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Abstract.  The present paper is concerned with the investigation of propagation of thermoelastic media, 

the finite difference technique is used to obtain the solution for the uncoupled dynamic thermoelastic stress 

problem in a non-homogeneous orthrotropc thick cylindrical shell. In implementing the method, the linear 

dynamic thermoelasticity equations are used with the appropriate boundary and initial conditions. Thermal 

shock stress becomes of significant magnitude due to stress wave propagation which is initiated at the 

boundaries by sudden thermal loading. Numerical results have been given and illustrated graphically in each 

case considered. The presented results indicate that the effect of inhomogeneity is very pronounced. 
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1. Introduction 
 

The classical and generalized theories of coupled thermoelasticity are extensively developed 

due to their many applications in the advanced structural design problems. Therefore, it is crucial 

to obtain the deformation and temperature distributions in the structures under thermal shock 

loads. In recent year, the case of suddenly applied thermal loading, thermal deformation and the 

role of inertia become larger. Since the thermal stress changes very rapidly, the static analysis 

cannot capture its behaviour. This dynamic thermoplastic stress response is significant and leads to 

the propagation of elastic stress waves in the solid. Abd-Alla and Mahmoud (2010) discussed the 

effect of rotation and magnetic field in non-homogeneous orthotropic hollow cylinder under the 

hyperbolic heat conduction model. Finite difference method used to obtain numerical solutions of 

magneto-thermoelastic problem in non-homogeneous isotropic cylinder by (Abed-El-Salam et al. 

2007). Abd-Alla and Abo-Dahab (2009) studied the a generalized magneto-thermo-viscoelastic 

with and without energy dissipation. The effect of rotation on non-homogeneous thermoplastic 

hollow cylinder discussed by El-Naggar et al. (2003). Abd-Alla et al. (2003) studied the thermal 

stresses in a non-homogeneous thermo- elastic multilayered cylinder. Abd-Alla et al. (2003) 

investigated the effect of rotation on transient thermal stresses of non-homogeneous cylindrical 

composite tubes. (Abd-Alla et al. 1999) discussed the effect of rotation on non-homogeneous 

cylindrical orthotropic composite thermoplastic tubes. Sadd (2005) used the elasticity: theory, 

                                          

Corresponding author, Professor, E-mail: essamedfawy11@yahoo.com 



 

 

 

 

 

 

E. Edfawy 

application, and numeric’s. (Ding et al. 2003) investigated the solutions of a non-homogeneous 

orthotropic cylindrical shell for axysymmetric plane strain dynamic thermoelastic problems. 

(Kumar and Mukhopadhyay 2010), studied the effects of thermal relaxation time wave 

propagation under two-temperature thermoelasticity, A generalized thermoelasticity; solution for 

cylinders and spheres were investigated by Bagri and Eslami (2007). Propagation of waves studied 

by Prasad et al. (2010). Bagri and Eslami (2008) discussed the generalized coupled 

thermoelasticity of functionally graded annular disk considered the Lord-Shulman theory. Othman 

and Singh (2007) studied the effect of rotation on generalized micropolar thermoelasticity for a 

half-space. Generalized magneto-thermoelasticity in conducting medium investigated by Ezzat and 

Youssef (2005). Abd-Alla et al. (2011) studied the propagation of Rayleigh waves in generalized 

magneto-thermoelastic orthotropic material subjected to initial stress and gravity. The extensive 

literature on the topic is now available and we can only mention a few recent interesting 

investigations in (Abd-Alla et al. 2015, Praveen and Amit 2015, Khadidja et al. 2015, Ren et al. 

2014, Ray and Majumdera 2014). The extensive literature on the topic is now available and we can 

only mention a few recent interesting investigations in (1995-2016). Inspite of all these 

investigations, no attempt has been made yet to study the response of the method to solve the 

uncoupled dynamic thermo elastic stress problem in a non-homogeneous orthotropic thick 

cylindrical shell. In implementing the method, the linear dynamic thermo elasticity equations is 

used with the appropriate boundary and initial conditions, and the elstodynamic problem is solved 

by using finite difference method. It is shown that a closed-form solution can be obtained for the 

thermal shock stresses in a non-homogeneous orthotropic thick cylindrical shell. It is noticed that 

the results, a thermal stress wave occurs due to the thermal shock loading, and this plays an 

important role on the significant amount of dynamic thermal stresses generated through the wall. 

Numerical computation is performed by using a numerical inversion technique and the resulting 

quantities are shown graphically. 

 

 

2. Formulation of the problem 
 

Let us consider a hollow cylinder subjected to a specific temperature environment with or 

without external pressure. The inner and outer radius are denoted by a and b, respectively.  

 The stress-strain-temperature relations are given by 
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where Cij are the elastic constants and αij are the thermal expansion coefficients. 

The constitutive Eq. (1), the elastic response of the cylinder must satisfy the dynamic 

equilibrium equations. The equilibrium equation takes the form 
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The strain components in terms of the displacements ur, uθ 
and uz are  
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where ρ
 
denoted the density of the material.  

