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Abstract.  A direct and relatively simple method for controlling nodal displacements and/or internal bar 

forces has been developed for prestressable structural assemblies including complex elements (“macro-

elements”, e.g., the pantographic element), involving Matrix Condensation, in which structural matrices 

being built up from matrices of elementary elements. The method is aimed at static shape control of 

geometrically sensitive structures. The paper discusses identification of the most effective bars for actuation, 

without incurring violation in bar forces, and also with objective of minimal number of actuators or 

minimum actuation. The advantages of the method is that the changes for both force and displacement 

regimes are within a single formulation. The method can also be used for adjustment of bar forces to either 

reduce instances of high forces or increase low forces (e.g., in a cable nearing slack). 
 

Keywords:  force method; matrix condensation; static shape control; displacement control; bar force 

control; actuator placement; actuation 

 
 
1. Introduction 
 

The construction industry, by the scale of typical projects and the more imprecise nature of 

loadings, usually works to a less exacting standard of tolerance than most branches of engineering. 

Nonetheless, there are applications of structural engineering where tolerances of structural shape 

and internal forces, under changing service conditions, are not only important but actually impinge 

on the structure’s serviceability limit state. On the other hand, structures composed of beam 

members such as cable-stayed bridges could undergo a big deflection under the load or may be 

required to control internal force of a specific cable. In this case, the displacement must be restored 

and/or the cable force must be controlled and limited according to the desired target. In addition, 

the application of pantographic structures, which are made from pantographic units that consist of 

two coplanar, straight beams, joined by a shear connector, could be very delicate and sensitive to 

distortion. 

The process of small changes or movements that improves the current performance or achieves 

a desired outcome is called an adjustment or control. Shape control can be defined as reduction or 
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even elimination of the structural deformation caused by external disturbances (Ziegler 2005). 

Therefore, some structures are designed to have the ability of changing their shapes by adjusting 

some of the member lengths or forces (Shea et al. 2002). The controlling or adjustment process in 

structural engineering can be done via elongations of active members capable of length 

extension/contraction. The element elongations can be done using devices embedded in these 

members, called actuators, which produce the length extension/contraction (Haftka and Adelman 

1985a, Haftka and Adelman 1985b, Edberg 1987, Burdisso and Haftka 1990, Kwan and Pellegrino 

1993, Du et al. 2013). Earlier and recent studies on the structural control have been reviewed and 

studied in detail (Burdisso and Haftka 1990, Ziegler 2005, Korkmaz 2011), while a detailed 

discussion and review on shape control with piezoelectric actuators were presented by Irschik 

(2002), and Sunar and Rao (1999). 

Although the concept of length actuation as the cause of static shape change is simple, work on 

the associated analytical/computational techniques is not extensive. Haftka and Adelman (1985a) 

studied shape control by thermal effects, and also via placement of actuators (1985b) with heuristic 

search. Such indirect approaches have also been tested, e.g., by Subramanian and Mohan (1996) 

with an algorithm of successive correction based on heuristics. In addition, simulated annealing in 

combination with a linear finite-element evaluation of control of a precision truss structure was 

used by Salama et al. (1993). You (1997) on the other hand dealt with the problem directly, and 

showed the direct link between length actuations and displacements for prestressed structures. 

Kwan & Pellegrino (1993) provided methods to calculate actuations to generate a desired pattern 

of bar force (i.e. prestress state), but did not address displacements. On the control of both shape 

and internal forces, little work has been done. An analytical scheme of shape and stress control of 

pin-jointed prestressed truss structures without external load, using a linear force method of 

analysis, was investigated by Kawaguchi et al. (1996). Overall, far more attention has been paid to 

dynamic, than static, shape control, as can be gleaned from the survey by Irschik (2002). 

Shape control has been done on the different types of structures in order to nullify the distortion 

of the shape of structure for instance the shape control of beam (Yang and Ngoi 2000, 

Hadjigeorgiou et al. 2006, Yu et al. 2009), cable mesh antennas (Mitsugi et al. 1990, Tanaka and 

Natori 2004, Tanaka and Natori 2006, Tanaka 2011, Wang et al. 2013, Du et al. 2014), intelligent 

structures (Wang et al. 1997), truss structure (Trak and Melosh 1992), and Tensegrity structures 

(Shea et al. 2002). 

The purpose of this paper is theoretical direct nodal displacement and internal bar force control 

and simultaneous nodal displacement and internal bar force control of structures made up of more 

complex structural components (i.e., those with “macro-elements”) via a direct relationship 

between bar length actuations and the nodal displacements and/or bar forces. 

 

 

2. Controlling equations utilizing matrix condensation 
 

The previous works have described shape adjustment for a structure made of simple elements. 

Their examples mostly concern only large space structures (Haftka and Adelman 1985b), beam by 

piezoelectric actuator (Yang and Ngoi 2000), tension stabilized truss structure (Kawaguchi et al. 

1996), cable mesh space antennas (Kawaguchi et al. 1996, Tanaka and Natori 2004, Tanaka 2011, 

Du et al. 2014), intelligent structures with distributed piezoelectric sensors/actuators  (Wang et al. 

1997) and prestressed cable structures (You 1997). Whereas Saeed’s (Saeed 2014) example 

concern only pin-jointed trusses with bar elements, the same equations and techniques can be 
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applied also to other structures with elementary elements (e.g., rigidly jointed frames, or plated 

structures). Structures made up of more complicated structural components (i.e., those with 

“macro-elements”), e.g., the pantographic element in Section 5.2 have their structural matrices 

built up from matrices of elementary elements, but the building also involves “Matrix 

Condensation” in the process. The governing equations for shape adjustment are thus re-derived in 

this paper, for structures with macro-elements.  

 

2.1 Matrix Condensation 
 

Matrix Condensation is a technique of reducing the size and simplification of the structural 

matrices (equilibrium, compatibility and flexibility matrices) in the force method equations of 

structural analysis by condensing out unloaded degrees of freedom (Pellegrino et al. 1992). The 

current technique is founded in the force method to allow “easy access” to the contributing 

parameters affecting the internal forces and the external displacements. This condensation facility 

allows “macro-elements” to be built up from elementary elements, where the connectivity between 

the elementary elements form unloaded “internal joints” within the macro-elements which can 

then be “condensed out” (Kwan and Pellegrino 1994). The system of equilibrium, compatibility 

and flexibility should be in the form of Fig. 1. 

