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Abstract.  In this paper, the nonlinear static and free vibration analysis of Euler-Bernoulli composite beam 

model reinforced by functionally graded single-walled carbon nanotubes (FG-SWCNTs) with initial 

geometrical imperfection under uniformly distributed load using finite element method (FEM) is 

investigated. The governing equations of equilibrium are derived by the Hamilton’s principle and von 

Karman type nonlinear strain-displacement relationships are employed. Also the influences of various 

loadings, amplitude of the waviness, UD, USFG, and SFG distributions of carbon nanotube (CNT) and 

different boundary conditions on the dimensionless transverse displacements and nonlinear frequency ratio 

are presented. It is seen that with increasing load, the displacement of USFG beam under force loads is more 

than for the other states. Moreover it can be seen that the nonlinear to linear natural frequency ratio 

decreases with increasing aspect ratio (h/L) for UD, USFG and SFG beam. Also, it is shown that at the 

specified value of (h/L), the natural frequency ratio increases with the increasing the values amplitude of 

waviness while the dimensionless nonlinear to linear maximum deflection decreases. Moreover, with 

considering the amplitude of waviness, the stiffness of Euler-Bernoulli beam model reinforced by FG-CNT 

increases. It is concluded that the R parameter increases with increasing of volume fraction while the rate of 

this parameter decreases. Thus one can be obtained the optimum value of FG-CNT volume fraction to 

prevent from resonance phenomenon. 
 

Keywords:  nonlinear static and free vibration analysis; Euler-Bernoulli composite beam model; various 

distribution patterns of SWCNTs; geometrical imperfection; FEM 

 
 
1. Introduction 
 

A functionally graded material (FGM) is described by material variant from one to another 

surface for the optimum distribution of component materials. These materials are used widely in 

many fields, such as aerospace technology, automobiles, electronics, optics, chemistry, biomedical 

engineering, nuclear engineering and mechanical engineering.  

So many researches in the field of vibration, statics and buckling analysis are done by 

researchers on them (Lau et al. 2004). The mixed finite element models of beams and plates were 

                                                           

Corresponding author, Ph.D., E-mail: mmohammadimehr@kashanu.ac.ir 



 

 

 

 

 

 

M. Mohammadimehr and S. Alimirzaei 

developed more than two decades ago by (Putcha and Refined 1986, Reddy 1987) to overcome the 

drawbacks of the displacement based models. Wave propagation analysis in nonlinear curved 

single-walled carbon nanotubes (SWCNTs) based on nonlocal elasticity theory is investigated by 

Wang et al. (2015). The effects of the geometrical nonlinearity, the initial geometrical 

imperfection, temperature change and magnetic field on the flexural and shear wave frequencies 

are investigated. Liew and co-worker (2015) investigated mechanical analysis of functionally 

graded carbon nanotube reinforced composite. They attempt to identify and highlight topics 

relevant to functionally graded carbon nanotube reinforced composite (FG-CNTRC) and review 

the recent research works that have been reported. Eltaher and co-workers (2014) studied the 

nonlinear free vibration of uniform cross section FG beam based on the nonlocal Timoshenko 

beam theory (TBT). Their obtained the numerical results are reflected the significant effect of 

neutral axisposition, material distribution profile, and the nonlocality parameter on the 

fundamental frequencies of nano-Timoshenko beams. Free vibration and buckling analysis of 

Timoshenko beams reinforced by SWCNTs is studied by Yas and Samadi (2012). Their results 

illustrated that several parameters such as boundary conditions, volume fraction of nanotube and 

foundation stiffness are effective in free vibration and buckling characteristics of beam. Static and 

nonlinear vibration analysis of micro beams based on elastic foundation using Euler-Bernoulli 

beam theory (EBBT) is investigated by Simsek (2014). He considered the effects of the length 

scale parameter and the stiffness coefficients of the nonlinear foundation on the static deflection 

and the ratio of nonlinear to linear frequency. Mohammadimehr and Rahmati (2013) presented the 

electro-thermo-mechanical nonlocal axial vibration analysis of single-walled boron-nitride nano-

rods (SWBNNRs) under electric excitation. They obtained the constitutive equation for the nano-

rods under electro-thermo-mechanical loadings, then they discussed about effects of the aspect 

ratio, small scale parameter, clamped-clamped and clamped-free boundary conditions on the 

