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Abstract.  Curved beams’ dynamic behavior on viscoelastic foundation is the subject of the current paper. 

By rewritten the Timoshenko beams theory formulation for the curved and twisted spatial rods, governing 

equations are obtained for the circular beams on viscoelastic foundation. Using the complementary functions 

method (CFM), in Laplace domain, an ordinary differential equation is solved and then those results are 

transformed to real space by Durbin’s algorithm. Verification of the proposed method is illustrated by 

solving an example by variating foundation parameters. 
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1. Introduction 
 

Due to the widespread engineering applications of beams which are resting on elastic 

foundations, numerous models have been proposed for those beams to investigate their static 

deflection and dynamic responses. In the literature, many researches have been performed to 

explore the curved beams, which are rested on elastic foundation, free vibration analysis. For 

instance, natural frequencies of the curved beams were studied by Wang and Brannen (1982) and 

it was illustrated effects of opening angle and foundation parameter. Natural frequencies of the 

Winkler and Pasternak foundation based curved beams was examined by Issa (1988) and Issa et al. 

(1990). Tensionless Winkler foundation based elastic circular rings static and vibration analysis 

problem has been studied by Celep (1990). Arbitrary thick beams, which are rested on Pasternak 

foundation, have been studied to find out the bending and free vibration behavior by Chen et al. 

(2004). Natural frequencies and vibration modes of thin ring elastic foundation have been studied 

by Wu and Parker (2006). Natural frequencies of the thin-walled curved beams on elastic 

foundation were searched by Kim et al. (2007). Dynamic response of the Timoshenko beam with 

variable cross-section on Pasternak foundation was studied by Zhu and Leung (2009). By 

combining the differential quadrature method and finite element method, dynamic analysis of 

thick plates on elastic foundation was solved by Dehghan and Baradaran (2011). Straight and 

circular Timoshenko beams’ static free and vibration analysis has been performed by Calim and 

Akkurt (2011).  
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As in elastic foundation researches, a few studies were also performed related to dynamic 

response of beams resting on viscoelastic foundation. Advantages of the Pasternak foundation 

model over the other foundation models have demonstrated by Kerr (1964).  Dynamic behavior of 

the railway systems which are constructed on viscoelastic foundation under harmonic moving load 

have investigated by Chen et al. (2001). Viscoelastic foundation based Timoshenko beams’ 

vibration analysis was studied by Verichev and Metrikine (2002). An effective numerical model 

has been presented to solve the wave propagation problems by Liu and Li (2003). Pasternak type 

linear and non-linear viscoelastic foundation based Timoshenko beams’ under moving load have 

been studied to find out the dynamic responses by Kargarnovin and Younesian (2004) and 

Kargarnovin et al. (2005). Dynamic behaviors of beams on viscoelastic foundation were studied 

by Muscolino and Palmeri (2007) and Calim (2009). By subjecting the moving load, dynamic 

behavior of the six parameters foundation based Timoshenko beams were determined by Yang et 

al. (2013). Non-linear viscoelastic foundation based infinite Timoshenko beams’ dynamic 

behaviors were explored by Ding et al. (2013).   

As exemplified in the above given paragraphs, the stability, dynamic and static analysis of the 

plates and beams rested on elastic foundation have been explored in detail, however, to the best 

knowledge of the author, there is dearth of researches on the transient analysis of curved 

Timoshenko beams resting on two-parameter viscoelastic foundation. Therefore, in the current 

paper, forced vibration of the curved beams under impulsive load was studied. In the derivation of 

the governing equation, effect of shear deformation and rotary inertia, curvature of the axis are 

taken into account. By applying the CFM, element stiffness matrix in Laplace domain is 

determined (Ç alım 2009 a, b, c, Çalım and Akkurt 2011, Çalım 2012). By using the Durbin’s 

procedure, Laplace domain is transformed to the time domain (Eratlı et al. 2014, Celebi et al. 

2016, Çalım 2016) and the solutions are obtained for the forced vibration of curved beams.  

 

 

2. The governing equations 
 

To govern the differential equation, a spatial beam which is curved and torsion, is taken into 

consideration (Fig. 1). The tangent, normal and bi-normal unit vectors (t, n and b) are used to 

identify moving coordinate system. With the aid of Frenet equation, relationships among the t, n, 

and b unit vectors might be attained (Sokolnikoff and Redheffer 1958) 

   
  

  
         

  

  
            

  

  
                    (1) 

where axis natural twist and curvature are represented by  and , respectively.  

