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Abstract.  Elastic constraints are usually simplified as “spring forces” exerted on beam ends without 

considering the “spring deformation”. The partial differential equation governing the free vibrations of a 

cantilever Bernoulli-Euler beam considering the deformation of elastic constraints is firstly established, and 

is nondimensionalized to obtain two dimensionless factors, κv and κr, describing the effects of elastically 

vertical and rotational end constraints, respectively. Then the frequency equation for the above Bernoulli-

Euler beam model is derived using the method of separation of variables. A numerical analysis method is 

proposed to solve the transcendental frequency equation for the continuous change of the frequency with κv 

and κr. Then the mode shape functions are given. Finally, effects of κv and κr on free vibration characteristics 

of the beam with different slenderness ratios are calculated and analyzed. The results indicate that the effects 

of κv are larger on higher-order free vibration characteristics than on lower-order ones, and the impact 

strength decreases with slenderness ratio. Under a relatively larger slenderness ratio, the effects of κv can be 

neglected for the fundamental frequency characteristics, while cannot for higher-order ones. However, the 

effects of κr are large on both higher- and lower-order free vibration characteristics, and cannot be neglected 

no matter the slenderness ratio is large or small. 
 

Keywords:  deformation; elastic constraint; free vibration characteristic; cantilever beam; Bernoulli-Euler 

beam; frequency equation; mode shape function 

 
 
1. Introduction 
 

Owing to its extensive application in engineering, the transversely vibrating beam has been a 

hot research topic in the field of engineering mechanics for the past more than one century 

(Timoshenko 1953, Thomson and Dahleh 1997). With deepening of the research, the beam theory 

has been being improved gradually, successively from the Bernoulli-Euler to Rayleigh, shear and 

Timoshenko, more and more accurate and close to reality (Traill-Nash and Collar 1953, Han et al. 

1999). And more recently, Plankis et al. (2015) proposed a three-dimensional elasticity-based 
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beam theory in which a few of the assumptions included in the above four beam theories are 

removed, closer to reality. Liang et al. (2014) established a new Bernoulli-Euler beam model 

based on a simplified strain gradient elasticity theory, and discussed the influences of Poisson’s 

effect as well as the weak non-local strain gradient elastic effect. So far, there still exists some 

certain discrepancy between the beam theory and engineering practice. Two key factors contribute 

to it. The first and most concerned one is the approximation degree of the beam theory itself, while 

the other is the reasonableness of the adopted boundary conditions, which is often less concerned 

or even ignored. 

In most previous studies on transverse vibrations of beams, end supports are usually simplified 

as rigid constraints, neglecting the elasticity of end supports, which is undoubtedly convenient for 

establishing and analyzing the beam theory, while may bring errors or mistakes in some cases. As 

is known to all, all structural materials possess to some extent elasticity. So only when the stiffness 

of end supports is much larger than that of the beam can the assumption of rigid constraint be 

reasonable. However, in practice, this requirement usually cannot be satisfied very well, for 

example, a girder bridge with highly flexible piers (Wang et al. 2015) and a submarine pipeline 

laid on a soft seabed (Choi 2001), for which the elasticity of end supports has to be considered. 

Till now, a considerable amount of research has been performed on vibration analysis of beams 

with elastic supports. Chun (1972) derived exact expressions for the natural frequencies and mode 

shapes of a beam with one end spring-hinged and the other end free. Maurizi et al. (1976) studied 

the free vibration of a uniform beam with one end hinged and rotationally restrained, and the other 

end restrained by a transverse spring. Afolabi (1986) analyzed the effects of the rotational and 

transversal support flexibility on the natural frequency of an almost clamped-clamped beam and a 

flexibly supported cantilever beam. Lee and Ke (1990) studied the free vibration of an elastically 

restrained symmetric non-uniform Timoshenko beam resting on a non-uniform elastic foundation 

and subjected to an axial load. Rao and Mirza (1989) and Li (2000) studied analytically the free 

vibration of beams restrained by two transverse springs and two rotational springs. Xing and Wang 

(2013) gave the frequency equations and shape functions for the beams with two transversal and 

two rotational elastic springs subjected to a constant axial load. Duy et al. (2014) studied the free 

vibration of functionally graded material beams on an elastic foundation and spring supports. Shi 

et al. (2014) reported the effects of elastic supports and added masses on dynamic characteristics 

of a three-span non-uniform beam bridge. In addition, there are many other related studies which 

are regrettably omitted here. 