In the Force Method (Kwan 1991, Pellegrino et al. 1992, Pellegrino 1993) , the relation 

between the generalized internal bar force t and the generalized external nodal load p is the 

equilibrium matrix A as  

At p                                    (1) 

In addition, the generalized internal bar elongation e due to t are related to the generalized 

external nodal displacements d (due to p) by compatibility matrix B, because of the linear 

equations of compatibility as 

Bd e                                    (2) 

Lastly, the flexibility relationships involving the flexibility matrix F are as 

F t e                                    (3) 

For an i-dimensional structural assembly with b bar and j joints, it is likely that some of the 

nodal forces are always equal to zero. The equilibrium equations relating to these zero load 

components can be condensed out from immediate consideration, and similarly the corresponding 

displacement components and compatibility equations can also be condensed out as well, thus 

leaving a smaller set of equations. Similarly, when “macro-elements” are built up from elementary 

elements, the unloaded “internal” joints within the macro-elements present equations for 

condensation. Consider (m+p)-dimensional vectors of external joint load p and displacement d, 

and (n+p)-dimensional vectors of internal bar force t and bar elongation e, where the load vector p 

is partitioned into the two sub-vectors pm with m non-zero components and the remaining pp with 

p zero components. Similarly, the vector of displacements d can also be partitioned into dm and dp 

sub-vectors where dm and dp correspond directly to pm and pp respectively, as shown in Fig. 1(a) 

and (b). 

The equilibrium matrix can be re-arranged with simple row-exchange so that the equations 

corresponding to zero loads appear in the lower p equations, and hence pm and pp contain only 

(non-zero) and (zero) load components respectively. Partitioning can then be carried on the  
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(a)                             (b)                        (c) 

Fig. 1 Partitioned forms of the systems of (a) equilibrium, (b) compatibility and (c) flexibility equations. 

Adapted from Pellegrino et al. (1992) 

 

 

equilibrium matrix as shown in Fig. 1(a). Due to the correspondence between components of load 

and displacement, the compatibility matrix can also be re-arranged in a similar way with column-

exchanges corresponding exactly to the row-exchanges of the equilibrium matrix. In this way, the 

Bnm sub-matrix in Fig. 1(b) is still the transpose of the equilibrium sub-matrix Amn in Fig. 1(a). 

Furthermore, the same row- and column exchanges must also be carried out in the flexibility 

matrix so that the tn, en, etc. in Fig. 1(c) correspond to the internal forces and displacements in the 

equilibrium and compatibility relationships in Fig. 1(a) and (b). 

The reduced matrices can be obtained from the following process (Pellegrino et al. 1992). 

Firstly, the system of equilibrium equations after reduction of the equilibrium matrix by 

condensing out p rows with corresponding p load components is 

* * *  A t p                                   (4) 

where *
A is the reduced equilibrium matrix which relates the m non-vanishing (non-zero) load 

components to n (almost) arbitrary chosen condensed generalized internal bar forces. Since the 

lower p equation of A are homogeneous,    pn n pp pA t A t 0 , i.e.,
 

   1
p pp pn nt A A t , which 

can be used as substitution for tp in    mn n mp p mA t A t p , to give 

   1
mn n mp pp pn n mA t A A A t p , i.e.,

 
     1

mn mp pp pn n mA A A A t p  and hence  

pu
1

ppmpmn
*

AAAAA
                             (5) 

t
*
 is the generalized internal bar forces and is equal to tn, and p

*
 is the generalized external (non-

zero) load and equal to pm. The size of reduced equilibrium matrix A
*
 is m by n. 

Secondly, the system of compatibility equations “mirrors” the reduction in equilibrium 

equations, by condensing out p columns corresponding to the p displacements components and p 

rows corresponding to p generalized internal bar elongation, resulting in 

* * *  B d e                                   (6) 

where d
*
 is the generalized external nodal displacement (and equal to dm) and B

*
 is the reduced 

compatibility matrix relating the m joint displacements (corresponding to the m non-zero load 

components) to the n chosen condensed generalized internal bar elongation (corresponding to the 

chosen generalized internal bar force) 

n p

Amn Amp

Apn App

m

p

(a)

tn

tp

pm

pp=0
=

m p

Bnm Bnp

Bpm Bpp

n

p

dm

dp

en

ep

=

(b)

n p

Fnn Fnp

Fpn Fpp

n

p

tn

tp

en

ep

=

(c)
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 T
mp

T
pp

T
pn

T
mn

*
AAAAB   )( 1                           (7) 

The matrix B* thus has size n by m. From Eqs. (5) and (7) 

* *( ) T
B A                                  (8) 

The vector e
*
 is the condensed generalized internal bar elongation corresponding to the chosen 

generalized internal bar force 

p
T
pp

T
pnn

*
eAAee   )( 1                            (9) 

where ep is the generalized internal bar elongation corresponding to the generalized internal bar 

force tp. 

npnpnp AAt  t )( 1                            (10) 

Substituting Eq. (7) into Eq. (6) yields 

* *  mB d e                                 (11) 

Pellegrino et al. (1992) also found the components of external displacement dp, which are the 

displacements corresponding to the zero load components pp (=0) 

m
T
mp

T
ppp

T
ppp dAAeAd    )( )( 11                         (12) 

Finally, the condensed system of flexibility equations is 

* * *  F t e                                  (13) 

where F
*
 the reduced flexibility matrix is given by 

pnpppp
T
pp

T
pnpn

T
pp

T
pnpnppnn

*
AAF)AAFAAAAFF   (   )( 1-111              (14) 

and t
*
 is the internal bar forces (and equal to tn). 

Moreover en and ep can be calculated separately through the following equations respectively 

 npn
1

ppnpnnn t A AFFe )(                           (15) 

npn
1

pppppnp t A AFFe )(                           (16) 

The general solution of the reduced internal bar force tn in the condensed equilibrium equations 

is the summation of a particular solution (which is a set of bar forces in equilibrium with the load, 

but not necessarily satisfying compatibility) and the complementary homogeneous solution. The 

particular solution is any vector tn that satisfies Eq. (4), and one such vector is tnH obtained from 

 *


nH mt A p   where  *


A   is the pseudo-inverse of reduced equilibrium matrix. 

The complementary homogenous solution is the set of reduced bar forces solutions that  

satisfies * nA t 0  , i.e., the set of non-vanishing bar forces in equilibrium with zero external load. 

