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Abstract.  We describe a stress analysis of a single leaf flexure under torsion in which the warping effect is 

considered. The theoretical equations for the warping normal stress (xx) and shear stresses (xz and xy) are 

derived by applying the warping function of a rectangular cross-sectional beam and the twist angle equation 

that includes the warping torsion. The results are compared with those of the non-warping case and are 

verified using finite element analysis (FEA). A sensitivity analysis over the length, width, and thickness is 

performed and verified via FEA. The results show that the errors between the theory of warping stress 

results and the FEA results are lower than 4%. This indicates that the proposed theoretical stress analysis 

with warping is accurate in the torsion analysis of a single leaf flexure. 
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1. Introduction 
 

In a precision machine, especially in nano-scanner devices, a single leaf flexure (SLF) is 

frequently used due to advantages such as easily obtainable uniform spring material, a very low 

friction characteristic, and smooth motion. Many previous studies have considered the leaf spring 

with respect to the design of precision devices. For example, a novel design of a scanning unit for 

atomic force microscopy is presented in (Schitter et al. 2008); displacement reduction mechanisms 

based on the leverage provided by elastic leaf springs and flexure hinges are considered by 

Hayashi and Fukuda (2012); parallel leaf spring flexures are proposed by Brouwer et al. (2013); a 

nano-positioning stage with the combination of a hinge and a leaf spring with a relatively high 

resonance frequency and wide scan range is described by Yong et al. (2009); a novel rotation 

scanner for nano-resolution and accurate rotary motion with an L-shaped flexure leaf spring is 

developed and tested in (Lee et al. 2012); the design and analysis of a novel flexure-based 

mechanism that is capable of performing planar motion with three degrees of freedom is described 

in (Bhagat et al. 2014); deformations of cantilever beams based on higher-order theory are 

analyzed in (Sun et al. 2015) and the displacement of a single-bent leaf flexure under torsion and 

in bending is  presented by Nguyen et al. (2015). 
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The torsion analysis of a beam in general or single leaf flexure has received much consideration 

in recent years. The equations of rotational displacements in torsion are derived by Hayashi and 

Fukuda (2012), Koseki et al. (2002). However, the warping effect was not considered in detail and 

the formulas used in the stress analysis were not presented. In other studies, the warping effect in 

torsion has been analysed in (Yang et al. 1984, Wang et al. 2010, Sapountzakis and 

Dourakopoulos 2010, Sapountzakis 2012, Kujawa 2011, Erkmen and Mohareb 2006). However, 

the warping stresses were not mentioned in the publications (Yang et al. 1984, Wang et al. 2010, 

Kujawa 2011), the stress field of a bar under nonuniform torsion was mentioned and analyzed by 

Erkmen and Mohareb (2006), however the numerical example with specific stress calculations was 

not presented. Thus, according to the previously mentioned primary shear stresses, which express 

the shear stresses of uniform torsion (Saint-Venant) with the difference that 𝑥
′ (𝑥)  is not constant 

and to the normal stresses due to warping resulting from the deformation (primary ones), 

secondary shear stresses result so as to equilibrate the aforementioned normal stresses” of the 

paper Sapountzakis (2012). And although these stresses were analysed and presented by 

Sapountzakis and Dourakopoulos (2010), and Sapountzakis (2012); the formulas of these stresses 

were not applied and verified in detail. The deflections and stresses of a cantilevered single leaf 

flexure was analysed by Nguyen and Lee (2015); however, the torsion and torsional stresses were 

not investigated. The rotational displacement due to the warping torsion of a single leaf flexure is 

presented by Kim et al. (2015). However, the stresses were not analyzed. Torsional shear stresses 

were also analyzed and computed by Sapountzakis and Mokos (2003), Sapountzakis and Tsipiras 

(2010), Sapountzakis et al. (2015), Pilkey (2002); however, stresses were clarified by different 

approaches. The general theory for analyzing and calculating the warping stress in beam torsion is 

shown by Pilkey (2002). However, the author only presented the theoretical formulas, which were 

not applied and verified by another method. So, the warping stress of an SLF under torsion needs 

to be analyzed.  