Among the above studies on vibrating beams with elastic end supports exists a common point 

that the elastic end constraints are usually simplified as “spring force” exerted on beam ends, 

ignoring the “spring deformation” which may be unreasonable in practice. Wang et al. (2015) 

derived the governing equation of motion for a hinged-hinged Bernoulli-Euler beam under vertical 

ground motion considering elastically vertical deformation of end supports, and found that elastic 

end supports may magnify or minify vertical seismic responses of the beam. So it is very 

necessary to study the effects of elastic end supports (including their deformation) on dynamic 

characteristics of the beam. In this paper, we extend the study of Wang et al. (2015), and consider 

the free vibrations of cantilever Bernoulli-Euler beams with elastic constraints. In the next section, 

the dimensionless governing equation of motion for a uniform Bernoulli-Euler beam with one end 

elastically constrained and the other free is derived in detail, in which there are two dimensionless 

factors, κv and κr, describing the effects of the elastically vertical and rotational constraints, 

respectively. Then the frequency equation for the above beam model is derived in Section 3 using 

the method of separation of variables. Section 4 presents a numerical analysis method to solve the  
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Fig. 1 A uniform cantilever Bernoulli-Euler beam with elastic constraints 

 

 

Fig. 2 Vertical displacements of the cantilever Bernoulli-Euler beam with elastic constraints 

 

 

obtained frequency equation for the continuous change of the frequency with κv and κr. Then the 

mode shape functions corresponding to the calculated frequencies are given in Section 5. Section 6 

calculates and analyzes the effects of κv and κr on free vibration characteristics of the beam under 

different slenderness ratios. Finally, some conclusions are summarized in Section 7. 

 

 

2. Equation of motion and boundary conditions 
 

Fig. 1 shows a beam with one end elastically supported and the other end free to be considered 

in this study, in which the density ρ, the span L, the section area A, the area moment of inertia I 

and the elastic modulus E are all constants. Both the vertical and rotational displacements of the 

left end are elastically constrained, and accordingly kv and kr are the vertical and rotational 

constraint stiffness, respectively. 

The coordinate system adopted is also shown in Fig. 1, in which the x axis is defined as the 

central axis of the beam at its original (or static) position, y(x,t) is the absolute displacement of the 

beam relative to the x axis, and u(x,t) is the displacement relative to the rigid central axis, i.e., the 

deformation from the broken line AB to the curve AC as shown in Fig. 2. The dotted line A'B' is 

the original (static) position of the beam, while the curve AC is the final position. The broken line 

AB is the position of the rigid beam due to the deformation of elastic constraints, and the rigid 

body displacement from the dotted line A'B' to the broken line AB is denoted as g(x,t). All 

displacements are supposed to be elastic and linear to satisfy the superposition principle, i.e., the 

assumption of small displacement, and y(x,t) and u(x,t) can both be considered vertical based on 

this assumption. 

From Fig. 2, the total (absolute) displacement y(x,t) is equal to the flexural displacement u(x,t) 

plus the rigid body displacement g(x,t), i.e. 

 ( , ) ( , ) ( , )y x t u x t g x t   (1) 

y(x,t) 

u(x,t) 

kv 

kr ρ, A, L, I, E 
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y(
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t)
 

g
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,t
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u
(x

,t
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,t
) 

m
(0

,t
) 
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The rigid body displacement g(x,t) is determined by the left end displacements of the beam, i.e., 

the vertical displacement y(0,t) and the rotational angle ∂y(0,t)/∂x (for simplicity ∂y(0,t)/∂x= 

∂y(x,t)/∂x|x=0). It can be calculated based on the superposition principle by 

 
(0, )

( , ) (0, )
y t

g x t y t x
x


 


 (2) 

According to the action and reaction principle, the end shear q(0,t) and moment m(0,t) of the 

beam, as shown in Fig. 2, should equal the vertical and rotational constraint forces, respectively, 

i.e. 