This is readily calculated by the nullspace * *( ) A S , and *
S  is the condensed states of self- 

stress. The number of such condensed states of self-stress depends on the statical redundancy s
*
 of 

977



 

 

 

 

 

 

Najmadeen M. Saeed and Alan S.K. Kwan 

the indeterminate structure (note: the determinate structure there has no states of self-stress). The 

expression of S
*
α

*
 is thus the complementary homogeneous solution, where α

*
 is a vector of s

*
 

coefficients reflecting a set of combinatorial constants (that has to be determined through 

satisfaction of compatibility). The total general solution for condensed equilibrium equation is thus 

combining a particular solution and the complementary solution, consequently 

* *  n nHt t S α                                (17) 

A structure can in general have lack of fit due to initial construction imperfection, or 

temperature change, or, as in our purpose, deliberate extensional changes to control the 

displacement and/or internal bar force of the structure. A bar can have axial force due to external 

load or any of these other “lack of fit” effects. Therefore, the total elongation of the bar is made up  

of two parts, one part due to axial force of the bar, i.e., F
*
tn, while the other part *

oe  comes from 

lack of fit (or which can be deliberately introduced to adjust the structure’s shape or force 

distribution). At this point, we introduce a vector of elongation actuation *
oe  to each bar. In 

reality, since elongation actuation greatly complicates the physical makeup of a bar, we would 

have actuation only for a limited number of bars, and hence many elements of *
oe will remain zero. 

Currently, we will allow any bar the capacity for actuation, and thus *
oe is fully populated, and Eq.  

(17) becomes 

* * *   o ne e F t                                (18) 

In the current context, *
oe , is principally the vector of elongation actuation introduced to each bar 

for the purpose of adjustment. In the same fashion as Eq. (18), Eqs. (17) and (16) can be re-written 

to include the lack of fit, and they thus take the following form 

npn
1

ppnpnnnon t A AFFee )(                          (19) 

and 

npn
1

pppppnpop t A AFFee )(                          (20) 

i.e., the total condensed elongation in each condensed bar is the sum of actuation of the condensed 

bar, and the elongation of the same bar due to axial force. Substitution of Eq. (17) into Eq. (18) 

thus gives 

)( **
nH

**
o

*
αStFee                            (21) 

Compatibility for the set of condensed bar elongations can be assured by it being found in the 

set of compatible elongations, i.e., in columnspace (B
*
), whereas left-nullspace (B

*
) contains the 

basis for all the incompatible condensed bar elongations. Subsequently, the compatibility condition 

can be imposed by stating that the condensed bar elongations e
*
 must be orthogonal to the left-

nullspace (B
*
) (i.e., by stating that the elongations cannot have any component among the 

incompatible elongations as found in the left-nullspace). By virtue of (B
*
)

T
=A

*
, left-nullspace (B

*
) 

= nullspace (A
*
), and since nullspace (A

*
) are the states of selfstress, then the compatibility 

condition is thus that the states of selfstress must be orthogonal to the elongations, i.e., (S
*
)

T
 e

*
=0, 

and 
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 0)(  **
nH

**T*
o

*T
αStFSeS                          (22) 

and thus 

][) 1
nH

**T*
o

*T***T*
tFSeSSF(Sα                         (23) 

Through back-substitution with α
*
, we can thus find the structural vectors of e

*
 (Eq. (21)), tn (Eq. 

(17)) and dm 
(Eq. (11)). 

 

2.2 Displacement control without regard to bar forces 
 

In Section 0, structural analysis was presented utilizing a matrix reduction technique, for 

structures prestressed with an initial eo. This reduced matrix technique in the Force Method can 

now be applied to the process of controlling (imperfect) structural shape. We shall initially be 

concerned with only displacement control without any concern of associated internal force change 

in the structure. For controlling displacements dm which are not associated with zero loads, we 

start with substituting Eq. (23) into Eq. (21) to give 

])[ )(( -1
nH

**T*
o

*T***T*
nH

**
o

*
tFSeSSFSStFee                  (24) 

and also by substituting Eq. (24) into Eq. (11) to give 

])[ )([ -1
nH

**T*
o

*T***T*
nH

*
o

*
m tFSeSSF(SStFeBd                 (25) 

Eq. (9) showed that p
T
pu

T
pun

*
eAAee

1)(   and hence, similarly 

po
T
pu

T
puno

*
eAAee

1)(                            (26) 

where *
oe  is the condensed generalized internal bar actuation of bar force. Substitution of Eq. (26) 

into Eq. (25) gives 

nH
**T***T*****

m tFSSFSSFBFBd ])([ 1   

no
*T***T****

eSSFSSFBB ])([ 1   

po
-1T

pp
T
pn

*T***T***T
pp

T
pn

*
e)(AASSFSSFBAAB ])()([ 11                (27) 

Eq. (27) can be written in the simpler form 

 pononHm eCeCtCd 321                                          (28) 

where C1=C F
*
, C2=C, C3=C r, C=(B

*+
−B

*
+F

*
S

*
(S

*T
F

*
S

*
)

-1
S

*T
) and 1)(   T

pp
T
pn AAr   

To calculate dp, we substitute Eqs. (20) and (28) into Eq. (12) to give 

 ]   [ )(]) ([)( 321
11

pononH
T
mp

T
ppnpn

-1
pppppnpo

T
ppp eCeCtCAAtAAFFeAd         (29) 

For ease of presentation, we adapt pn
1

pppppn AAFFv     and then substitute Eqs. (17) and 

(23) into (29) to give 
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]]}tFe[ )({[)( nH
**

o
11 *T*T***T*

nHpo
T
ppp SSSFSStveAd    

]   [ )( 321
1

pononH
T
mp

T
pp eCeCtCAA                        (30) 

Substituting Eq. (26) into Eq. (30), we obtain the condensed displacements dp, which are the 

displacements corresponding to the zero load components pp (=0) as 

]}])([ )({[)( 11
nH

**T
pono

*T***T*
nHpo

T
ppp tFSreeSSFSStveAd    

]   [ )( 321
1

pononH
T
mp

T
pp eCeCtCAA                                       (31) 

Which can be presented in a simplified form as 

pononHp eQeQtQd    321                            (32) 

where ] )(  )(  )( )[( 1111
1

*T
mp

T
pp

**T***T*T
pp

T
pp CFAAFSSFSSvAvAQ

   

] )(  )(  )[( 111
2 CAASSFSSvAQ

T
mp

T
pp

*T***T*T
pp

   

] )()(r  )(  )[( 1111
3 CrAAASSFSSvAQ

T
mp

T
pp

T
pp

*T***T*T
pp

   and pnpppppn AAFFv  )( 1  

Eqs. (28) and (32) provide the non-vanishing and vanishing displacements of the structure 

respectively, without regard to each other through using the condensed matrix method, due to tnH 

and the actuation eno and epo. Both equations have a great role in calculating displacement of a 

morphing structure through adjusting bar actuation (rotation), especially Eq. (28) which can be 

used to provide displacement of non-vanishing displacements of a pantographic morphing aerofoil 

structure since in the morphing aerofoil structure, only the outer face shape of the aerofoil is 

significant. Combining together Eqs. (28) and (32), we get: 

  c pc c ocd d Y e                                (33) 

where dpc=[C1 Q1]
T
 tnH is the vector of nodal displacements of the structure due only to non-

vanishing load component, Yc=[Yn Yp], Yc=[C2 Q2]
T
, Yp=[C3 Q3]

T
, eoc=[eno epo]

T
 and dc is the 

resultant nodal displacements after some elongation actuation eoc has been applied in the 

condensed matrix method. 