Considering the displacement, rotation, inertia moment and force vector of any place on the 

beam axis be denoted by  (   )  (   )  (   )     (   ) . Accepting the deformations are 

infinitesimal, and an isotropic, linear elastic and homogenous material is used in rod production, 

for the space rod, in vectorial form, governing equation is proposed as follows 

  

  
           , 

  

  
               (2) 

  

  
  (  )   (  ),  

  

  
      (  )   (  )       (3) 

In above given equation, external distributed load and moment vector are symbolized as p
(ex)

 and 

m
(ex)

, respectively. 

762



 

 

 

 

 

 

Dynamic response of curved Timoshenko beams resting on viscoelastic foundation 

 

 

 

Fig. 1 The rod geometry 

 

 

Inertia force, moment of the beam and mass density are considered as  

  
(  )

    
   

 

   
,   

(  )
     

   
 

   
 ( i = t, n, b )         (4) 

Matrices of the C and D are defined as 

, -  [

    
       
       

] , -  [

     
     
     

]                   (5) 

where A is area of cross-section, E is the elastic modules, G is the shear modules, n and b are 

shear coefficients, It , In, Ib are inertia torsional and bending moments.  

Let p
(ex)

 and m
(ex) 

might be divided into two subsection such as  

   (  )              (  )             (6) 

In above equation, superscripts e and f represents the beam reaction of the loading and 

foundation, orderly. Response of the foundation force and moment can be calculated by using 

following equations 
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where k, k1 , η and μ are the spring constants and viscosity coefficients, respectively. 

Considering the congruent of the centroid and shear center, the n, b axes turn the main axes 

out. Differential equations in Laplace domain are attained for the dynamic behavior of circular 

Timoshenko beams regarding to moving coordinate system as follows 

763



 

 

 

 

 

 

Faruk Fırat Calim 

tn
t T

EA

R
U

d

Ud



 

n
n

bt
n T

GA
RRU

d

Ud 


   

b
b

n
b T

GA
RR

d

Ud 


   

t

t

n

t M
GI

R

d

d
 

 


 

n

n

t

n M
EI

R

d

d
 

 


 

b

b

b M
EI

R

d

d


 


 

  )(2 ex

tnttt
t pRTUkzAzR

d

Td
 


 

  )(2 ex

ntnnn
n pRTUkzAzR

d

Td
 


 

  )(2 ex

bbbb
b pRUkzAzR

d

Td
 


 

   )(

1

2 ex

tntttt

t mRMkzIzR
d

Md
  


 

   )(

1

2 ex

nbtnnnn
n mRTRMkzIzR

d

Md
  


 

   )(

1

2 ex

bnbbbb
b mRTRkzIzR

d

Md
  


                            (8) 

When =1/R and ds=R dϕ, it symbolized the circular beam (Fig. 2). The matrix Y(ϕ, t) is 

described as 

 (   )  *                                                +
                      (9) 

Laplace transform of Eq. (9) due to time  , (   )-   ̅(   ), for t >0 is described as 

 ̅(   )  ∫  (   )    
 

 
                                     (10) 
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Fig. 2 Circular beam on viscoelastic foundation 

 

 

In above equation, z is Laplace parameter. By using the CFM in Laplace domain, dynamic 

stiffness matrix and element forces are examined (please look Refs. (Temel et al. 2005, Çalım 

2012)). By using Durbin’s algorithm, calculations were converted to Laplace domain to the time 

domain (Temel et al. 2005, Eratlı et al. 2014). 

 

 

3. Modified Durbin’s procedure  
 

To attain the numerical values in time domain, Laplace transform technique is essential. To 

perform that mission, Durbin’s algorithm constructed on the FFT is applied (Durbin 1974). 

Durbin’s formulation is given as follows 
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(11) 

in which             ,        where sk is the kth Laplace transform parameter, t is the 

time increment and T is the sampling time interval. In the literature (Durbin 1974), to get a good 

results, aT values must be accepted in the range of 5 to 10. Therefore, in our case, when solving 

the numerical examples, that value accepted as 6. Moreover, Narayanan (1979) stated that if the 

each value of the obtained results are modified with Lanczos (Lk) factors, considerably better 

results might be gathered.   

