
 

 

 

 

 

 

 

Structural Engineering and Mechanics, Vol. 59, No. 5 (2016) 921-932 

DOI: http://dx.doi.org/10.12989/sem.2016.59.5.921                                                                                       921 

Copyright ©  2016 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=sem&subpage=8               ISSN: 1225-4568 (Print), 1598-6217 (Online) 
 

 

 

 
 
 
 

Deflection of battened beams with shear and discrete effects 
 

Ji-liang Li
 
and Jian-kang Chen


 

 
The Faculty of Mechanical Engineering and Mechanics, Ningbo University, 315211 Ningbo, China 

 
(Received September 11, 2015, Revised January 9, 2016, Accepted June 29, 2016) 

 
Abstract.  This paper presents a theoretical analysis for determining the transverse deflection of simply 

supported battened beams subjected to a uniformly distributed transverse quasi-static load. The analysis 

considers not only the shear effect but also the discrete effect of battens on the transverse deflection of the 

battened beam. The analytical solution is obtained using the principle of minimum potential energy. 

Numerical validation of the present analytical solution is accomplished using finite element methods. The 

present analytical solution shows that the shear effect on the transverse deflection of battened beams 

increases with the cross-section area of the main member but decreases with the cross-section area of the 

batten. The longer the battened beam is, or the larger the moment of inertia of the main member is, the 

smaller the shear effect will be. 
 

Keywords:  analytical method; computational mechanics; finite element method (FEM); frames; quasi-

static; steel structures 

 
 
1. Introduction 
 

Battened beams are widely used in structures such as buildings and bridges. These beams 

generally consist of two or more parallel main members interconnected by lacing or batten plates 

(Banerjee and Williams 1983, Aly et al. 2010, Chung and Emms 2008). Since the moment of 

inertia of the built-up cross section increases with the distance between the centroids of the main 

members, the battened beams can have large bending rigidity. However, compared to the solid 

beam with the same moment of inertia, the battened beam has weak shear stiffness and thus is 

more flexible and therefore the deflection induced by shear forces becomes important and cannot 

be neglected (Greschik 2008, Banerjee and Williams 1994, Rosinger and Ritchie 1977). It is well-

known that the shear-induced deflection in a beam with a constant cross-section along the beam 

length can be calculated using the theory of Timoshenko beams (Noor and Andersen 1979, Noor 

and Nemeth 1980, Renton 1991, Shooshtari and Khajavi 2010, Adámek and Valeš 2015). Work on 

the effect of the shear deformation/stiffness on the buckling and free vibration of battened beams 

has been performed. For instance, Gantes and Kalochairetis proposed an approximate analytical 

procedure to estimate the shear effect on the strength of axially and transversely loaded 

Timoshenko and laced built-up columns (Gantes and Kalochairetis 2012). Wang et al. (2002) 

investigated the stability problem of Timoshenko beams/columns using the matrix method. Wu 
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and Chang (2013), Aristizabal (2004), Chen and Li (2013), Chen et al. (2014) studied the buckling 

and vibration problems of battened columns using the Hamilton’s principle. In addition, 

experimental work on the buckling and free vibration of laced and battened beams has also been 

performed by, for example, EI Aghoury et al. (2010), Hashemi and Jafari (2009), Kalochairetis et 

al (2014), Bonab et al. (2013). The experimental results demonstrated the importance of shear 

effect in battened beams when considering the buckling and vibration of the beams.  

Note that the bending theory of Timoshenko beams cannot be directly applied to analyzing the 

deformation of beams with varying cross-section or discontinuous web, such as the castellated 

beam and the battened beam. At the present for such beams one has to use finite element numerical 

methods to calculate the deflection of the beams induced by both bending and shear loads (Chen 

and Li 2013, Sahoo and Rai 2007, EI-Sawy et al. 2009, Kalochairetis and Gantes 2011). In this 

paper, an analytical approach is developed to investigate the shear-induced deflection of battened 

beams subject to a uniformly distributed transverse quasi-static load, which takes into account not 

only the shear but also the discrete effects of discontinuous battens in the battened beam. By using 

the principle of minimum potential energy, a closed-form solution for determining the transverse 

deflection of a specially designed battened beam, is developed. The present analytical solution is 

validated using the data obtained from the finite element analysis. 