 

2.3 Bar forces control without regard to displacements 
 

Controlling of internal member force of some structures and/or some members are more 

important than the controlling displacements particularly if the structures have cable members in 

order to avoid slack of the cables so that the cable must be tightened. Furthermore, slender 

members of the structures are exposed to buckling with extra load, and in this case the 

compressive force of those type of member must be reduced. The process of force control can be 

done only in statically indeterminate structures. 

For the equation of non-vanishing bar forces control without regard to displacements, we can 

start by substituting Eq. (26) into Eq. (17) to give 

]))(([ )( 11
nH

**T
po

T
pp

T
pnno

*T***T*
nHn t FSeAAeSSFSStt              (34) 
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with previously defined substitutions 1)(  T
pp

T
pn AAr  and *T***T*

SSFSSQ  )( 1  (Eqs. (28) 

and (32)) Eq. (34) can be re-written as 

pononH
*

nHn QreQet F Qtt                         (35) 

For controlling tp without any regard to displacements, Eq. (28) is substituted into Eq. (32) to give 

pononH
*

nHp JQreJQet F JQJtt                      (36) 

where pnpp AAJ  )( 1  for ease of viewing. Combination of Eqs. (28) and (32) gives 

  c pc c oct t Z e                               (37) 

where 













nH
*

nH

nH
*

nH
pc

tJQFJt

tQFt
t  is the vector of bar forces of the structure due only to non-

vanishing load components, and Zc=[Zn Zp],  Zc=[−Q2 −JQ]
T
, Zp=[Qr JQr]

T
, eoc=[eno epo]

T
, tc is 

the resultant bar forces after some elongation actuation eoc has been applied in the condensed 

matrix method.  

 

2.4 Simultaneous displacement and bar force control 
 

Controls of either joint displacement or the bar force due to the external load without 

consideration of the other, through using the condensed matrix method are discussed in Sections 0 

and 0 respectively. Practically and theoretically, control of one will also have some requirements 

on the other, or at least monitoring on the other to ensure present limits are not breached. For 

instance, in a structure with cables, these might have a lower limit on axial force to prevent slack, 

while other slender strut members will have upper limits to prevent buckling. So while controlling 

the external nodal displacements of such a structure, it may be necessary to also control the 

internal bar forces simultaneously via the same set of eoc. For the purpose of adoption this method, 

Eqs. (33) and (37) are combined together, to enforce displacement and bar force are satisfied 

simultaneously 

 
  

       

c pcc

oc
c pcc

d dY
e

t tZ
                          (38) 

In this method, because of the typically high number of equations (ij−c in Yc and b in Zc) while 

there are only b unknowns in eoc, then Eq. (38) will be over-determinate by many degrees and 

insoluble. Therefore, only a least-squares “approximation” is possible for eoc, which is  the most 

appropriate way of obtaining eo, since it is a common use to compute a 'best fit' (least squares) 

solution to a system of linear equations and its accuracy is enough for our purpose. This is mainly 

only of academic interest, and typical situations are under-determinate and allow a choice in eoc 

because in most typical structures the displacements of only some joints are expected to be 

controlled, and the remaining displacements will typically be free to take on any values, and 

similarly, the number of bar forces that exceed specified limits are also not typically large. 
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Fig. 2 A simple pantographic structure with three degrees of statical indeterminacy 

 

 

2.5 An illustrative example of using Matrix Condensation in control 
 

The procedure of displacement control without regard to bar forces, bar forces control without 

regard to displacements, and simultaneous displacement and bar force control by using condensed 

matrices in equations of control are now illustrated with the simple example pantographic structure 

as shown in Fig. 2. The structure has EA=3.6×10
5
 N and EI=10.8×10

5
 N.mm

2
. 

The example consists of a two-dimensional single unit pantograph, which is formed from two 

coplanar beams of equal length connected at their mid-point by frictionless shear connector, which 

is perpendicular to both beams. Four bars connect between adjacent ends of the pantograph. The 

structure has three states of selfstress as shown in Fig. 2. The technique of the reduced matrix is 

now applied to this example to find A
*
, B

*
 and F

*
. The original size of the equilibrium matrix is 

18×24, and through using the condensation process (Kwan 1991, Pellegrino et al. 1992) the size of 

the given example reduces to 5×8 as shown below 
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So the compatibility matrix satisfies Eq. (8) and the size of the matrix reduces from 24×18 to 

8×5 as shown here. 
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Correspondingly, the flexible matrix reduces from 24×24 to 8×8 
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2.5.1 Controlling joint displacements only 
The condensed displacements under non-zero load dpc are as shown in Table 1 Column 4, and 

the structure deforms in such a way that the non-foundation joints 3 and 4 move to the right and 

downwards. For the controlling purpose, it is assumed that the nodal displacements in d3y is to be 

restored to its original position zero displacement, i.e., we prescribe a levelling condition of the top 

of the structure, whilst the remaining displacement are free to take any value. All non-vanishing 

(i.e., uncondensed) eno 
were chosen for actuation, since these bar elongations are actually possible 

and easy to effect (On the other hand, the condensed bar curvature would be a difficult actuation to 

practically effect). Since we are prescribing only one displacement, Eq. (33) has only one equation 

and becomes 

   
1 1 1 1 1 1 1 1

0 0 0 13.409
2 2 2 22 2 2 2

 
           
 

oce     (42) 
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Fig. 3 Illustration of the three states of selfstress for the structure in Fig. 2 with exaggerated 

bending (-------) in the pantograph to show involvement by bending in the selfstress 

 

 

which clearly has many possible solutions. One possible solution is to simply use the 

pseudoinverse to solve Eq. (42) since it is a common use to compute a 'best fit' (least squares) 

solution to a system of linear equations and its accuracy is enough for our purpose, where we thus 

obtain  
T

+3.162 +3.162 3.164 3.160 2.234 2.234 +2.234 +2.234  0  0    oce , Since the 

desired control displacement d3y is one of the non-vanishing displacements and the actuation set of 

bars to control are non-vanished bar elongations eno, then Eq. (28), can also be used in this case, to 

give the same as, i.e.,
  

T
+3.162  +3.162 3.164 3.160 2.234 2.234  +2.234  +2.234    noe , 

when this eno is used as the corrective eoc, a displacement of 0.000 in d3y as required does result, 

see Table 1 Column 5. Another useful impact is that all other displacements have also been 

reduced, in both x and y directions. However, the total elongation actuation (sum the absolute 

values of all member actuation) of the non-vanished bar elongations is 21.59mm, with eight 

separate actuations being used. Practically this is not a particular solution due to high member and 

amount of control in the non-vanishing bar elongations. For this purpose, we have to look for 

another set of eoc which contains a fewer non-zero actuations, while still providing the target d3y. 

