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Abstract.  This paper proposes a new foundation model called “Dynamic foundation model” for the 

dynamic analysis of plates on foundation subjected to a moving oscillator. This model includes a linear 

elastic spring, shear layer, viscous damping and the special effects of mass density parameters of foundation 

during vibration. By using finite element method and the principle of dynamic balance, the governing 

equation of motion of the plate travelled by the oscillator is derived and solved by the Newmark‟s time 

integration procedure. The accuracy of the algorithm is verified by comparing the numerical results with the 

other numerical results in the literature. Also, the effects of mass and damping ratio of system components, 

stiffness of suspension system, velocity of moving oscillator, and dynamic foundation parameters on 

dynamic responses are investigated. A very important role of these factors will be shown in the dynamic 

behavior of the plate. 
 

Keywords:  Winkler foundation; pasternak foundation; dynamic foundation; mass density of foundation; 

dynamic analysis of plate; moving oscillator; FEM 

 
 
1. Introduction 
 

The Winkler model suggested quite early is one of the most fundamental elastic foundation 

models. This model is developed on the assumption that the reaction forces per unit length at each 

point of the foundation are proportional to the deflection of the foundation itself. The vertical 

deformation characteristics of the foundation are defined by means of identical, independent, 

closely spaced, discrete and linearly elastic springs as known as the modulus of subgrade reaction, 

k. Although, there are many studies related to the response analysis of structures on the Winkler 

model (Kim et al. 2006, Abohadima et al. 2009, Hsu et al. 2009, Akour 2010, Janco 2010, Amiri 

et al. 2010, Wang et al. 2011, Mohanty et al. 2011, Kim et al. 2012, Wang et al. 2013, Jang 2013, 
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Coşkun et al. 2014), they do not accurately represent the characteristics of many practical 

foundations as the true behavior of soil. In reality, the soil surface does not show any discontinuity 

while one of the most important deficiencies of the Winkler model is that a displacement 

discontinuity appears between the loaded and the unloaded part of the foundation surface (Teodoru 

2010). 

After the Winkler model, the development of foundation models is continuously carried out by 

several researchers to make the model more realistic such as the model of Hetenyi, Reissener, 

Kerr, Pasternak and Vlasov. In recent years, the Vlasov model is developed for structural analysis 

problems. A relationship between the displacement characteristics and the parameter γ of Vlasov 

model is established and an iterative procedure to determine the parameter γ as a function of the 

characteristic of the beam and the foundation is used and called a modified Vlasov model (Ozgan 

et al. 2009, Teodoru et al. 2010, Ozgan 2012, Ozgan et al. 2012). It can be seen that most of 

foundation models introduced above did not consider the effects of the mass density of foundation 

on the behavior of structures resting on the foundation.  

In reality, the foundation has mass density; therefore the effect of the density of foundation on 

the dynamic response of structures always exists during the vibration of structures. Hence, the 

dynamic responses of structures on foundations should be considered with attending of the mass 

density of foundation, but the researches in the literature did not attend to the effects of it. This 

paper strongly proposes a new foundation model, called “Dynamic foundation model” including 

Winkler linear elastic spring, shear layer of Pasternak, viscous damping and mass density 

parameter of foundation. The effects of parameters such as mass and damping ratio of system 

components, stiffness of suspension system, velocity of moving oscillator, and dynamic 

foundation parameters on dynamic responses are discussed.  

The organization of the paper is as follows. The next section describes the dynamic foundation 

model for dynamic analysis of plates on foundation. By using finite element method and the 

principle of dynamic balance, the governing equation of motion of the plate on the dynamic 

foundation subjected to a moving oscillator derived and solved by the Newmark‟s time integration 

procedure is presented section 3. Numerical validations are given in detail in section 4 including 

the verified example compared with the results in the literature and responses of the plate 

numerically investigated. Finally, some concluding remarks are also drawn. 

 

 

2. The dynamic foundation model 
 

The dynamic foundation model, which fully describes dynamic characteristic parameters for 

behavior of foundation, is shown in Fig. 1(a). In this model, the elastic stiffness and shear layer 

parameter of foundation are idealized based on the Winkler foundation modulus k and the shear 

foundation modulus ks of Pasternak foundation, respectively, the viscous damping c and the mass 

density of foundation f are respectively replaced by lumped mass m at the top of the elastic spring 

connected between elastic layer and shear layer, shown in Fig. 1(b) and Fig. 1(c). 