The Eq. (3) become 
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Substituting from (4) in (1), we get 
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We characterized the elastic constants Cij 
and ρ density of non-homogeneous material by  
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where βij 
and ρ0 are constants and m is a rational number .  

Substituting from Eqs. (1), (4) and (5) into Eq. (2), we obtain 
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The temperature distribution as  

   









0,

0,0
,

0

0
tT

t
tHTtrT                       (8) 

843



 

 

 

 

 

 

E. Edfawy 

where H(t) is the Heaviside step function. 

 

 

3. Initial and boundary conditions 
 

The initial condition, as well as the boundary condition due to the absence of external tractions 

is  
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It is convenient to have the above Eq. (7) written in non-dimensional form. To this end, we 

consider the following transformations 
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In terms of these non dimensional variables, Eq. (7) can be rewritten into a more convenient 

form as  
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Also, the initial conditions as well as the boundary conditions due to the absence of external 

tractions, are non-dimensional form can be rewritten as 
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4. Numerical scheme 
 

A finite difference scheme which is a modification of MacCormack’s scheme is described by 

Haddow et al. (1987). This scheme is a leapfrog scheme. We take the finite difference grids with a 

spatial interval in the direction and k as the time step, and use the subscript and superscript to 

denote the discrete points in the direction and the nth discrete time ,respectively. Then the equation 

of motion (12) expressed in the finite difference as follows  
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Using the same technique as thus by using initial condition, Eq. (18) for any r  except at the 

boundary conditions (i.e., r =0 and r =1) may expressed as 
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In this case, the second line of values 
1

iU  can now be calculated to O(h
2
) from the exact 

values 
0

iU . 

Now we are in a position to outline the algorithm for (17) if we now specify the, calculated 
1

iU  

using (19), the all U are known on the first two lines. When we add the boundary condition at 

r =0 and r =1, t>0, (17) can be calculated point by point, along the third line (n=2), then the 

fourth line (n=3), and so on. 

 

 

5. Numerical results and discussion 
 

As an illustrative example, the disruptions and histories of thermal shock stresses in the wall  
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Nondimensional radial distance, r  

Fig. 1 Radial stress distribution (m=0.5) 

 

 

are determined for a glass/epoxy circular cylinder of inner radius α=50 mm and outer radius line 

b=100 mm. For the purpose of numerical computation, we take the following values of the 

constants that are involved in the analysis. 
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To compare the results of this chapter for an isotropic thick cylindrical shell to that of 

(Kardomateas et al. 1998), the material constants are 

 3,2,1,/1010,277.0,9.55 o6   iCvvEE
iiji

            (21) 

i.e., the constants of the orthotropic shell in the circumferential direction.  

The loading temperature of ),( trT , causing thermal shock at the surface, is applied at t=0
+
  

over the entire thickness of the hollow cylinder, and it is assumed that the applied temperature is 

kept constant thereafter. This type of thermal lauding, causing the response of strong, dynamic 

thermal stresses on the cylinder, can be developed by a strong chemical reaction, an absorption of  
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Nondimensional radial distance, r  

Fig. 2 Hoop stress distribution (m=0.5) 

 

 

infrared radiation, or an electromagnetic radiant energy from pulses.  

Fig. 1 shows the variation of normal stress with distance r. Impact of thermal stresses is quite 

evident on normal stress in both the cases (orthotropic material or isotropic). It is noticed that the 

pair of curves with rotation (and the pair without thermal stresses) follow opposite oscillatory 

behaviour. Without rotation, amplitudes of oscillations are higher and increase monotonically. 

Temperature keeps the trends similar but a significant difference in their magnitudes is noticed. 

Anisotropy tends the variations to move in opposite oscillatory manner. The distribution of radiant 

dynamic thermal stress is presented at each non dimension time t =1,2 and 5 in Fig. 1 Since the 

speed of the wave c is calculated as 3.169 m/Sec. The non dimensional time t =1 indicates 

1.577×10
-5

 Sec. The radial stress wave is initiated at the inside and outside boundaries 

simultaneously, propagates outward from the inside boundary and inward from the external 

boundary through the wall and is reflected in the opposite direction towards the boundary. 

Subsequently, this reflected wave is also reversed again at the boundaries. It is seen that a large 

amount of stress variation through the wall exists in an orthotropic cylindrical shell (Fig. 1).  

Fig. 2 exhibits the induced thermal stress effect with distance r. Here in all the cases, trend is 

similar. There is a sharp decrease for the range and then a smooth increase is noticed i.e., 

behaviour is oscillatory in the rest. Temperature effect causes a change in magnitude of 

amplitudes. Thermal stress also alters the magnitude of thermal stress effect in descending trends 

as r increases. Thus, the peaks near the boundaries are much higher than those in other locations. 

