib., 

330(15), 3606-3619. 

Lei, Y., Liu, C. and Liu, L.J. (2014), “Identification of multistory shear buildings under unknown earthquake 

excitation using partial output measurements: numerical and experimental studies”, Struct. Control Hlth. 

Monit., 21(5), 774-783. 

Li, J., Hao, H., Xia, Y. et al. (2015), “Damage assessment of shear connectors with vibration measurements 

and power spectral density transmissibility”, Struct. Eng. Mech., 54(2), 257-289. 

Lu, Z.R. and Law, S.S. (2007), “Identification of system parameters and input force from output only”, 

Mech. Syst. Signal Pr., 21(5), 2099-2111. 

Peeters, M., Viguie, R., Serandoura, G., Kerschen, G. and Golinval, J.C. (2009), “Nonlinear normal modes, 

Part II: Toward a practical computation using numerical continuation techniques”, Mech. Syst. Signal Pr., 

23(1), 195-216. 

Sun, H. and Betti, R. (2014), “Simultaneous identification of structural parameters and dynamic input with 

incomplete output-only measurements”, Struct. Control Hlth. Monit., 21(6), 868-889. 

Sun, H., Feng, D.M., Liu, Y. and Feng, M.Q. (2015), “Statistical regularization for identification of 

structural parameters and external loadings using state space models”, Comput. Aid. Civil Infrastr. Eng., 

30(11), 843-858. 

Tang, H.S., Xue, S.T., Chen, R. and Sato, T. (2006), “Online weighted LS-SVM for hysteretic structural 

system identification”, Eng. Struct., 28(12), 1728-1735. 

Wen, Y.K. (1980). “Equivalent linearization for hysteretic systems under random excitations”, J. Appl. 

Mech., 47(1), 150-154. 

Yang, J.N. and Lin, S. (2004), “On-line identification of non-linear hysteretic structures using an adaptive 

tracking technique”, Int. J. Nonlin. Mech., 39(9), 1481-1491. 

1053



 

 

 

 

 

 

Yong Ding and Lina Guo 

Yang, J.N., Lin, S., Huang H. and Zhou, L. (2006), “An adaptive extended Kalman filter for structural 

damage identification”, Struct. Control Hlth. Monit., 13, 849-867. 

Yang, J.N., Pan, S. and Lin, S. (2007), “Least square estimation with unknown excitations for damage 

identification of structures”, J. Eng. Mech., 133(1), 12-21. 

Zou, T., Tong, L. and Steve, G.P. (2000), “Vibration based model-dependent damage (delamination) 

identification and health monitoring for composite structures-a review”, J. Sound Vib., 230(2), 357-378. 

Zhang, X.H., Zhu, S., Xu, Y.L. and Hong, X.J. (2011), “Integrated optimal placement of displacement 

transducers and strain gauges for better estimation of structural response”, Int. J. Struct. Stab. Dyn., 11(3), 

1-22. 

Zhang, F. and Zhu, D.M. (1996), “A new theoretical study of dynamic load identification based on 

generalized polynomial expansion”, J. Nanjing Univ. Aeronaut. Astronaut., 28, 755-760. 

Zhu, X.Q. and Law, S.S. (2001), “Orthogonal function in moving loads identification on a multi-span 

bridge”, J. Sound Vib., 245(2), 329-345. 

 

 

CC 

1054