 v(0, ) (0, )q t k y t  (3) 

 r

(0, )
(0, )

y t
m t k

x


 


 (4) 

in which 

 
2

2

(0, )
(0, )

u t
m t EI

x


 


 (5) 

 
3

3

(0, ) (0, )
(0, )

m t u t
q t EI

x x

 
  

 
 (6) 

Substituting Eqs. (3)-(6) into Eq. (2) and the resulting equation into Eq. (1) gives 

 
3 2

3 2

v r

(0, ) (0, )
( , ) ( , )

EI u t EI u t
y x t u x t x

k x k x

 
  

 
 (7) 

Without damping, the equation of motion governing free vibrations of the beam shown in Fig. 

1 can be written as 

 
2 4

2 4

( , ) ( , )
0

y x t u x t
A EI

t x


 
 

 
 (8) 

Substituting Eq (7) into Eq. (8) yields 

 

2 4 5 4

2 4 3 2 2 2

v r

( , ) ( , ) (0, ) (0, )
0

u x t u x t AEI u t AEI u t
A EI x

t x k x t k x t

 


   
   

     
 (9) 

The boundary conditions for the cantilever Bernoulli-Euler beam are 

 
( , )

( , ) 0
u x t

u x t
x


 


, 0x   (10) 

 
2 3

2 3

( , ) ( , )
0

u x t u x t

x x

 
 

 
, x L  (11) 

For convenience, nondimensionalize u(x,t) and x by L, and t by t0=(ρL2/E)1/2, i.e. 
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x

L
  , 

0

t

t
  , 

( , )
( , )

u x t
U

L
    (12) 

Then Eqs. (9)-(11) become 

 
2 2

v r( , ) ( , ) (0, ) (0, ) 0s U U U s U               (13) 

 ( , ) ( , ) 0U U     , 0   (14) 

 ( , ) ( , ) 0U U      , 1   (15) 

Here the prime “ ' ” and the over dot “ · ” represent differentiation with respect to the 

dimensionless coordinate ξ and to the dimensionless time τ, respectively, and 

 

2AL
s

I
 , v

v

EA

Lk
  , 

r

r

EI

Lk
   (16) 

are all dimensionless factors not less than zero, in which s is the slenderness ratio, and κv and κr the 

stiffness factors controlling the effects of the elastically vertical and rotational constraints, 

respectively. Based on the assumption of small displacement, κv and κr cannot be very large.  

Eqs. (13)-(15) are just the dimensionless free vibration equation and corresponding boundary 

conditions for the cantilever Bernoulli-Euler beam with elastic constraints. 

 

 

3. Frequency equation 
 

Using the method of separation of variables, U(ξ,τ) can be decomposed into a temporal function 

T(τ) multiplied by a spatial function V(ξ), i.e. 

 ( , ) ( ) ( )U T V     (17) 

Substituting Eq. (17) into Eq. (13) gives 

 
2 2

v r( ) ( ) (0) (0) ( ) ( ) 0T s V V s V T V               (18) 

The above expression can be separated into two ordinary differential equations given by 

 
2( ) ( ) 0T T     (19) 

 
2 2 2

v r( ) ( ) (0) (0) 0V s V V s V              (20) 

in which ω is the dimensionless frequency, and accordingly the dimensional one is given by ω/t0. 

Then the boundary conditions of Eqs. (14) and (15) become 

 ( ) ( ) 0V V   , 0   (21) 

 ( ) ( ) 0V V    , 1   (22) 

From Eq. (19), T(τ) is sinusoidal in time 
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 1 2( ) sin cosT d d     (23) 

where d1 and d2 are constant coefficients. 

From Eq. (20), V(ξ) can be assumed as 

 
2 3 2

v r( ) ( )V C e r         (24) 

in which C is a constant coefficient, e the Euler's constant, r=1/s, and λ the wave number. 

When Eq. (24) is substituted into Eq. (20), in order to have a non-trivial solution, the wave 

number λ can be solved as 

 
1 ia  , 2 ia   , 

3 a  , 
4 a    (25) 

in which i=(−1)1/2, a=(s/ω)1/2. The quantity a is 1/(2π) times the number of cycles in a beam length, 

so we call a the dimensionless wave number. 