The magnitude of radial stress in an orthotropic cylindrical shell drops near the centre and has an 

oscillatory behaviour attributed to the direct contribution of static stress and the orthotropic 

characteristics of elastic constants and thermal expansion coefficients. The largest change of 

stresses through the shell thickness is observed in the circumferential direction during the first  
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Nondimensional radial distance, r  

Fig. 3 Axial stress distribution (m=0.5) 

 

 

travel of the wave, as show in Fig. 2. The magnitude of the hoop stresses near the boundaries 

increases with continuing wave propagation. The hoop stress near the midpoint in the wall is lower 

than that near the boundaries. The maximum dynamic thermal stress on a circumferential wound 

orthotropic cylindrical shell occurs in the first travel in the circumferential direction at the inner 

boundary. This observation for an orthotropic cylindrical shell is still true as in the isotropic case 

which was observed in (Wang 1995). It should be noted that the cylinder is most resistant in this 

direction, since it is circumferentially filament wound and the material strength in the fiber 

direction is usually the largest. Therefor, this dominant material characteristic affects to a large 

extent the elastodynamic response of the cylindrical shell structure. Of course, in addition to the 

stiffness and strength in the fiber direction, the thermal expansion coefficients are also important 

factors in determining the thermoelastic behaviour of an orthotropic thick cylindrical shell. 

Fig. 3 exhibits the variations of axial stress with distance r. Temperature effect alters the 

magnitude of axial stress without changing the trends. Also a significant difference in the axial 

stress is noticed for different values of thermal stress. Orthotropic and isotropic variations move in 

opposite oscillatory pattern. Conductive temperature with radial r is examined in the Fig. 4. The 

axial stress in Fig. 3 is not significant in comparison with the radial and hoop stresses. Actually, 

the behaviour of axial stress is similar to that of the radial stress. The tension in the first phase of 

travel is reversed into compression by the reflection of waves, as shown in Fig. 4, and a dramatic 

change of radial stress through the thickness is observed. This effect is reduced with time .The first 

maximum peak radial stress is obtained at r =0.5 when t =5.5. As expected, the magnitude of 

dynamic radial stress is much higher than that in the static case. The time history of the radial 

stress is shown at r =0.5 in Fig. 4 (notice the high frequency oscillations). The peaks of radial 

stress appear whenever the stress wave reaches the corresponding locations. The steep change of 

magnitude of radial stress is seen near each observing location. A comparison of σrr at r =0.5 for  
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Nondimensional time, t  

Fig. 4 Comparison of the time history of radial stress (m 0.0), with the results of Kardomateas (1998) 

 

 
Nondimensional time, t  

Fig. 5 Comparison of radial stress distribution for the isotropic case (m 0.0), with the results of Wang (1995) 

 

 

the homogeneous orthotropic case, was made with the results of Kardomateas et al. (1998), is 

shown in Fig. 4. One of the differences between the two studies is that a plane-strain condition, 

was imposed in that study, unlike the present one. 

Also, a comparison of σrr at r =0.5, for the homogeneous isotropic case, with the results of 
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Wang (1995) is shown in Fig. 5. The differences between the two results, however, most likely 

should be due to the differences in the calculation points. The peak values of Wang’s (1995) 

solution are on the present study’s curves, but the wave patterns are different after the first trip. 

This seems to be due to the fact that the plot in Wang
 
(1995) was made from data at time values, 

not close enough, there for missing the peak values of the stress wave. This comparison also 

makes an important point: that the time scale of calculations of the data points should be carefully 

examined to make sure the entire response of the stress wave and especially the peaks are 

captured. 

Fig. 5 exhibits normal normal stress with distance t. Here in all the cases, variations are similar 

with difference in magnitude. Amplitude of oscillation is maximum in the range and decrease 

monotonically afterwards 

In the study, it should be mentioned that the coupling effects between the thermal and 

mechanical energy in the system are neglected. This means that the uncoupled linear dynamic 

thermo elasticity problem was handled. Since the coupling effects always exist in the physical 

system under thermal environments, the coupled dynamic thermo elasticity is more realistic, but 

too difficult and complex or some- times impossible to obtain the closed-form solution. The 

uncoupled dynamic thermo elasticity problem, which was treated here, is, however, still valuable 

and can provide a large amount of useful information on the thermal shock effects. While studying 

the rest of the case, we find that all the three follow wave form with difference in magnitudes. 

These results obey the physical properties of thermoelasticity theory. 

 

 

6. Conclusions 
 

The analysis of graphs permits us some concluding remarks 

1. The medium deforms due to the application of normal/thermal point source or uniformly 

distributed force/thermal stress effects with vacuum on physical quantities. 

2. The thermodynamic temperature and conductive temperature have significant effect on the 

resulting quantities.  

3. The stress decreases when two temperatures coincide. The curves of the stresses is uniform.  

4. The normal stresses component show an oscillatory nature with decreasing amplitude with 

respect to r and due to presence of thermal stress.  
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