The lumped mass m is given by 

fm 
  

                       (1) 

where =fHf is dimensionless parameter of foundation mass which describes the effect of both 

depth of foundation Hf and dimensionless experimental parameter f characterized the influence of 

the mass density of foundation, in special case f =1/3 if the spring element is assumed as linear  
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Fig. 1 The dynamic foundation model: (a) The basic model, (b) stress in the shear layer, (c) forces 

acting on the shear layer 

 

 

independent elastic spring and contract discontinuity with each others. The pressure-deflection 

relationship at the time t due to a pressure q(x,y,t) is determined based on the principle of dynamic 

balance, can be expressed mathematically as follows 

,,

0 0 0( , , ) ( , , ) ( , , ) ( , , ) 0
y tx t

NN
q x y t r x y t m x y t c x y t

x y


     

 
                  (2) 

where 
  

1

, ,

( , , )
x t xz t s

o

w x y t
N dz k

x



 

 ; 
1

, ,

( , , )
y t yz t s

o

w x y t
N dz k

y



 

     (3) 

and r0 (x, y, t), m0(x,y,t), and c0(x,y,t) are the reaction of the Winkler foundation, inertia force of the 

density of foundation and viscous damping resistance at each time t, respectively, given by 

0 ( , , ) . ( , , )r x y t k w x y t ;
 

2

0 2

( , , )
( , , )

w x y t
m x y t m

t





;
 

0

( , , )
( , , )

w x y t
c x y t c

t





       (4) 

Substituting Eq. (3) and Eq. (4) into Eq. (2), it can be expressed as follows 

2
2

2

( , , ) ( , , )
( , , ) . ( , , ) ( , , )s

w x y t w x y t
q x y t k w x y t c m k w x y t

t t

 
    

 
   (5) 

It can be seen that this model is a general foundation model and conform to the true nature of 

the soil. At the same time, it fully describes dynamic characteristic parameters of foundation such 

as stiffness, damping and mass. If the influence of the viscous damping and density of foundation 

neglects, this model will be similar to Filonenko and Pasternak foundation model. Additionally, if 

the influence of shear foundation modulus overlooks this will be the same with Winkler 

foundation models. Therefore, it can be said that the dynamic foundation model accurately  
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Fig. 2 The plate subjected to a moving oscillator on the dynamic foundation 

 

 

Fig. 3 The plate element on the dynamic foundation 

 

 

represents the characteristics of the soil in using to analyze dynamic responses of structures resting 

on the foundation. 

 
 

3. Formulation 
 
3.1 Finite element procedure 
 

Consider a Mindlin rectangular plate of length L, width B and thickness h on the dynamic 

foundation subjected to a moving oscillator, shown in Fig. 2. A four-node uniform Minlin plate 

element, each node having three global degrees of freedom, including vertical displacement and 

two rotations in global axes, resting on the dynamic foundation is shown in Fig. 3. By using finite 

element method, the generalized displacements are independently interpolated using the same 

shape functions 

4

i i

1

ew N w ; 
4

i xi

1

ex N  ; 
4

i yi

1

ey N     (6) 
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where, Ni is the linear Lagrange interpolation functions, given as follows 

 
1

(1 )(1 )
4

i i iN rr ss               (7) 

Based on the strain energy of the Minlin plate element, the plate matrices can be found easily in 

many references related to finite element method, given by 

            
3

= dA h dA
12

 
e e

T T

b b b e s s s s ep

A A

h
K B D B B D B     (8) 

where, s also known as the shear correction factor can be taken as 5/6, Db  and Ds are a matrix of 

material constants and matrix related to the shear strain, respectively, given as follows 

  

1 υ 0

= υ 1 0
1-

1- υ
0 0

2

b 2

Eh

υ

 
 
 
 
 
 
 

D ;  
1 0

=
0 12(1+ )

s

E

υ

 
 
 

D    (9) 

The [Bb] and [Bb] are the strain-displacement matrices for bending and shear contributions, 

respectively, are obtained by derivation of the shape functions by 

    1 2 3 4b b b b bB B B B B ;    1 2 3 4s s s s sB B B B B       (10) 

with 

0 / 0

0 0 /

0 / /

i

ib i

i i

N x

N y

N y N x

  
 