Then the general solution of V(ξ) is given by 

 
4

2 3 2

v r

1

( ) ( )n

n n n

n

V C e r
      



    (26) 

Expressing the exponential function in the above equation in terms of sinusoidal and hyperbolic 

functions yields 

2 3 2

1 2 3 4 1 3 v 2 4 r( ) sin cos sinh cosh ( ) ( )V c a c a c a c a c c r a c c a                (27) 

in which c1=i(C1−C2), c2=C1+C2, c3=C3−C4, c4=C3+C4.  

Substituting Eq. (27) into the boundary conditions of Eqs. (21) and (22) yields a system of liner 

algebraic equations, i.e. 

 

2 3 2 3
1v v

2r r

3

4

01 1

01 1

0sin cos sinh cosh

0cos sin cosh sinh

cr a r a

ca a

ca a a a

ca a a a

 

 

     
     

         
      
 

       

 (28) 

The determinant of the matrix in Eq. (28) has to be zero to avoid the trivial solution, that is 

 

2 3

v

2 4

r v r

(1 cos cosh ) (sin cosh cos sinh )

(sin cosh cos sinh ) (1 cos cosh ) 0

a a r a a a a a

a a a a a r a a a



  

  

    
 (29) 

Eq. (29) is just the frequency equation for the cantilever Bernoulli-Euler beam considering the 

deformation of elastic constraints. Clearly, the frequency equation contains four parts: the first 

term on the left-hand side is the frequency equation of the cantilever beam with rigid constraints, 

the second term the correction induced solely by the vertical constraint, the third term the 

correction induced solely by the rotational constraint, and the fourth term the mixed correction 

induced by both constraints. 
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4. Solution method for the frequency equation 
 

So far, we have obtained the frequency equation for the cantilever beam with elastic 

constraints. Solving the frequency equation will yield the natural frequencies. However, it is much 

easier to directly obtain the dimensionless wave number a from Eq. (29) than to obtain the 

dimensionless frequency ω. Because a2 is equal to the dimensionless frequency ω multiplied by 

the dimensionless slenderness ratio s, i.e., a2=sω, a can also be called the “dimensionless 

frequency” (Kang 2014) or “frequency factor” (Ozturk and Coskun 2013). For simplicity, we just 

study in this paper the wave number a rather than the frequency ω. And ω can be calculated from 

the obtained wave number using the relationship, ω=a2/s. 

Clearly, when the slenderness ratio s (or its reciprocal r) is given, Eq. (29) is a function of the 

wave number a and the stiffness factors κv and κr, or in other words, a is a function of κv and κr if s is 

given. Our primary goal in this paper is just to study the effects of κv and κr on the frequency ω or 

wave number a. The best way to represent the solution of the wave number is to plot wave 

numbers as a continuous function of κv and κr. However, the frequency equation (29) is a 

transcendental equation that has to be solved numerically, by such as the bisection or iterative 

method Faires and Burden 2012. In order to obtain a smooth function, a(κv, κr), we use the 

following analysis based on the method of Han et al. (1999). 

Firstly, let Eq. (29) with a given s be F(a, κv, κr)=0. Setting κr=0 yields H1(a, κv)=F(a, κv, κr=0), 

then dH1 can be given by 

 1 1
1 v

v

d d d
H H

H a
a




 
 

 
 (30) 

in which dH1 is zero because F is zero. Solving for da/dκv, we obtain 

 1 1

vv

d

d

a H H

a

 
 

 
 (31) 

The right-hand side of the above equation is a function of a and κv only. This is a first-order 

ordinary differential equation which can be solved once we know the initial value a(κv=0, κr=0). 

κv=κr=0 means omitting the effects of elastic constraints, then Eq. (29) becomes “1+cosacosha=0” 

whose solutions have been tabulated in many papers and books, such as the book of (Young and 

Felgar 1949). Using these existing results as the initial values, we can obtain a smooth function of 

a(κv, κr=0). 