 In this study, we performed a stress analysis of an SLF in torsion with consideration of the 

warping effect. The normal stress and two principal direction (y, z) uniform shear stresses of the 

rectangular section are derived. The warping function of a rectangular cross-sectional beam was 

applied. The results are compared with those from non-warping torsion. A sensitivity analysis over 

the length, width, and thickness variation is also performed. FEA was used to validate the accuracy 

of the theoretical analysis. These results suggested for determining the life and also for studying 

the various stress acting and helping prevent from getting failure under torsion of SLF in nano-

scanner design. 

 

 

2. Generalized modeling of flexure 
 

Fig. 1 shows the model of the SLF used in this study, which consists of a fixed-end, and a free-

end that is subjected to a torsional moment Tx. The dimensions of the structure are length l, width 

b, and thickness t. In this structure, a single leaf spring enables the free end to move smoothly with 

an appropriate range of travel and no friction, as discussed in (Schitter et al. 2008, Brouwer et al. 

2013, Lee et al. 2012, Bhagat et al. 2014). When torsion Tx is applied at the free end of the SLF, 

the rotational displacement due to warping torsion occurs and then the warping stresses appear. 

Thus, the warping stresses include the warping normal stress xx and warping shear stresses xz and 

xy.  
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Warping stresses of a rectangular single leaf flexure under torsion 

 

Fig. 1 Schematic diagram of the single leaf flexure 

 
 

2.1 Warping torsional stress 
 

The governing equation for the non-uniform torsion of a homogeneous isotropic prismatic bar 

subjected to an end constant torsion Tx with the warping effect was considered, and is given in 

(Yang et al. 1984, Kujawa 2011, Pilkey 2002), including the sum of the St. Venant torsion and the 

warping torsion as follows 

𝐺𝐽𝑥
𝑑𝑥

𝑑𝑥 
− 𝐸𝐶𝑤

𝑑3𝑥

𝑑𝑥3 
= 𝑇𝑥                                                       (1) 

The general solution of Eq. (1) is given as follows 

 𝑥 = 𝐶1 + 𝐶2𝑥 + 𝐶3𝑐𝑜𝑠ℎ𝑥 + 𝐶4𝑠𝑖𝑛ℎ𝑥                                         (2) 

The applied torsional and warping boundary conditions at both ends of the SLF (freely warping 

at x=l and fully restrain warping at x=0), the twist angle at the free end of the single bent flexure 

under torsion load Tx is defined by Kim et al. (2015), as follows 

𝑥 =
𝑇𝑥

𝐺𝐽𝑥
(𝑥 − 𝑠𝑖𝑛ℎ𝑥 − 𝑡𝑎𝑛ℎ𝑙 + 𝑡𝑎𝑛ℎ𝑙𝑐𝑜𝑠ℎ𝑥)                              (3) 

where   = √
𝐺𝐽𝑥

𝐸𝐶𝑤
  is the torsion-bending constant and Ck  (k =1, 2, 3, 4) are the constants of 

integration. Jx, Cw, G, and E are the torsion constant, warping constant, modulus of transverse 

elasticity, and modulus of longitudinal elasticity (Young’s modulus), respectively. 

The torsion constant Jx of the rectangular cross section bar was determined by using Eq. (161) 

of Timoshenko and Goodier (1951) 

𝐽𝑥 =
  3

3
* −     

 

 
( −

  

12  
)+                                                   (4) 

The warping constant Cw with respect to the shear center is defined by Eq. (7.43) in Pilkey 

2002, as the warping moment of inertia 

   𝐶𝑤 = ∫2𝑑𝐴 =
(  )3

144
                                                         (5) 

From Eq. (3), the first- and second-order derivative equations were determined as follows 

𝑥
′ =

𝑑𝑥

𝑑𝑥 
=

𝑇𝑥

𝐺𝐽𝑥
( − 𝑐𝑜𝑠ℎ𝑥 + 𝑡𝑎𝑛ℎ𝑙𝑠𝑖𝑛ℎ𝑥)                                    (6) 
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and 

 𝑥
” = 

𝑑 𝑥

𝑑𝑥 
=

𝑇𝑥

𝐺𝐽𝑥
(−𝑠𝑖𝑛ℎ𝑥 + 𝑡𝑎𝑛ℎ𝑙𝑐𝑜𝑠ℎ𝑥)                                      (7) 