  
 
     

B ; 
/ 0

/ 0

i i

is

i i

N x N

N y N

  
  

   
B     (11) 

Based on the strain energy of the dynamic foundation including the effects of both transverse 

shear deformation and elastic foundation, the elastic foundation stiffness matrix, [K]W is defined as  

      
e

T

w w eW

A

k dA K N N        (12) 

with the shape function  wN and the shear foundation stiffness matrix, [K]s given by 

    1 2 3 40 0 0 0 0 0 0 0w N N N NN          (13) 

   , , , ,

e e

s x s s x e s y s s y eS

A A

k dA k dA               K N N N N        (14) 

in which 

 1 4

, 0 0 ... 0 0s x

N N

x x

  
       
N , 1 4

, 0 0 ... 0 0s y

N N

y y

  
        
N   (15) 

It can be seen that the overall stiffness matrix of the plate element on the dynamic foundation 

including the effects of both stiffness matrix of the plate element and foundation stiffness matrix 
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(Winkler and shear foundation stiffness matrix) can be written as follows 

        
e P W S
  K K K K        (16) 

The same as above, mass matrix of the plate element on the dynamic foundation including the 

effects of the mass density of both plate and foundation is determined based on the kinetic energy 

of the beam element as 

      
e P F
 M M M     (17) 

where [M]P is the mass matrix of the plate element, can be expressed as follows 

       
e

T

eP

A

dA M N H N        (18) 

with 

  3

3

0 0

0 /12 0

0 0 /12

h

h

h



 
 


 
  

H ,  
1 4

1 4

1 4

0 0 0 0

0 0 ... 0 0

0 0 0 0

N N

N N

N N

 
 


 
  

N         (19) 

and [M]F is the mass matrix of mass density of the dynamic foundation to be 

      
e

T

w w eF

A

m dA M N N       (20) 

The dashpots system is considered to simulate as the viscous damping property of foundation, 

the damping matrix of foundation is computed by using the dissipation energy of these dashpots as 

      
e

T

w w ee

A

c dA C N N       (21) 

The Gauss integration scheme is used to evaluate the integrations numerically, but note that 

when the thickness of the plate is reduced, the element becomes over-stiff, a phenomenon that 

relates to so-called „shear locking‟. The simplest and most practical means to solve this problem is 

to use 2×2 Gauss points for the integration of the first term in Eq. (8), and use only one Gauss 

point for the rest terms. In addition, non-dimensional foundation parameters K1 and K2 used to 

analysis response of the plate are defined as follows (Zhou et al. 2004, Xiang at al. 1994, Omurtag 

et al. 1997, Ferreira et al. 2010) 

 
24

1 2, sk BkB
K K

D D
      (22) 

where D is the flexural rigidity of the plate. 

 

3.2 Governing equation 
 

The oscillator model is regarded as a two-node system, with one node associated with each of 

two concentrated masses. The stiffness and damping coefficients of the oscillator are denoted by kv 

and cv, respectively. Also, the mass of the bottom part by mw and the mass of the upper part by Mv, 

which are respectively the mass of the wheel and the mass lumped from the car body. In addition, 
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zv and zw denote the vertical displacements of two nodes measured from the static equilibrium 

position (Mohebpour et al. 2011, Phung-Van et al. 2014). The equation of motion of the oscillator 

can be written as follows 

 
 w w

0 0

0

v v v v v v v v

w w v v v v c v w

M z c c z k k z

m z c c z k k z f M m g

                
              

                 
  (23) 

where fc is the contact force. 