Then Setting κv to be an arbitrary constant κvc (κvc ≥0) results in H2(a, κr)=F(a, κv=κvc, κr). In the 

same way, we can obtain 

 2 2
2 r

r

d d d
H H

H a
a




 
 

 
 (32) 

and 

 2 2

rr

d

d

a H H

a

 
 

 
 (33) 

Similarly the right-hand side of Eq. (33) is a function of a and κr. This is also a first-order 

ordinary differential equation which can be solved once we know the initial value a(κv=κvc, κr=0) 
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which has been obtained ahead. Moreover, κvc is arbitrary, so we can calculate the wave number a 

at any point (κv ≥0, κr ≥0). So far, we have obtained a smooth solution a(κv, κr) for Eq. (29). 

It should be noted here that the above analysis is just to obtain the formulae of da/dκv and 

da/dκr. However, it is difficult or impossible to derive the analytical solution for a(κv, κr=0) or 

a(κv=κvc, κr), from the formula of da/dκv or da/κr. So this method is essentially a numerical one. 

Using this method, we can calculate the solution of a(κv, κr) along a line, one by one from the 

initial value point. 

 

 
5. Mode shape functions 
 

After solving for the wave number, the mode shape function, Eq. (27), corresponding to the 

obtained wave number can be determined. For each root of the wave number, there exists one 

mode shape of vibration which can be obtained as follows. 

Any three of the four coefficients cn (n=1, 2, 3, 4) in Eq. (27) can be solved by three liner 

algebraic equations in Eq. (28). Here we solve c1, c2 and c3 from the first three equations. By 

elementary transformation we obtain 

 31 2
1 4 2 4 3 4

0 0 0

,  ,  c c c c c c
 

  
      (34) 

in which 

2 4 2 4 2 3

0 v r v r v

2 4 2 4

1 v r v r r

2 4 2 4 2 3

2 v r v r v

2 4 2 4

3 v r v r r

(1 )sin (1 )sinh 2 cos

(1 )cosh (1 )cos 2 sinh

(1 )sinh (1 )sin 2 cosh

(1 )cos (1 )cosh 2 sin

r a a r a a r a a

r a a r a a a a

r a a r a a r a a

r a a r a a a a

     

     

     

     

    

    

    

    

 

Then the shape function becomes 

 

2 34
1 2 3 0 1 3 v

0

2

0 2 r

( ) sin cos sinh cosh ( )

                                                                                          ( )

c
V a a a a r a

a

           


   

     

  

 (35) 

where c4 should be no-zero to represent vibration amplitude. 

Clearly, Eq. (35) is valid when α0 is non-zero. If α0=0, the shape function may be obtained by 

solving the coefficients c1, c2 and c4 from the first two linear algebraic equations plus the fourth 

one in Eq. (28), thus we can obtain the shape function as 

 

2 33
1 2 0 3 1 0 v

0

2

2 3 r

( ) sin cos sinh cosh ( )

                                                                                          ( )

c
V a a a a r a

a

           


   

     

  

 (36) 

in which 
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2 4 2 4

0 v r v r r

2 4 2 4

1 v r v r r

2 4 2 4 2 3

2 v r v r v

2 4 2 4 2 3

3 v r v r v

(1 )sin (1 )sinh 2 cos

(1 )sinh (1 )sin 2 cosh

(1 )cosh (1 )cos 2 sinh

(1 )cos (1 )cosh 2 sin

r a a r a a a a

r a a r a a a a

r a a r a a r a a

r a a r a a r a a

     

     

     

     

    

    

    

    

 

As shown in Eqs. (35) and (36), for each root of the wave number, the coefficients cn (n=1, 2, 3, 

4) in Eq. (27) are unique to a constant c4 or c3. For convenience, the remaining constant in the 

eigenfunction is usually determined by normalization. Here we use the following formula to 

normalize Eqs. (35) and (36). 

 max | ( ) | 1V    (37) 

 

 

6. Results and discussions 
 

The initial value problems shown in Section 4 are solved using MATLAB, and the results will 

be shown and discussed in this section. Table 1 shows the first five wave numbers an (n=1, 2, …, 

5) of the cantilever beam with rigid constraints from Young and Felgar (1949), which will be used 

as initial values in the calculations. As shown in Table 1, for the Bernoulli-Euler beam with rigid 

constraints, the wave number a is independent of the slenderness ratio s. However, for the 

Bernoulli-Euler beam with elastic constraints, a depends upon s when κv≠0, as shown by Eq. (29). 