 

 

2. Principle of minimum potential energy  
 

Consider a battened beam with the length l=na, where a is the distance between two 

neighboring battens and n is a constant (n+1 represents the total number of battens along the beam 

length, see Fig. 1), subjected to a uniformly distributed transverse load. Let u1(x) and u2(x) be the  

 

 

 

Fig. 1 (a) Analysis model of a battened beam. (b) Displacements of the batten without considering 

shear effect. (c) Displacements of the batten with considering shear effect 
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axial displacements of the centroids of the upper and lower main members, and w(x) be their 

transverse displacement (i.e., the two main members have the same transverse displacement). 

According to the assumption made for displacements shown in Fig. 1(b), the axial displacement at 

any point with a coordinate z at a section with distance x from the origin can be expressed as 

follows,  

for the upper main member: 

       1

d
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d
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w
u x z u x z e
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for the lower main member: 
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where ut (x, z) and ub (x, z) are the axial displacements of the coordinate point (x, z) defined in the 

two main members, respectively and e is the half-distance between the centroids of the upper and 

lower main members.  

The strain energy of the two main members due to their axial and transverse displacements thus 

can be calculated as follows, 
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where E is the Young’s modulus, A is the cross-sectional area of the main member, εt and εb are the 

axial strains at the coordinate point (x, z) defined in the two main members, which can be 

expressed in terms of the axial and transverse displacements as follows, 

for the upper main member: 
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for the lower main member: 
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Substituting Eqs. (4) and (5) into (3), it yields, 
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where     AezAezI
lowerupper AA

dd
22

   is the moment of inertia with respect to local y-

axis of the main member,  and symbols “Aupper” and “Alower” respectively denote the area of upper 
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main member and lower member. 

The strain energy of battens can be expressed as follows (Gantes and Kalochairetis 2012, Wang 

et al. 2002), 
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where G is the shear modulus, As is the effective shear area, and ks is a reduction factor defined as 

follows, 
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where Ib is the moment of inertia of the batten. For the simplicity of presentation, the following 

new notations are used, 
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By utilising Eqs. (9) and (10), the total strain energy of the battened beam can be expressed as 

follows, 
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 (11) 

The potential of the uniformly distributed load due to the transverse displacement can be 

expressed as follows, 

 

l

wdxqW
0

 (12) 

where q is the uniformly distributed load. The use of the principle of minimum potential energy 

leads, 

 0)( WU  (13) 

For a simply supported battened beam, uα(x), uβ(x) and w(x) can be assumed as follows, 
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where Am, Bm and Cm (m=1, 2, …) are constants. Substituting Eqs. (14)-(16) into (11) and (12), it 

yields, 
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Gantes and Kalochairetis (2012) obtained a formula, i.e., 
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which is helpful for determined Am, Bm, and Cm. Substituting Eqs. (17) and (18) into (13) and using 

Eq. (19), it yields, 
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Eq. (20) indicates Am0. This result implies that u=0, i.e., u1=-u2, which meas u1 and u2 are 

anti-symmetric with respect to x axis. Eqs. (21) and (22) are coupled due to the shear effect and the 

discontinuity of battens. However, since in practice only the first few terms are required in the 

series solution of Eqs. (14)-(16), m will be very small and therefore the second case in Eq. (19) can 
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be excluded because 2n will be much greater than m. Also, according to Eq. (19) the value of Kmj 

defined in the third case will be much smaller than that defined in the first or fourth case. Hence, 

from the numerical point of view the mode coupling defined in the third case can also be ignored. 

Consequently, the mode coupling that need be considered in the analysis is only between wave m 

and wave 2n-m. In this case Eqs. (21) and (22) can be simplified as follows, 
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Eqs. (23)-(26) can be used to solve coefficients Bm and Cm (m=1, 2, …, 2n-m). Substituting Bm 

and Cm into Eqs. (15) and (16), we obtain the final solution of the problem.  

 

 

3. Finite element analysis and validation of analytical solution  
 

In order to validate the analytical solution, the linear finite element analysis of two-dimensional 

battened beams with lengths ranging from 2 m to 10 m is accomplished using two-dimensional 

three-node beam elements built in ANSYS software. The main members and battens used to 

assemble the battened beams are assumed to be the square hollow section steel members with a 

side length 50 mm and a wall thickness 5 mm. The material properties of the battened beams are 

Young’s modulus 200 GPa and Poisson’s ratio 1/3. The boundary conditions for the two main 

members are assumed to have zero transverse displacements at their ends. To eliminate the axial 

rigid displacement in the global coordinate system, a zero axial displacement boundary condition 

in the global coordinate system is applied to the mid-point of the first batten.  