Assuming that all information of the system at time t is known and t is a small time 

increment, the first row of Eq. (23) can be expanded in an incremental form at time t+t as 

 , , , ,v v t t v v t t v v t t vc t tM z c z k z q     
   

(24) 

with  

 , , ,vc t t v w t t v w t tq c z k z      
       

(25) 

Based on Newmark‟s method, average acceleration method, the displacement zv and its 

derivatives at time t+t can be written as 

  

 

 

 

,

0

, , 1 , 2 ,

3

, , , 4 , 5 ,

, , , ,

1

t t c t t t t t

t t c t t t t t

t t t c t t v t

b
z q q b z b z

b
z q q b z b z

z z q q

    



    



  









 

 

 

    

    

   

  
   (26) 

with 

  
   

0 3

, 1 , 2 , 4 , 5 , ,

v v v v

v t v v t v t v v t v t v v t

b M b c k

q M b z b z c b z b z k z

   

                 
(27) 

and coefficients bi given by 

0 1 2 3 4 52

1 1 1
, , 1, , 1, 2

2 2

t
b b b b b b

t tt

  

    

 
         

   
       (28) 

Substituting Eq. (27) into incremental form of the second row of Eq. (23), the contact force fc in 

time t + t is determined by 

  , , , , , ,c t t w w t t c w t t c w t t c t t c tf m z c z k z p q        
   

   (29) 

in which 

  

 , , , ,

1 , 1

,

vw vw

c v c v

v v

vw

c t t v w c t v t w t

v

c c k k

p M m g p q q

 

 






   
      

   

   
           

(30) 
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with 

 3 , 4 , 5 , ,,vw v v w t v v t v t v v tb c k q c b z b z k z       
            

     (31) 

Note that in Eqs. (26) and (29), it assumes that there is no loss of contact between the tire and 

the upper surface of the plate, and hence, the displacement of the wheel (zw) equals to the 

deflection of the plate at the contact position of vehicle and plate, can be expressed in terms of the 

nodal displacement vector ueas  

   w w ez  N u
              

         (32) 

At each time step, the governing differential equation for the displacement of the plate element 

resting on the dynamic foundation subjected to moving oscillator at time t+t can be expressed as 

              e e e et t t t t t t te e e   
  M u C u K u F

            
        (33) 

where [M]e, [M]e and [M]e are mass, damping and stiffness matrices of the i
th
 plate element, 

respectively, and {Fe} the vector of consistent nodal forces resulting from the contact force is 

     ,e w c t tt t
f 

 F N
              

  (34) 

By using the finite element theory, the corresponding degrees of freedom of the stiffness matrix 

and the mass of the plate element on dynamic foundation are connected in the global coordinate, 

the equation of motion of the plate on the dynamic foundation subjected to a moving oscillator in 

each time step is defined as follows 

             M U C U K U F  
            

       (35) 

where, [M], [C], and [K] are the overall mass, damping and stiffness matrices of the system, 

respectively; U is the nodal displacement vector, and F is the external force vector. It can be 

seen that symbols [M], [C], and [K] in Eq. (35) are called instantaneous matrices because they are 

time-dependent matrices which constant matrices are due to the structure itself and time-dependent 

matrices are due to the moving oscillator. The Eq. (35) is used for studying the dynamic response 

of the plate subjected to a moving oscillator on the dynamic foundation and is solved by means of 

the direct step-by-step integration method based on Newmark algorithm. 

 

 

4. Numerical results 
 

4.1 Verified examples 
 
This first example considers fully simply supported (SSSS) and fully clamped (CCCC) plates, 

with thickness-to-side ratio h/a. The non-dimensional natural frequencies for CCCC and SSSS 

plate expressed in Table 1 are obtained, show that quite good agreement with the solution given in 

literature (Ferreira et al. 2010). 

The next comparative study is investigated to the natural frequencies of square isotropic plates 

(axa) on Pasternak foundation. The demonstrate natural frequency of the plates with fully simply 

supported and clamped edges are plotted in Table 2. As demonstrated in these tables, discrepancies 

between the result of the present work and those of other researches are in excellent agreement. 
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Table 1 The natural frequencies of the square isotropic plate without foundation  

No. 

Mode 

SSSS, κ=0.833, v=0.3 CCCC, κ=0.8601, v=0.3 

h/a=0.1 h/a=0.01 h/a=0.1 h/a=0.01 

Present 

(15×15) 

Ferreira 

(15×15) 

Present 

(20×20) 

Ferreira 

(20×20) 

Present 

(20×20) 

Ferreira 

(20×20) 

Present 

(20×20) 

Ferreira 

(20×20) 