Therefore, the general warping normal stress, and warping shear XY and XZ stresses, are 

calculated as follows (Sapountzakis 2012, Sapountzakis and Mokos 2003, Pilkey 2002) 

𝑥𝑥 = 𝐸
𝑑 𝑥

𝑑𝑥 
(   )                                                         (8) 

𝜏𝑥𝑦 = 𝐺
𝑑𝑥

𝑑𝑥 
(
𝜔

𝑦
−  )                                                        (9) 

𝜏𝑥𝑧 = 𝐺
𝑑𝑥

𝑑𝑥 
(
𝜔

𝑧
+  )                                                      (10) 

where (y,z) is the warping function. In this study, the warping function of a rectangular cross-

sectional beam (Pilkey 2002) was applied as follows 

(   ) =   − ∑ 𝑐𝑛𝑠𝑖𝑛 (
𝑛 

 
 ) 𝑠𝑖𝑛ℎ (

𝑛 

 
 ) 

𝑛 1 3 5                                   (11) 

Where 

 𝑐𝑛 = (− )(𝑛 1) 2
   

𝑛3 3
1

 𝑜  (𝑛   2 )
                                             (12)  

By substituting Eqs. (6), (7), (11), (12) into Eqs. (8)-(10), the warping normal stresses are given 

as  

 𝑥𝑥 =
𝐸𝑇𝑥

𝐺𝐽𝑥
(−𝑠𝑖𝑛ℎ𝑥 + 𝑡𝑎𝑛ℎ𝑙𝑐𝑜𝑠ℎ𝑥) (  − ∑ 𝑐𝑛𝑠𝑖𝑛 (

𝑛 

 
 ) 𝑠𝑖𝑛ℎ (

𝑛 

 
 ) 

𝑛 1 3 5 )        (13) 

The maximum warping normal stress (xx,max) occurs at x=0, y=t/2, z=b/2 and is obtained as 

𝑥𝑥 𝑚𝑎𝑥 =
𝐸𝑇𝑥

𝐺𝐽𝑥
(𝑡𝑎𝑛ℎ𝑙) (

  

4
− ∑ 𝑐𝑛𝑠𝑖𝑛 (

𝑛 

2
) 𝑠𝑖𝑛ℎ (

𝑛  

2 
) 

𝑛 1 3 5 )                  (14) 

From the Eq. (14), we can see that the maximum normal stress (𝑥𝑥 𝑚𝑎𝑥 = 𝑓(𝑠𝑖𝑛ℎ(𝑙   𝑡))) is 

nonlinearly related to l, b and t. Figs. 2(a)-(b) show 𝑥𝑥 𝑚𝑎𝑥 with Tx=1 Nmm, l=10 mm, b=4 mm, 

t=0.5 mm, assuming that the SLF was made of aluminum 6061 with n=9. 

The warping shear stress (𝜏𝑥𝑦) is given as 

𝜏𝑥𝑦 =
𝑇𝑥

𝐽𝑥
( − 𝑐𝑜𝑠ℎ𝑥 + 𝑡𝑎𝑛ℎ𝑙𝑠𝑖𝑛ℎ𝑥) (

𝑛 

 
) (∑ 𝑐𝑛𝑐𝑜𝑠 (

𝑛 

 
 ) 𝑠𝑖𝑛ℎ (

𝑛 

 
 ) 

𝑛 1 3 5 )        (15) 

The value of xy occurring at x = l/2, y = 0 and z = b/2 is written as 

𝜏𝑥𝑦 =
𝑛 

 

𝑇𝑥

𝐽𝑥
( − 𝑐𝑜𝑠ℎ (

𝑙

2
) + 𝑡𝑎𝑛ℎ𝑙𝑠𝑖𝑛ℎ (

𝑙

2
)) (∑ 𝑐𝑛𝑠𝑖𝑛ℎ (

𝑛  

2 
) 

𝑛 1 3 5 )                (16) 

Similarly to the warping normal stress, from the Eq. (16), the warping shear stress (𝜏𝑥𝑦 =

𝑓((𝑙   𝑡))) is nonlinearly related to l, b and t, as shown in Fig. 2(c). 