When κv=0, Eq. (29) degenerates into 

 r(1 cos cosh ) (sin cosh cos sinh ) 0a a a a a a a     (38) 

Clearly, there is no s in the above equation, so a is independent of s when κv=0. In order to 

represent the effects of slenderness ratio when κv≠0, four cases are taken into account in this study, 

i.e., s=100, 50, 30, 20. Besides, the beam theory in this paper is based on the assumption of small 

displacement, so κv and κr cannot be very large from a practical point of view. Here, the ranges of κv 

and κr are both set as [0,5]. 

 
6.1 Natural frequencies 
 

First of all, let us consider the natural frequency or wave number a. Figs. 3(a)-(d) show the 

three-dimensional change surfaces of the first five wave numbers an (n=1, 2, …, 5) with κv and κr 

when s=100, 50, 30 and 20, respectively. Obviously, elastic constraints soften the beam, i.e., 

reduce the wave numbers. It can be concluded qualitatively from Fig. 3 that the effects of elastic 

constraints on the wave numbers, i.e., the reduction of a, increase with the increase of κv and κr, and 

decrease with the increase of the slenderness ratio s when κv≠0. κv and κr have very different effects 

on the wave number. The effects of κr on the first-order wave number a1 are larger than those of κv,  

 

 
Table 1 The first five wave numbers of the cantilever beam when κv=κr=0 (Young and Felgar 1949) 

s a1 a2 a3 a4 a5 

100,50,30,20 1.8751041 4.69409113 7.85475743 10.99554074 14.13716839 
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Fig. 3 Variations of the first five wave numbers an (n=1, 2, …, 5) with κv and κr: (a) s=100, (b) s=50, (c) 

s=30 and (d) s=20 

 
 
and are almost the same for different slenderness ratios. Whereas, the effects of κv on higher-order 

wave numbers, such as a5, are larger than those of κr especially when s is small. Besides, higher-

order wave numbers are more sensitive to a small κv or a small κr, while are insensitive to a large κv 

or a large κr. 

In order to give an obviously quantitative comparison, Fig. 4 shows the variations of the first 

five wave numbers with κv when κr=0, 0.1, 1, and 5, and Fig. 5 shows the variations of the first five 

wave numbers with κr when κv=0, 1, 3, and 5. Clearly, as shown in Fig. 4, the effects of κv and κr 

increase with not only the increase of κv and κr but also the decrease of s. Moreover, the sensitivity 

of wave number to κv (or the absolute reduction of the wave number) increases with the order 

number. Higher-order wave numbers are very sensitive to a small κv especially when s is small, 

while are insensitive to a large κv. As shown in Fig. 4d for s=20, when κr =0, from κv=0 to 1 and to 

5, the wave number a5 varies from 14.137 to 11.914 (cut by −15.7%) and to 11.806 (cut by 

−16.5%). However, the first-order wave number a1 is nearly independent of κv even for a small s. 

Also in Fig. 4(d), when κr=0, from κv=0 to 1 and to 5, a1 varies from 1.8751 to 1.8662 (cut by 

−0.5%) and to 1.8309 (cut by −2.4%). So the effects of κv can generally be neglected for a1, while 

cannot for high-order wave numbers even under a large s as shown in Fig. 4(a). 

Turn to Fig. 5. Clearly, when κv=0, a is independent of κr, the reason for which has been stated 

in the beginning of this section. Besides when κv=0, variations of the second- to fifth-order wave 

numbers are almost the same for all considered slenderness ratios, and are sensitive to a small κr. 