1
st
 0.9345 0.9346 0.0965 0.0965 1.5996 1.5955 0.1765 0.1750 

2
nd

 2.2544 2.2545 0.2430 0.2430 3.0784 3.0662 0.3635 0.3635 

3
rd

 2.2544 2.2545 0.2430 0.2430 3.0784 3.0662 0.3635 0.3635 

4
th

 3.4591 3.4592 0.3890 0.3890 4.3129 4.2924 0.5358 0.5358 

5
th

 4.3029 4.3031 0.4928 0.4928 5.1513 5.1232 0.6634 0.6634 

 
Table 2 The natural frequencies of the square plate on Pasternak foundation with non-dimensional parameter 

2

2

a h

D

 



  

Boundary 

condition 
h/a K1 K2 Methods 1 2 3 

SSSS 

(=0.3) 

0.01 

100 10 

Zhou et al. (2004) 2.6551 5.5717 8.5406 

Xiang et al.(1994) 2.6551 5.5718 8.5405 

Ferreira et al. (2010) 2.6559 5.5718 8.5384 

Present 2.6570 5.5924 8.5771 

500 10 

Zhou et al. (2004) 3.3398 5.9285 8.7775 

Xiang et al. (1994) 3.3400 5.9287 8.7775 

Ferreira et al. (2010) 3.3406 5.9285 8.7754 

Present 3.3414 5.9481 8.8131 

0.1 

200 10 

Zhou et al. (2004) 2.7756 5.2954 7.7279 

Xiang et al. (1994) 2.7842 5.3043 7.7287 

Ferreira et al. (2010) 2.7902 5.3452 7.8255 

Present 2.7857 5.3207 7.7539 

1000 10 

Zhou et al. (2004) 3.9566 5.9757 8.1954 

Xiang et al. (1994) 3.9805 6.0078 8.2214 

Ferreira et al. (2010) 3.9844 6.0403 8.3112 

Present 3.9816 6.0222 8.2451 

CCCC 

(=0.15) 
0.015 1390.2 166.83 

Zhou et al. (2004) 8.1673 12.8229 16.8332 

Omurtag et al. (1997) 8.1375 12.8980 16.9320 

Ferreira et al. (2010) 8.1669 12.8210 16.8420 

Present 8.1718 12.8620 16.8890 

 

 

This final example is conducted to verify the present algorithm for the problem of plates 

traversed by a moving sprung mass for the isotropic plate. The obtained results are compared with 

those of the semi-analytical solution (Ghafoori et al. 2010). The displacements of the car body of a 

vehicle with various damping coefficients of the suspension system are plotted in Fig. 4. It can be 

that the results of the present method are in good agreements with the results of the semi-analytical  
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Fig. 4 Displacements of the plate traversed by a moving sprung mass versus the mass of oscillator 

 

 

solution. This example will demonstrate excellent performance of the proposed algorithm to 

illustrate the dynamic response of the plate subjected to the moving objects. 

Through above examples, the numerical results from the program based on the suggested 

formulation show quite good agreement with numerical results in the literature. Therefore, the 

program which will analyze the influence of many parameters to dynamic response of the plate on 

the dynamic foundation subjected to a moving oscillator is reliable. 

 
4.2 Numerical investigation 
 
In the first investigation, the effects of mass density parameter of the dynamic foundation on 

free vibration of the square plate (t/a=0.01) for various foundation stiffness parameters are studied 

with =0.2 and =0.5. The natural frequencies of the plate are shown in Table 3. It can be seen 

that the natural frequency parameters decrease with an increase in the experimental parameter   

and ratio of mass density  which is defined as the ratio of the mass density of dynamic foundation 

to the mass density of the plate. At the same time, an increase in the stiffness parameters of 

dynamic foundation cause the increase in fundamental frequencies of the plate. 

In this next section now consider a moving oscillator on the middle line along the longitudinal 

longer side direction of a rectangular plate with the simply supported boundary along the two 

shorter sides. The material parameters of the plate are given by Young‟s modulus E=3.1×10
10

 

N/m
2
, Poisson‟s ratio =0.2, length L=20 m, width B=10 m, thickness t=0.3 m, and density mass 

=2500 kg/m
3
. The dynamic foundation parameter are given by ratio mass density =0.75, the 

foundation coefficient K1=50 and K2=1, and the damping coefficient c=10
2
 Ns/m

2
. The 

dimensionless parameters of the moving oscillator used to analyze the dynamic response of the 

considered system are given as =0.5 and =0.5, in which the mass parameter , the ratio of the 

total mass of the oscillator to the total mass of the plate Mp and the frequency parameter , the ratio 

of the natural vibration frequency of the oscillator v to the first fundamental natural frequency of 

the plate on dynamic foundation p. The plate is discretized by a mesh of 10×20 rectangular  