The warping shear stress (𝜏𝑥𝑧) is given as 

𝜏𝑥𝑧 =
𝑇𝑥

𝐽𝑥
( − 𝑐𝑜𝑠ℎ𝑥 + 𝑡𝑎𝑛ℎ𝑙𝑠𝑖𝑛ℎ𝑥) (  − (

𝑛 

 
)∑ 𝑐𝑛𝑠𝑖𝑛 (

𝑛 

 
 ) 𝑐𝑜𝑠ℎ (

𝑛 

 
 ) 

𝑛 1 3 5 )   (17) 
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(a) (b) 

  

(c) (d) 

Fig. 2 Maximum warping stresses in the SLF under torsion 

 

  

Fig. 3 Maximum stresses in the SLF under torsion 

 

 

The value of xz occurring at x= l/2, y=t/2 and z=0 is written as  

𝜏𝑥𝑧 =
𝑇𝑥

𝐽𝑥
( − 𝑐𝑜𝑠ℎ (

𝑙

2
) + 𝑡𝑎𝑛ℎ𝑙𝑠𝑖𝑛ℎ (

𝑙

2
)) (𝑡 − (

𝑛 

 
)∑ 𝑐𝑛𝑠𝑖𝑛 (

𝑛 

2
) 

𝑛 1 3 5 )                 (18) 

From the Eq. (18), the warping shear stress (𝜏𝑥𝑧 = 𝑓((𝑙   𝑡))) is nonlinearly related to l, b and t 

as shown in Fig. 2(d). 

Eqs. (14), (16), and (18) show the warping stresses of the SLF under torsion for the case in 

which the warping effect was considered. The maximum stresses are simply illustrated as in the 

Fig. 3. 
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2.2 Non-warping torsional stress 
 

According to the non-wapring torsion theory, the twist angle at the end of a beam under torsion 

load Tx is given by 

 𝑥
0 =

𝑇𝑥𝑥

𝐺𝐽𝑥
                                                                    (19) 

Therefore, the normal stress is equal to zero. The shear stresses are given by 

𝑥𝑥
0 =                                                                      (20) 

𝜏𝑥𝑦
0 = 𝐺

𝑑𝑥

𝑑𝑥 
                                                                 (21) 

𝜏𝑥𝑧
0 = 𝐺

𝑑𝑥

𝑑𝑥 
                                                                 (22) 

 
 
3. Finite element analysis 
 

FEA was conducted by using ANSYS 14.5 commercial FEA software (PA 15317, USA) to 

verify the results of the theoretical method. The default values of the SLF are as follows: length 

l=10 mm, width b=4 mm, and thickness t=0.5 mm. We performed a parametric analysis wherein 

the sensitive parameters were used to check the agreement between the FEA results and theory 

results, with the following variations: length l=5 to 20 mm, width b=2 to 8 mm and thickness 

t=0.25 to 1 mm. The torsion moment is Tx=1 N mm. The material used in this simulation is 

aluminum 6061 with a mesh size of 0.05 mm (hexahedral element), is shown as in Fig. 4. In this 

study, the stresses of the SLF were found by using FEA and theory, with and without the warping 

effect, with torsion moment Tx applied at the free end. We then compared these results. If the error 

between the two methods was lower than 10%, then the results were generally accepted and used 

in the subsequent design steps. 

 

 

 

Fig. 4 FEA model of SLF with the employed mesh 0.05 mm 
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Warping stresses of a rectangular single leaf flexure under torsion 

Table 1 Comparison between theory and FEA results at the default values of flexure 

 
Theory 

FEA 
Error (%) 

Warping Non-warping Warping Non-warping 

Normal stress σxx (N/mm2) 4.5061 0 4.4538 1.16 - 

Shear stress τxz, (N/mm2) 3.2376 1.6282 3.2458 0.25 49.84 

Shear stress τxy (N/mm2) 2.4005 13.0257 2.4108 0.43 81.49 

 

  
(a) xx - l (b) xx - t 

 
(c) xx - b 

Fig. 5 Variation of warping normal stress xx versus (a) length l, (b) thickness t, and (c) width b under 

torsion Tx 

 
 
3.1 Comparison at default values 

 

Eqs. (14), (16), and (18) were used to find the stresses of the SLF under Tx with the warping 

effect. Eqs. (20)-(22) were used to find stresses with no warping effect. The FEA simulation was 

also conducted at the default values of flexure. Table 1 shows a comparison between the theory 