The best location of actuators should be decided at the design stage, so that structures can have 

actuators embedded for effective control of displacements under service loading. For recognition 

of which are the most effective bars to control d3y, and the amount of required actuation, Eq. (42) 

must be used. The effectiveness of actuation in any bar is indicated by the size of the associated 

coefficient in the Yc matrix in Eq. (42). Here, there two groups for effectual control of d3y: firstly 

bars 1 to 4, and secondly, bars 5 to 8. The most effective actuation bars are those in the first group 

with the larger coefficients in Yc. The two elements of Yc which vanish are the curvature of beam-

pairs 1-5-3 and 2-6-4. For providing minimum actuation, we shall choose one of the four bars 1, 2, 

3 and 4 for actuation since they have the largest coefficients in Yc of Eq. (42). Even though each of 

the four bars, all with the large coefficients of Yc in Eq. (42) has ability to control displacement of 

d3y alone, the calculation was repeated for each of them in turn, with the results for each 

calculation shown Columns 6 to 9 in Table 1. 

This was to check the displacement of all joints in both x and y directions after applying  
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Displacement and force control of complex element structures by Matrix Condensation 

Table 1 Displacements of the structure in Fig. 2 under different sets of eno 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Joint 
Cond. 

Disp. 
Dir. 

Just dpc, no 

eoc 

(mm) 

c
 no pcY e d  

(mm) 

Control with 

only en1 

(mm) 

Control with 

only en2 

(mm) 

Control with 

only en3 

(mm) 

Control with 

only en4 

(mm) 

1 

dm 

x 0 0 0 0 0 0 

 y 0 0 0 0 0 0 

2 x 0 0 0 0 0 0 

 y -2.776 -0.543 -5.557 -5.549 +0.004 -0.002 

3 x +2.776 +0.543 +5.549 +5.557 -0.004 +0.002 

 y -13.409 0.000 0.000 0.000 0.000 0.000 

4 x -2.776 -0.543 +0.005 -0.003 -5.547 -5.559 

 y -10.633 +0.543 +0.003 -0.005 +5.547 +5.559 

5,6 dp 
x -1.387 -0.273 +6.701 -6.698 -9.469 +3.927 

y -5.318 +0.273 +6.698 -6.701 +9.469 -3.927 

 

 

required amount of actuation for each bar separately. For example, for bar 1, Eq. (42) becomes 

     10    0   0   0   0   0   0   0   0   0 13.409
2

  oce              (43) 

The use of the pseudoinverse on Yc gives  
T

 18.963   0   0   0   0   0   0   0   0   0oce . Similarly, 

the other calculations yields 18.963 for bar 2, -18.951 for bar 3, and -18.975 for bar 4. 

As a result, comparison of the required amount of actuation in each of the four bars shows they 

are almost the same, and they all produce the target zero displacement of dy3. However, actuation 

in bar 4 does have advantage over other bars because, while all the other actuations produce 

similar displacements in joints 1 to 4, actuation in bar 4 does produce the least displacement in 

joint 5-6. This is principally because bar 4 is further remote from joint 5-6 to the support in joints 1 

and 2, and hence shortening of bar 4 is not immediately displacing joint 5-6. In this way, the 

current approach can actually determine not only the necessary amount of actuation to be applied, 

but can also indicate the most effective bar(s) for a given set of displacement control. 

 

2.5.2 Controlling bar forces only 
For the purpose of controlling bar force without regarding to the joint displacements, firstly the 

bar forces tpc under load are as shown in Table 2, Column 3. Structural members have a greater 

tendency for failure in compression than the tension, due to buckling in slender members, so it is 

presumed the need to control compression force in all members to a limit of -6000, whilst the 

tensile forces are free to take any value. Under the loading shown in Fig. 2, the given example has 

axial force in bars 1 and 2 (tn1 and tn2) exceeding the compression limit (see Column 3 in Table 2) 

with values of 7071.1. 

In the first trial, all non-vanishing bar eno 
were chosen for actuation since they are easily 

accessible for the actuation process (being bar length actuations rather than curvature). Only two 

bar forces are prescribed for control, which are those for bars 1 and 2 (tn1 and tn2), thus Eq. (37) 
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has only two equations, and becomes 

6000 -373.4 -372.2 -372.8 -372.8 263.2 264.0 264.0 263.2 0 0 7071.1
 

6000 -372.2 -373.4 -372.8 -372.8 264.0 263.2 263.2 264.0 0 0 7071.1

      
      

      
oce (44) 

This system of course has many possible solutions. One possible solution process is to simply 

use the pseudoinverse to solve Eq. (44), which gives: 

 
T

0.479 0.479 0.479 0.479 +0.339 +0.339 +0.339 +0.339  0  0    oce  

Alternatively (and as also mentioned in Section 0), since tn1 and tn2 are among the non-vanishing 

tn in this example, and the actuation is also among the non-vanishing bar elongations eno, then Eq. 

(35) can equally be used, giving the same results of 

 
T

0.479 0.479 0.479 0.479 +0.339 +0.339 +0.339 +0.339    noe  After using the corrective 

eoc the force in bars 1 and 2 are reduced to -6000 as required, (see Table 2, Column 4) and at the 

same time, none of the other bars have compression force greater than 6000 and so, the objective 

condition is satisfied, and with a total actuation of 3.27 mm. 

Observation of Eq. (44) shows that bars 1 to 4 have almost the same coefficients in Zc in the 

two rows. Therefore, any effect Zceoc has on each of bars 1 to 4 is the same for bars 1 and 2. In 

other words, the force in bars 1 and 2 can (only) be raised or lowered by the same amount, with 

actuation in any of bars 1 to 4. In this case, we can reduce the number of actuators from eight to 

two, thus we restrict the length actuators to just bars 1 and 2 (i.e. the same bars with force 

requiring control). As before, we shall seek to reduce the compressive force in bars 1 and 2 to -

6000 for all bars. With the required tn as -6000, the reduced Eq. (44) is 

6000 -373.4 -372.2 0 0 0 0 0 0 0 0 7071.1
 

6000 -372.2 -373.4 0 0 0 0 0 0 0 0 7071.1

      
      

      
oce           (45) 

which (through use of pseudoinverse) gives  
T

1.437  1.437   0   0    0    0    0    0    0    0  oce . 