 

kv=106 (N/m)  
     Present 

 Ghafoori et al. 2010 
 

kv=109 (N/m)  
     Present 

 Ghafoori et al. 2010 
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Table 3 The influence of mass density of the dynamic foundation on the natural non-dimension frequencies 

of the plate for various stiffness foundation parameter  

K1 K2  
SSSS CCCC 

1 2 3 1 2 3 

10
2 

50 

0 3.8957 7.2044 10.334 5.1522 9.3363 13.058 

0.25 1.0604 1.9612 2.8134 1.4024 2.5416 3.5551 

0.5 0.7641 1.4132 2.0273 1.0105 1.8314 2.5618 

0.75 0.6279 1.1613 1.6660 0.8304 1.505 2.1052 

100 

0 5.0306 8.793 12.136 6.1892 10.766 14.686 

0.25 1.3693 2.3936 3.3041 1.6846 2.9308 3.9983 

0.5 0.9867 1.7248 2.3809 1.2139 2.1119 2.8811 

0.75 0.8108 1.4174 1.9566 0.9976 1.7355 2.3677 

10
3 

50 

0 4.9411 7.8192 10.771 5.9818 9.8184 13.407 

0.25 1.3449 2.1285 2.9325 1.6282 2.6728 3.6501 

0.5 0.9691 1.5338 2.1131 1.1732 1.9260 2.6302 

0.75 0.7964 1.2604 1.7365 0.9642 1.5827 2.1615 

100 

0 5.8775 9.3033 12.511 6.8952 11.187 14.997 

0.25 1.5998 2.5325 3.4060 1.8768 3.0454 4.0830 

0.5 1.1528 1.8249 2.4543 1.3524 2.1944 2.9422 

0.75 0.9473 1.4997 2.0169 1.1114 1.8033 2.4178 

 
 

                
 

                
 

Fig. 5 Shapes of the six lowest eigenmodes of the plate on dynamic foundation: (a) 1
st
 Mode; (b) 2

nd
 

mode; (c) 3
rd

 mode 3; (d) 4
th

 mode; (e) 5
th

 mode; (f) 6
th

 mode 

 

 

elements and 100 time steps are used in the time domain solution. 

In this first investigation presented free vibration of the plate with the above material and 

foundation parameters, Fig. 5 plots the shape of the six lowest eigenmodes of the plate on the 

dynamic foundation. It is seen that the shapes of eigenmodes reveal the real physical modes. 

Next, the effects of the mass density of the dynamic foundation on dynamic response of the 

plate travelled by the oscillator are investigated. The dynamic magnification factor (DMF) which 

is defined as the ratio of maximum dynamic deflection to maximum static deflection at the center  

(b) (c) 

(d) (e) (f) 

(a) 
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(c) (d) 

Fig. 6 The DMF for various elastic stiffness parameters of the dynamic foundation: (a) K1=25; (b) 

K1=50; (c) K1=75; (d) K1=100 
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(c) (d) 

Fig. 7 The DMF for various shear layer parameters of the dynamic foundation with K1=10         

(a) K2=1; (b) K2=5; (c) K2=25; (d) K2=50 

 

 

point of the plate. Figs. 6 and 7 plot the variation of DMF for different values of the elastic 

stiffness and shear layer parameter of the dynamic foundation, respectively. The effects of the  
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Fig. 8 The DMF for various damping coefficient of the dynamic foundation with K1=25 and K2=5: 

(a) c=10
2
 Ns/m

2
; (b) c=10

3
 Ns/m

2
; (c) c=5×10

3
 Ns/m

2
; (d) c=10

4
 Ns/m
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(c) (d) 

Fig. 9 The DMF for various masses of vehicle body and wheel with K1=50 and K2=1: (a) =0.25; (b) 

=0.5; (c) =1; (d) =2 

 

 

mass density of the dynamic foundation on DMF for various damping viscous are presented in Fig. 

8. 