(with and without warping) and FEA results (the normal stress (σxx) was found at x=0, y=t/2, 

z=b/2; the shear stress (τxy) was found at x=l/2, y=0, z=b/2; the shear stress (τxz) was found at x= l/2, 
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y=t/2, z=0). As shown in Table 1, the error for warping was lower, at 1.2%, and the errors for non-

warping were as high as 82%. Thus, when the warping effect is considered in torsion, the cross-

section of the SLF does not remain plane, and is warped into a non-planar surface. Therefore, the 

normal stress is presented, and the result of stresses due to torsion Tx are quite close to the FEA 

result. In contrast, the assumption of the classical theory is that the cross-section of the SLF 

remains plane (no warping), and the results show high errors. This indicates that the stress 

equation considering warping is in good agreement with the FEA results, and that these results 

could be accepted for use in subsequent investigations. However, to ensure the reliability of the 

calculations, the sensitive parameters need to be analyzed. 

 

3.2 Sensitive parameter analysis 
 

Figs. 5(a)-(c) show the simulation results for the warping normal stress xx sensitivity with 

variations of length l=5 to 20 mm (Fig. 5(a)), thickness t=0.25 to 1 mm (Fig. 5(b)), and width b=2 

to 8 mm (Fig. 5(c)) of the SLF under torsion Tx. The curves of the variation of warping normal 

stress xx are similar to those from FEA. And, these figures show the curves of the errors. All 

errors are lower than 3%, which means that the theory results are in good agreement with the FEA 

results. In these simulations, the non-warping normal stress is considered to be 0
xx=0. 

Figs. 6(a)-(c) show the results of the variation in warping shear stress xz according to length 

l=5 to 20 mm (Fig. 6(a)), thickness t=0.25 to 1 mm (Fig. 6(b)), and width b=2 to 8 mm (Fig. 6(c)) 

of the SLF based on theory (warping and non-warping) and FEA. We note that the curves of the 

variation of warping and FEA are quite similar, whereas the curve of the non-warping case differs. 

The curves of the errors show more clearly the difference: the error of the warping case is lower by 

4%, and the other case is up to 50%.   

Similarly, Figs. 7(a)-(c) show the simulation results for the warping shear stress xy sensitivity 

with the variation of length l=5 to 20 mm (Fig. 7(a)), thickness t=0.25 to 1 mm (Fig. 7(b)), and 

width b=2 to 8 mm (Fig. 7(c)) of the SLF under torsion Tx. The curves representing the variation of 

xy show a huge difference in the values of the cases with and without the warping effect. The  

 

 

  

(a) xz - l (b) xz - t 

Fig. 6 Variation of warping shear stress xz  versus (a) length l, (b) thickness t, and (c) width b under 

torsion Tx 
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Warping stresses of a rectangular single leaf flexure under torsion 

 
(c) xz - b 

Fig. 6 Continued 

 

  
(a) xy - l (b) xy - t 

 
(c) xy - b 

Fig. 7 Variation of warping shear stress xy according to (a) length l, (b) thickness t, and (c) width b 

under torsion Tx 

 

 

errors in the warping effect sensitivity with FEA are lower by 3%, and the errors in the non-

warping case are up to 92%. These graphs show that the theory results with the warping effect are 

in strong agreement with the results of FEA.  
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The warping and non-warping results are compared with FEA as shown in Figs. 5-7. The errors 

in the warping sensitivity analysis are lower than 4%. The non-warping errors are 92%. These 

results indicate that the stress analysis of the SLF considering the warping effect in torsion ensures 

the accuracy than without the warping effect. The normal stress existed during the application of 

torsion. 

 

 

4. Conclusions 
 

In this study, the stresses of an SLF with warping and non-warping effects under torsion were 

analyzed. The warping function of a rectangular cross-sectional beam was applied. The equations 

of warping normal stress and two shear stresses were derived. A sensitivity analysis with the 

variation of parameters of the SLF was performed, and the accuracy of the theoretical analysis was 

validated by FEA. These results show that the proposed analysis with warping in torsion has high 

accuracy and could be applied to the design of precision machines. 
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