This corrective eoc is different to, and simpler than eno above, but, when applied, gives the same 

set of bar forces and also limits the force of bars 1 and 2 to -6000 as required, without any other 

bar force consequently exceeding the limit, see Table 2, Column 5. This time, the control is 

achieved with only 2.874mm as the total actuation of eno.  

Actually, a further reduction in the number of actuators is possible this example by controlling 

the chosen bar forces tn1 and tn2 with only one actuator, since Eq. (44) shows that bars 1 to 4 have 

nearly the same coefficients in Zc. Therefore, any effect resulting from actuation in any of bars 1 to 

4 has to be the nearly identical for both tn1 and tn2. If we choose bar alone for actuation, then Eq. 

(44) becomes 

6000 -373.4 0 0 0 0 0 0 0 0 0 7071.1
 

6000 -372.2 0 0 0 0 0 0 0 0 0 7071.1

      
      

      
oce           (46) 

and  
T

2.873   0   0   0   0   0   0   0   0   0 oce  

Similarly, if we choose bar 2 for actuation, then reduced Eq. (44) becomes 

6000 0 -372.2 0 0 0 0 0 0 0 0 7071.1
 

6000 0 -373.4 0 0 0 0 0 0 0 0 7071.1

      
      

      
oce           (47) 
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Table 2 Bar forces of the structure in Fig. 2 under different sets of eno 

(1) (2) (3) (4) (5) (6) (7) 

Bar 
Cond. 

Force 

Just tpc,  

no eoc (N) 

All elements in 

eno (N) 

Control with only 

en1 & en2 (N) 

Control with only 

en1 (N) 

Control with only 

en2 (N) 

1 

tn 

-7071.1 -6000.0 -6000.0 -5998.4 -6001.6 

2 -7071.1 -6000.0 -6000.0 -6001.6 -5998.4 

3 +7075.6 +8146.6 +8146.6 +8146.6 +8146.6 

4 +7066.6 +8137.6 +8137.6 + 8137.6 + 8137.6 

5 +4996.8 +4239.5 +4239.5 +4240.6 ++4238.3 

6 +4996.8 +4239.5 +4239.5 +4238.3 +4240.6 

7 -4996.8 -5754.2 -5754.2 -5755.3 -5753.0 

8 -4996.8 -5754.2 -5754.2 -5753.0 -5755.3 

m(1,2) 
tp 

-635.7 -635.7 -635.7 -635.7 -635.7 

m(3,4) 0.0 0.0 0.0 +232.5 -232.5 

 

 

which again gives a similar  
T

0   2.873   0   0   0   0   0   0   0   0 oce  

The resultant bar forces from applying these two eoc are calculated and collected in Columns 6 

and 7 of the Table 2. Both columns show (near) identical results, so the force in bars 1 and 2 can 

actually be controlled via only one actuator. The principal difference in the two sets of resultant 

forces is in the moment of beam-pair 1-6-4 (i.e., m(3, 4)) which have values of -232.1 and +232.1. 

The difference results from eoc having a shortening each time, in either bar 1 or in bar 2, but a 

shortening in bar 1 (which is “below” beam-pair 1-6-4) would bend that beam-pair in the opposite 

direction to a shortening in bar 2 (which is “above” that beam-pair). However, whether the beam-

pair bends one way or the other, so long as the amount of bending is the same, then the effect at its 

pinned-ends (i.e., overall shortening) is the same, and hence the controlling effect on the rest of the 

structure is the same. This is why either Eq. (46) or Eq. (47) produces the same overall bar force 

effect (except for the moment m(3, 4)). 

 

2.5.3 Simultaneously controlling joint displacement and bar force  
The joint displacements and bar forces of the structure under load without any corrective 

actuation eoc applied are shown together in Columns 4 and 5 of Table 3 respectively. We shall now 

impose both the controlling conditions introduced in the Subsections 0 and 0 simultaneously; so 

the nodal displacement in d3y is to be zero (in order to keep the top of the structure level), and 

compression force in members are limited to -6000. Control is to be achieved through actuation in 

non-vanishing bar elongation eno, which we choose to be tn1 and tn2. Eq. (38) is now employed as a 

system of two equations in eight non-vanishing elongation unknowns 

[row 3, columns[1-8]]

[rows 1 and 2, columns[1-8]]

0 13.41

6000  7071

6000 7071

    
     
        
          

c

oc

c

e
Y

Z
                  (48) 

Thus, Eq. (48) becomes 
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Table 3 Displacement and bar forces control of the structure in Fig. 2. 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

Jt 
Cond. 

Disp. 
Dir. 

no eoc (eoc)1 (eoc)2 Cond. 

Force 
Bar dpc 

(mm) 
tpc 

(N) 
dpc 

(mm) 
tpc 

(N) 
dpc 

(mm) 
tpc 

(N) 

1 

dm 

x 0 -7071 0 -6000 0 -6000 

tn 

1 

 y 0 -7071 0 -6000 0 -6000 2 

2 x 0 +7076 0 +8143 0 +8140 3 

 y -2.78 +7067 -0.46 +8141 -2.36 +8144 4 

3 x +2.78 +4997 0.46 +4242 +2.36 +4244 5 

 y -13.41 +4997 0.00 +4242 0.00 +4244 6 

4 x -2.78 -4997 -0.63 -5757 -3.20 -5759 7 

 y -10.63 -4997 +0.63 -5757 +3.20 -5759 8 

5,6 dp 
x -1.39 -636 -0.31 -125 +2.26 +248 

tp 
m(1,2) 

y -5.32 0 +0.31 0 -2.26 0 m(3,4) 

(Displacements (shaded) and bar forces (unshaded) of the structure: with no eoc; with (eoc)1 and (eoc)2 applied 

to adjust the controlled displacements (Column 4) and bar forces (Column 5) shown in bold) 

 

 

0 +0.707 0.707 0.707 0.707 0.500 0.500 +0.500 +0.500 0 0 13.41

6000  373.4 372.2  372.8  372.8 +263.2 +264.0 +264.0 +263.2 0 0 70

6000 372.2 373.4 372.8  372.8 +264.0 +263.2 +263.2 +264.0 0 0

        
   
          
          

oce 71

7071

 
 
 
  

(49) 

Simply through the pseudoinverse of the 3 8  compound matrix [Yc|Zc]
T
 a set of actuation 

obtained as:  
T

1)  2.683    2.683   -3.643   -3.638   -1.896   -1.896    2.573    2.573    0   0(  oce  

Table 3 shows the effects of (eoc)1 in Columns 6 and 7, and that all the required controls are 

achieved, without any introduction of a new bar force compression violation. The total amount of 

actuation required by (eoc)1 is 21.585 mm. 