However, with increase of κv, the variation shapes change greatly. For certain values of κv, the 

wave number is nearly independent of κr. As shown in Fig. 5(b), when κv=3, a4 is equal to a 

constant 9.4212 as κr varies from 0 to 5. The effects of κr on the first-order wave number a1 are  
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Fig. 4 Variations of the first five wave numbers an (n=1, 2, …, 5) with κv when κr=0, 0.1, 1 and 5: (a) 

s=100, (b) s=50, (c) s=30 and (d) s=20 

 

 

Fig. 5 Variations of the first five wave numbers an (n=1, 2, …, 5) with κr when κv=0, 1, 3 and 5: (a) s=100, 

(b) s=50, (c) s=30 and (d) s=20 
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obvious, different from the effects of κv shown in Fig. 4, and are nearly independent of κv no matter 

s is large or small. As shown in Fig. 5a for s=100, when κv=0, from κr=0 to 1 and to 5, a1 varies 

from 1.8751 to 1.2479 (cut by −33.4%) and to 0.8700 (cut by −53.6%). So the effects of κr cannot 

be neglected for all considered cases. 

 

6.2 Mode shapes 
 

Substituting the obtained wave numbers in the above subsection into Eqs. (35) or (36) yields 

the corresponding mode shapes. Figs. 6-7 show the variations of the first five mode shapes with κv 

and κr under s=100 and 20, respectively. To facilitate comparison, the mode shapes of the beam 

with rigid constraints, i.e., κr=κv=0.00, are also shown in the figures. All mode shapes are 

normalized using Eq. (37). Clearly κv and κr have great effects on all considered mode shapes 

except the first-order one although the first-order wave number depends strongly upon κr as shown 

in Fig. 5. Similar to the wave number, effects of κv and κr on mode shapes increase with the increase 

of κv and κr until to some certain values above which the mode shapes are insensitive to their 

changes. When κv=0, mode shapes are independent of the slenderness ratio as shown in Figs. 6(a) 

and 7(a), but when κv≠0, effects of κv and κr on mode shapes increase with the increase of s and the 

order number. Besides, we can also find by comparing Fig. 6(c) with Fig. 7(c) (or Fig. 6(d) with 

Fig. 7(d)) that when s is small, i.e., s=20, the fourth- and fifth-order mode shapes have degenerated 

into the third- and fourth-order ones, respectively for κr=0.20, 2.00 (or κv =1.50, 5.00) and for 

κv=0.70 (or κr =0.04). 

 

 

 

Fig. 6 Variations of the first five mode shapes V(ξ) with κv and κr under s=100: (a) κv=0.00, (b) κr=0.00, (c) 

κv=0.70 and (d) κr=0.04 
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Fig. 7 Variations of the first five mode shapes V(ξ) with κv and κr under s=20: (a) κv=0.00, (b) κr=0.00, 

(c) κv=0.70 and (d) κr=0.04 
 

 

 

7. Conclusions 
 

In this paper, we established the equation of motion governing the cantilever Bernoulli-Euler 

beams considering the deformation of elastic constraints, and the corresponding frequency 

equation and mode shape functions were also given. An analysis-based numerical method was 

proposed to solve the frequency equation. Finally, effects of elastic constraints on free vibration 

characteristics of the beam were calculated and analyzed. The following conclusions can be 

suggested: 

• The governing equation of motion for the uniform cantilever Bernoulli-Euler beam was 

established considering the deformation of elastic constraints, and was nondimensionalized to 

obtain two factors, κv and κr, respectively controlling the elastically vertical and rotational end 

constraints. 

• The frequency equation and mode shape functions corresponding to the above beam model 

were derived in detail. If κv=0, the frequency equation is independent of the slenderness ratio, 

or in other words, the frequency will not change with the slenderness ratio when κv =0. 

• In order to obtain the continuous change of the frequency or wave number with κv and κr, an 

analysis-based numerical method given by Han et al. (1999) was used to solve the 

transcendental frequency equation. 

• Effects of κv and κr on natural frequencies or wave numbers increase with the increase of κv and 

κr until to some certain values above which the frequencies are insensitive to their changes. 

Higher-order frequencies are very sensitive to a small κv or a small κr, and a small s increases 
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the sensitivity. The first-order frequency is nearly independent of κv and the slenderness ratio, 

while strongly depends upon κr. 

• Effects of κv and κr on mode shapes are similar to those on wave numbers except that the first-

order mode shape is insensitive to with κr while the first-order wave number depends strongly 

upon κr. Besides, when the slenderness ratio is relatively small, with increase of κv and κr, the 

nth-order mode shape may change into the (n−1)th-order one. 
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