   {
                             
    (     )

    
              

               (12) 

 

 

4. Numerical example 
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(a) (b) 

Fig. 3 (a) Circular beam at fixed ends on viscoelastic foundation (b) A triangular impulsive load 

 

 

Fig. 4 Displacement versus time midpoint of the semi-circular beam (R/h=5) 

 

 

In present research, a Fortran based computer program is developed to examine dynamic 

analysis of the curved beams which is rested on viscoelastic foundation. Using the CFM, in 

Laplace domain, an ordinary differential equation is solved. Initial value problem lean on CFM is 

determined by using the Runge-Kutta procedure.   

 

Example. A clamped ends semi-circular beam on viscoelastic foundation is taken into account 

as seen in Fig. 3(a). The beam has Young’s modulus E=47.24 GPa, shear modulus G=19.68 GPa,  
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Fig. 5 Shear force versus time at the fixed end of the semi-circular beam (R/h=5) 

 

 

Fig. 6 Bending moment versus time at the fixed end of the semi-circular beam (R/h=5) 

 

 

material density =5000 kg/m
3
, R=7.63 m and b=h=0.762 m. In this case, the stiffness of 

foundation is kb=23.623 MPa and (k1)t=1143 kNm/m, viscosity coefficients of η=0, 2362.3, 

23623, 236230 Ns/m
2
 and μ= 0, 2362.3, 23623, 236230 Ns. 
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Fig. 7 Displacement versus time midpoint of the semi-circular beam (R/h=10) 

 

 

Fig. 8 Shear force versus time at the fixed end of the semi-circular beam (R/h=10) 

 

 

An impulsive load in triangular distributed form (Fig. 3(b)) with the amplitude Po=100 kN is 

implemented at the mid position of the beam. As an increment rate of time t, is accepted as 

0.0005 sec in the numerical solutions. Figs. 4-12 elucidate the shear force and bending moment  
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Fig. 9 Bending moment versus time at the fixed end of the semi-circular beam (R/h=10) 

 

 

Fig. 10 Displacement versus time midpoint of the semi-circular beam (R/h=15) 

 

 

clamped end and displacement at the mid position of the beam. 

The effects of the viscosity coefficients and the ratio R/h on forced vibration of the circular 

beam resting on viscoelastic foundation are investigated. It is observed that the viscosity  
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Fig. 11 Shear force versus time at the fixed end of the semi-circular beam (R/h=15) 

 

 

Fig. 12 Bending moment versus time at the fixed end of the semi-circular beam (R/h=15) 

 

 

coefficients increases the displacement decreases. Furthermore, the effect of the ratio R/h on 

forced vibration of semicircular beam clamped ends is examined. It is monitored that increase of  
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Fig. 13 Displacement versus time midpoint of the semi-circular beam (R/h=20) 

 

 

Fig. 14 Shear force versus time at the fixed end of the semi-circular beam (R/h=20) 

 

 

R/h of semicircular beam on viscoelastic foundation lead to a significant increase in the 

displacement amplitude, however caused to decrease in vibration period. 
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Fig. 15 Bending moment versus time at the fixed end of the semi-circular beam (R/h=20) 

 

 
5. Conclusions 

 

In present study, forced vibration of curved beams on viscoelastic foundation which is exposed 

to time dependent loads is investigated and an efficacious procedure is proposed. In proposed 

procedure, by rewritten the Timoshenko beams theory formulation for the curved and naturally 

twisted spatial rods, governing equations are obtained for the circular beams on viscoelastic 

foundation. The effect of shear deformation and rotary inertia, curvature of the axis are taken into 

account in the formulation. By applying the CFM, dynamic stiffness matrix is computed in the 

Laplace domain. By using CFM, in Laplace domain, ordinary differential equations with altering 

coefficients might be determined exactly.  

The viscosity coefficients and R/h ratio affect the forced vibration of curved Timoshenko beam 

on viscoelastic foundation. As the viscosity coefficients increases, the displacement amplitude 

decreases. Moreover, it is monitored that increase of R/h of semicircular beam on viscoelastic 

foundation lead to a significant increase in the displacement amplitude, however caused to 

decrease in vibration period. 
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