The coefficients in Eq. (49) also identify which are the most effective bars for a given set of 

simultaneous displacement and bar force control. The minimum number of actuations to deliver 

the required displacements and bar forces can obtained by choosing the bars corresponding to the 

biggest coefficients of [Yc|Zc]
T
. In this example, we thus choose the three most effective bars, 

instead of all eight, for actuation, and these are bars 1, 2 and 4. Bar 4 was chosen for control of d3y 

(following the large coefficients for Yc) and bars 1 and 2 were chosen for tn1 and tn2 respectively 

(following the large coefficients for Zc). Therefore. Therefore, Eq. (49) simplified to 

 

0 0.7071 0.7071 0 0.7067 0 0 0 0 0 0 13.41

6000  373.4 372.2 0 372.8 0 0 0 0 0 0 7071

6000 372.2 373.4 0 372.8 0 0 0 0 0 0 7071

       
     
           
              

oce          (50) 

and  
T

2) +4.024  +4.024  0  -10.921  0  0  0  0  0  0( oce
 

This reduced set of eoc satisfies both displacement and bar force condition without any bar 

violations, as shown in Columns 8 and 9 of Table 3. At the same time, not only is the total number 
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of actuators reduced from eight to three, but the total amount of actuation has also reduced, from 

(eoc)1=21.585 mm to (eoc)2=18.970 mm. There has thus been a double advantage in using Eq. (50). 

As a result, it is proven in this Section that linear controlling equations using condensed matrix 

is as powerful as using non-condensed matrix for control or adjustments of structural shape and/or 

force. Moreover, these equations can be used in finding controlling displacement and bar force 

with minimum actuation, as well as in cases where the actuator locations are already fixed. The 

same set of equations derived in this Section are also applicable for shape adjustment of structures 

containing macro-elements (i.e., elements built up from one or more fundamental elements), of 

which the pantograph element used in Fig. 2 is only one example. 

 

 

3. Comparison the current method with previous techniques 
 

The purpose of this paper is controlling nodal displacement and/or internal bar force control of 

for structures made up of more complex structural components (i.e., those with “macro-

elements”), e.g., the pantographic. Since work on the associated analytical/computational 

techniques on these types of structure is rare and this technique is valid for noncomplex structures 

as well, so the present technique was applied on a simple pin-jointed assembly under load as 

shown in Fig. 4 and compared with results previously published by You (1997), Shen et al. (2006) 

as cited by Xu and Luo (2008) and Xu and Luo (2008) who worked on displacement control of a 

prestressed 9-cable network structure as shown in Fig. 4, where all cables have axial stiffness (EA) 

of 43.16 kN. The prestress of the structure (You 1997) is shown in Column 4 of Table 4, which is 

produced by changing the length of the cables vii, viii, and ix by the amounts of -5.02 mm, +4.49 

mm and -5.52 mm respectively. The consequent displacements for these actuations are shown in 

Column 3. You (1997) set the target displacement for control as negation of the displacement of 

node 6, which has pre-adjustment displacements of [2.56, -4.31]
T 

mm, and this was to be changed 

to [0, 0]
T
. Furthermore, the condition was also given that the internal force of the cables had to be 

kept above their initial values i.e., t ≥ to.  

 

 

 

Fig. 4 A plane cable net structure (You 1997) 
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Table 4 Comparison the present technique of linear shape control with You, Shen and Xu techniques for 

linear shape control of cable net structure in Fig. 4 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) 

Jo
in

t 

D
ir

 

Pre-

adjustment 
Post-adjustment (Theoretical) 

M
em

b
er

 

Theoretical You * Present study* Shen* Present study Shen Xu 

do 
(mm) 

to 
(N) 

D 

(mm) 
T 

(N) 
eo 

(mm) 

D 

(mm) 
T 

(N) 
eo 

(mm) 

eo 

(mm) 

D 

(mm) 
T 

(N) 
eo 

(mm) 

eo 

(mm) 

eo 

(mm) 

2 x 0.00 61.38 0.29 141.8 0.00 -0.02 117.48 0.00 0.00 -1.05 61.38 -1.72 -1.72 -2.56 1 

 
y -6.66

+
 61.38 -0.60 115.0 0.00 -12.82 118.84 0.00 0.00 -3.13 61.38 0.34 0.34 0.00 2 

5 x -2.56
+
 23.55 -0.21 33.3 0.00 -5.22 23.55 0.00 0.00 -3.24 23.55 -1.38 -1.38 0.00 3 

 
y -4.31 17.02 -8.50 17.0 0.00 -8.03 33.71 0.00 0.00 -2.90 17.02 1.24 1.24 0.02 4 

6 x 2.56 17.02 0.00 54.1 -10.53 0.00 31.83 -9.33 -8.90 0.00 17.02 -1.62 -1.62 -2.44 5 

 
y -4.31 23.55 0.00 23.5 -0.42 0.00 24.05 -0.43 -0.57 0.00 23.55 -0.42 -0.42 -0.63 6 

  
 

50.00 
 

61.1 -4.67 
 

72.94 -4.47 -4.83  50.00 0.14 0.14 -0.01 7 

   50.00  67.5 0.00  57.87 0.00 0.00  50.00 -1.88 -1.88 -3.09 8 

   50.00  101.1 3.79  70.91 4.16 4.30  50.00 4.41 4.41 4.21 9 

total actuation (mm) 19.41  18.39 18.60 13.15 13.15 12.96  

*These three solutions have assumed that only the cables no. 5-9 are adjustable. 

+These numbers have been corrected due to a sign omission in the original (You 1997) 

 

 

The set of results are achieved via two alternative sets of actuator. The first set assumed that 

only the cables 5 to 9 are adjustable, while in the second set, all cables were allowed to participate 

in the adjustment process for achieving the required target. Firstly, following You’s original work 

in only actuating cables 5 to 9, the displacements and internal bar forces after adjustment from 

using the present method, are shown in Columns 8 and 9 of Table 4. The set of actuation calculated 

(Column 10) is slightly different to that given by You (Column 7) and Shen et al. (Column 11), 

and a slightly smaller total actuation than both previous methods have also been achieved. All 

three methods attained the target of both eliminating displacements of node 6 (Columns 5 and 8) 

without any decrease in any of the cable forces. Secondly, when Shen et al. (2006) studied this 

example, they also allowed all cables to be actuated, and the post-adjustment displacement and 

cable force results from the present method, are shown in Columns 12 and 13 of Table 4, which 

shows again that the target control was achieved. In actual fact, the present technique found the 

same set of actuation found by Shen et al. (2006) (Column 15) while Xu and Luo (2008) found a 

slightly different set of actuator (Column 16) which had a slightly smaller total actuation. 