It can be seen that the mass density of dynamic foundation affects significantly on the dynamic 

response of the plate for various values of the stiffness and damping coefficient parameter of the 

dynamic foundation. However, in the range of high velocity V>20 m/s, the effect of the mass 

density of dynamic foundation on the DMF is quite clear, and the comparisons show that the mass  
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(c) (d) 

Fig. 10 The DMF for various stiffness coefficients of the suspension system with K1 = 50 and K2 = 1: 

(a)  =0.25; (b)  =0.5; (c)  =1; (d)  =2 
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(c) (d) 

Fig. 11 The DMF for various damping coefficients of the moving oscillator with K1=50 and K2=1: (a) 

 =1%; (b)  =10%; (c)  =15%; (d)  =20% 

 

 

density parameters of dynamic foundation are an increase the DMF of the plate than the 

foundation model without the influence of mass density ( =0) which increase with an increase of 

values of its. At the same time, it can be expected that the influence of mass density of the 

dynamic foundation on dynamic response of the plate is significantly and clearly with a decrease 

of values of stiffness parameter and damping coefficient. 

In continuation, the effects of moving oscillator parameters on the DMF of the plate are also 

studied for different value of the mass density parameter of the dynamic foundation and velocity of 
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moving oscillator. Fig. 9 presents the DMF of the plate for various masses of a vehicle body and 

wheel. The influence of stiffness and damping coefficients of the suspension system between the 

vehicle body and the wheels on the DMF of the plate for various velocities of moving oscillator 

are plotted in Figs. 10 and 11. It can be seen that the mass density of dynamic foundation affects 

significantly on dynamic response of the plate for various values of the moving oscillator. The 

comparisons show that the mass density parameters of dynamic foundation are an increase the 

DMF of the plate than the foundation model without the influence of mass density (=0) which 

increase with an increase of values of its. At the same time, it can be expected that the influence of 

mass density of the dynamic foundation on dynamic response of the plate is significantly and 

clearly in the range of high velocity V >20 m/s.  

At last, the dynamic response of the moving oscillator is also investigated. The effect of various 

damping coefficients of the suspension system to the vibration of the vehicle body is plotted in 

Fig. 12. It can be seen that when the damping coefficient of the suspension system increases, the 

displacement vibration of the vehicle body is also damped strongly, and when the damping 

coefficient equals zero (without damping), the vibrations of the vehicle body are harmonic, as 

expected. Fig. 13 shows the displacement vibration of the vehicle body versus various velocities of 

the moving oscillator. The results show that when the velocity of the vehicle is faster, the vibration 

period of the vehicle also becomes larger. 
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(a) (b) 

Fig. 12 Vertical displacement of the car body of a vehicle for various damping coefficients of the 

suspension system with K1 =100, K2 =50,  =1,  =1: (a) V =10 m/s; (b) V =20 m/s 
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Fig. 13 Vertical displacement of the car body of a vehicle for various velocities with K1=100, K2=50,  

 =1,  =1: (a)  =0 %; (b)  =5 % 

x10-3 x10-3 

x10-3 x10-3 

1033



 

 

 

 

 

 

Phuoc T. Nguyen, Trung D. Pham and Hoa P. Hoang 

 

5. Conclusions 
 

A dynamic foundation model which fully describes the dynamic parameters of foundation, 

including viscous elastic and mass parameters has been proposed for dynamic analysis of the plate 

traversed by a moving oscillator. The contact force resulted by the moving oscillator has been 

obtained in terms of the contact displacement and its derivatives using the Newmark method, and 

the governing equation of motion of the plate is derived by using finite element method and the 

principle of dynamic balance. The accuracy and reliability of the results of free and forced 

vibration analysis are verified by comparing its numerical solutions with those of other available 

numerical results. The parametric analysis has been performed to investigate the effects of 

stiffness parameter, damping viscous and mass density parameter of the dynamic foundation, 

motion velocity, the mass and stiffness parameter of suspension system, and the damping ratio of 

the oscillator on the dynamic response of the plate. A comparison shows that the mass density 

parameter of the dynamic foundation increases significantly dynamic response of the plate in the 

range of high velocity of the moving oscillator than foundation model without the influence of 

mass density. The presented numerical can be employed to perform the parametric studies about 

various dynamic and structural properties of the vehicle–road systems and high speed train, which 

are useful for the practical design problems. 
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