Fig. 2 shows the comparison of the maximum deflection of the beam at its middle obtained by 

solving Eqs. (23)-(26) and using Eq. (16), and those obtained from the finite element analysis. It 

can be seen from the comparison that the present analytical solution taking into account shear and 

discrete effects agrees excellently with the results obtained from the finite element analysis.  
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Fig. 2 Comparison of the maximum deflections for a 2-D battened beam (a=200 mm, e=100 mm) 

 

 

4. Shear and discrete effects of battens    
 

If the shear effect is ignored then G→∞ and Bm=(mπe/l)Cm. In this case Eqs. (23)-(26) can be 

simplified as follows, 
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Solve Eq. (27) for Cm, yielding, 
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Thus, the deflection of the battened beam can be expressed as follows, 
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The maximum deflection occurs at the middle of the beam and is given by 
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If only the discrete effect is neglected, then Eqs. (23)-(26) are simplified as follows 
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Solve Eqs. (31) and (32) for Bm and Cm, yielding, 

 
 

 
2

(2 )
1,2, ,2

(2 )

s s

m m

s s

m n k eGA
B C m n

eEA m n k lGA






 

 
 (33) 

 

 
 

4 2

5 22

2

1 ( 1)
1,2, ,2

1
( 2)

m

m

s s

ql I e A
C m n

e AEI e EA m
I

eEA m

n k lGA





  
   







 (34) 

For middle and long beams where (n+2)kslGAs>eEA(mπ)
2
, Eq. (34) can be further simplified 

into 
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Thus, the deflection of the battened beam can be expressed as follows, 
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The maximum deflection occurs at the middle of the beam and is given by 

 





































 







ss

k

k

ss

k

lx

lGAkn

eEA

AeI

Ae

AeIE

ql

klGAkn

eEA

AeI

Ae

kAeIE

ql
w

)2(5

48
1

)22(384

5

)12(

)1(2

)2()12(

)1(2

)(

2

2

2

4

,2,1
3

1

32

2

5

1

52

4

2/
 

 (37) 

It is obvious from Eq. (37) that, the first term in the brackets is the deflection generated by the 

bending load, whereas the second term in the brackets represents the deflection generated by the 

shear load. Eq. (37) indicates that the shear effect increases with the cross-section area of the main 

member but decreases with the increase of the cross-section area of the batten. Also, the longer the 

battened beam or the larger the moment of inertia of the main member, the smaller the shear effect. 

It is obvious from Eq. (37) that, if G→∞ then Eq. (37) tends to Eq. (30) in which case the shear 

effect is excluded.  

Figs. 3-5 show the shear and discrete effects on the maximum deflections of the battened beams  
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Fig. 3 Maximum deflections of a battened beam (a=200 mm, e=100 mm) 
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Fig. 4 Maximum deflections of a battened beam (a=200 mm, e=200 mm) 

 

 

of different batten spacings (a) and batten lengths (2e). The section dimensions of the two main 

members and battens employed herein are identical to those used in the finite element analysis; so 

do the material properties. The deflection shown in the figures is normalized using the maximum 

deflection without considering the shear and discrete effects given by Eq. (30). It is evident from 

these figures that the shear effect of battens on the deflection of battened beams is important, 

particularly for short and medium length beams. Ignoring shear effect could lead to a significant 

under-prediction of the deflection. Also it can be observed from the comparison of the three 

figures that the shear effect increases with the length of batten members. Compared to the shear  
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Fig. 5 Maximum deflections of a battened beam (a=400 mm, e=100 mm) 

 

 

effect, the discrete effect seems not so significant. The remarkable discrete effect is found when 

the batten spacing is large as is demonstrated in Fig. 5.    

 

 

5. Conclusions 
 

This paper has presented the theoretical and numerical analyses for determining the deflection 

of simply supported battened beams subjected to a uniformly distributed transverse load. The 

analyses consider not only the shear effect but also the discrete effect of battens on the transverse 

deflection of battened beams. From the present study the following conclusions can be drawn: 
 • The present analytical results are in excellent agreement with those obtained from the finite 

element analysis, which demonstrates the appropriateness of the proposed approach. 

•  Shear effect on the deflection of battened beams is very important, particularly for short and 

medium length beams. Ignoring the shear effect could lead to an under-estimation of the deflection. 

In contrast, the discrete effect on the deflection is much small. The noticeable discrete effect is 

found only when the beam has large batten spacing. 

 • The shear effect on the transverse deflection of battened beams increases with the cross-section 

area of the main member but decreases with the cross-section area of the batten. The longer the 

battened beam or the larger the moment of inertia of the main member, the smaller the shear effect. 
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