 

 

4. Conclusions 
 

A useful and relatively simple method has been presented in this paper which provides a direct 

method for calculating required length actuations for structures made up of more complex 

structural components (i.e., those with “macro-elements”), e.g., the pantographic element requiring 

shape or force control, or both. This technique involved structural matrices being built up from 
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matrices of elementary elements, and then processed with “matrix condensation”. The advantages 

of the method is that the changes for both force and displacement regimes are within a single 

formulation, and preference is given to solutions which involve a minimal number of length 

actuation and also minimal amount of actuations. It was concluded that the proposed system 

performs well in seeking the optimal set for the shape control of prestressed structures through 

comparison of this study with other techniques. 

 

 

References 
 

Burdisso, R.A. and Haftka, R.T. (1990), “Statistical analysis of static shape control in space structures”, 
AIAA J., 28(8), 1504-1508. 

Du, J., Bao, H. and Cui, C. (2014), “Shape adjustment of cable mesh reflector antennas considering 

modeling uncertainties”, Acta Astronautica, 97, 164-171. 

Du, J., Zong, Y. and Bao, H. (2013), “Shape adjustment of cable mesh antennas using sequential quadratic 

programming”, Aerosp. Sci. Tech., 30(1), 26-32. 

Edberg, D.L. (1987), “Control of flexible structures by applied thermal gradients”, AIAA J., 25(6), 877-883. 

Hadjigeorgiou, E.P., Stavroulakis, G.E. and Massalas, C.V. (2006), “Shape control and damage identification 

of beams using piezoelectric actuation and genetic optimization”, Int. J. Eng. Sci., 44(7), 409-421. 

Haftka, R.T. and Adelman, H.M. (1985a), “An analytical investigation of shape control of large space 

structures by applied temperatures”, AIAA J., 23(3), 450-457. 

Haftka, R.T. and Adelman, H.M. (1985b), “Selection of actuator locations for static shape control of large 

space structures by heuristic integer programing”, Comput. Struct., 20(1), 575-582. 

Irschik, H. (2002), “A review on static and dynamic shape control of structures by piezoelectric actuation”, 

Eng. Struct., 24(1), 5-11. 

Kawaguchi, K.I., Hangai, Y., Pellegrino, S. and Furuya, H. (1996), “Shape and stress control analysis of 

prestressed truss structures”, J. Reinf. Plast. Compos., 15(12), 1226-1236. 

Korkmaz, S. (2011), “A review of active structural control: challenges for engineering informatics”, Comput. 

Struct., 89(23), 2113-2132. 

Kwan, A.S.K. (1991), “A pantographic deployable mast”, PhD Thesis, University of Cambridge, Cambridge, 

UK.  

Kwan, A.S.K. and Pellegrino, S. (1993), “Prestressing a space structure”, AIAA J., 31(10), 1961-1963. 

Kwan, A.S.K. and Pellegrino, S. (1994), “Matrix formulation of macro-elements for deployable structures”, 

Comput. Struct., 50(2), 237-254. 

Mitsugi, J., Yasaka, T. and Miura, K. (1990), “Shape control of the tension truss antenna”, AIAA J., 28(2), 

316-322. 

Pellegrino, S. (1993), “Structural computations with the singular value decomposition of the equilibrium 

matrix”, Int. J. Solid. Struct., 30(21), 3025-3035. 

Pellegrino, S., Kwan, A.S.K. and Van Heerden, T.F. (1992), “Reduction of equilibrium, compatibility and 

flexibility matrices, in the force method”, Int. J. Numer. Meth. Eng., 35(6),1219-1236. 

Saeed, N.M. (2014), “Prestress and deformation control in flexible structures”, PhD Thesis, Cardiff 

University, Cardiff, UK.  

Salama, M., Umland, J., Bruno, R. and Garba, J. (1993), “Shape adjustment of precision truss structures: 

analytical and experimental validation”, Smart Mater. Struct., 2(4), 240. 

Shea, K., Fest, E. and Smith, I.F.C. (2002), “Developing intelligent tensegrity structures with stochastic 

search”, Adv. Eng. Inform., 16(1), 21-40. 

Shen, L.Y., Li, G.Q. and Luo, Y.F. (2006), “Displacement control of prestressed cable structures”, J. Tongji 

Univ. Nat. Sci., 34(3), 291-295. (in Chinese) 

Subramanian, G. and Mohan, P. (1996), “A fast algorithm for the static shape control of flexible structures”, 

991



 

 

 

 

 

 

Najmadeen M. Saeed and Alan S.K. Kwan 

Comput. Struct., 59(3), 485-488. 

Sunar, M. and Rao, S.S. (1999), “Recent advances in sensing and control of flexible structures via 

piezoelectric materials technology”, Appl. Mech. Rev., 52(1), 1-16. 

Tanaka, H. (2011), “Surface error estimation and correction of a space antenna based on antenna 

gainanalyses”, Acta Astronautica, 68(7), 1062-1069. 

Tanaka, H. and Natori, M. (2006), “Shape control of cable-network structures based on concept of self-

equilibrated stresses”, JSME Int. J. Ser. C, 49, 1067-1072. 

Tanaka, H. and Natori, M.C. (2004), “Shape control of space antennas consisting of cable networks”, Acta 

Astronautica, 55(3), 519-527. 

Trak, A.B. and Melosh, R.J. (1992), “Passive shape control of space antennas with truss support structures”, 

Comput. Struct., 45(2), 297-305. 

Wang, Z., Chen, S.H. and Han, W. (1997), “The static shape control for intelligent structures”, Finite Elem. 

Anal. Des., 26(4), 303-314. 

Wang, Z., Li, T. and Cao, Y. (2013), “Active shape adjustment of cable net structures with PZT actuators”, 

Aerosp. Sci. Tech., 26(1), 160-168. 

Xu, X. and Luo, Y.Z. (2008), “Multi-objective shape control of prestressed structures with genetic 

algorithms”, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace 

Engineering, 222(8), 1139-1147. 

Yang, S. and Ngoi, B. (2000), “Shape control of beams by piezoelectric actuators”, AIAA J., 38(12), 2292-

2298. 

You, Z. (1997), “Displacement control of prestressed structures”, Comput. Meth. Appl. Mech. Eng., 144(1), 

51-59. 

Yu, Y., Zhang, X.N. and Xie, S.L. (2009), “Optimal shape control of a beam using piezoelectric actuators 

with low control voltage”, Smart Mater. Struct., 18(9), 095006. 

Ziegler, F. (2005), “Computational aspects of structural shape control”, Comput. Struct., 83(15), 1191-1204. 

 

 

CC 

992