natural frequency. Nonlinear thermal buckling behavior of functionally graded (FG) plates using 

an efficient sinusoidal shear deformation theory is illustrated by Bouiadjra et al. (2013). Their 

numerical results presented to study the efficient sinusoidal shear deformation theory that is 

importance and accuracy in comparison to other theory. Ansari and Ramezan-nezhad (2011) in 

one of their recent publications studied the nonlinear vibrations of embedded multi-walled carbon 

nanotubes in thermal environments based on the nonlocal Timoshenko beam model. They obtained 

the effects of small-scale parameter; nanotube geometries, temperature change and the elastic 

medium on the natural frequency. Farshidianfar and Soltani (2012) exploited an efficient nonlinear 

vibrational model for fluid-conveying CNT with geometrical imperfection. Their obtained results 

revealed that the imperfection of the nanotube at high flow velocities makes the model severely 

nonlinear, especially when considering the nonlocal effects. Nonlinear vibration of embedded 

SWCNT with geometrical imperfection under harmonic load based on nonlocal TBT is studied by 

Wang et al. (2013).Their results showed that the above mentioned effects have influences on the 

dynamic behaviour of the SWCNT. Li (2013) investigated size-dependent thermal behaviors of 

axially traveling nano-beams based on a strain gradient theory. They considered the effects of 

strain gradient nano-scale parameter, temperature change; shape parameter and axial traction on 

the natural frequencies and discussed through some numerical examples. It is concluded that the 

factors mentioned above significantly influence the dynamic behaviors of an axially traveling 

nano-beam. Ghorbanpour and co-workers (2012) investigated nonlinear vibration of embedded 

single-walled boron nitride nanotubes (SWBNNTs) based on nonlocal TBT using differential 

quadrature method (DQM). They concluded that imposing a direct electric potential in axially 

polarized direction causes decreasing fundamental frequency and applying it in reverse direction 
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increases it. Rahmati and Mohammadimehr (2014) investigated the vibration analysis of non-

uniform and non-homogeneous boron nitride nanorod (BNNR) embedded in an elastic medium 

under combined loadings using DQM. They indicated that the non-dimensional frequency ratio of 

nonhomogeneous BNNR decreases with the presence of electro-thermal loadings, and their effect 

on the nondimensional frequency ratio is higher in short nanorods and high nonlocal parameter. In 

the other work, based on strain gradient theory, Mohammadimehr et al. (2015a) presented the free 

vibration analysis of tapered viscoelastic micro-rod resting on visco-Pasternak foundation. They 

assumed the material properties of micro-rod to be the visco-elastic and modeled as the Kelvin-

Voigt. Using Hamilton's principle and energy method, they obtained the governing equation of 

motion of viscoelastic micro-rods, then this equation solved using DQM for different boundary 

conditions. Also, Mohammadimehr et al. (2016a) illustrated the size dependent effect on the 

buckling and vibration analysis of double-bonded nanocomposite piezoelectric plate reinforced by 

boron nitride nanotube (BNNT) based on modified couple stress theory. The results of their 

research showed that the critical buckling load decreases with an increase in the dimensionless 

material length scale parameter. Large deflection analysis of edge cracked simply supported beams 

is studied by Akbas (2015). In this study, the effects of the location of crack and the depth of the 

crack on the non-linear static response of the beam are investigated in detail. The relationships 

between deflections, end rotational angles, end constraint forces, deflection configuration, Cauchy 

stresses of the edge- cracked beams and load rising are illustrated in nonlinear case. Also, the 

difference between the geometrically linear and nonlinear analysis of edge-cracked beam is 

presented. Dynamic analysis of FG nano-composite beams reinforced by randomly oriented 

CNTunder the action of moving load is investigated by Yas and Heshmati (2012). Their obtained 

results indicated that a CNT-reinforced composite can possibly reach superior vibrational 

properties only if the CNTs are controlled to be aligned in the whole material. Ranjan (2011) 

studied the nonlinear finite element analysis of bending of straight beams using hp-spectral 

approximations. His results compared with both analytical and nonlinear finite element solutions 

from literature that have excellent agreement with them.  

In this paper, the nonlinear bending and free vibration analysis of Euler-Bernoulli composite 

beam model reinforced by FG-SWCNTs with geometrical imperfection under uniformly 

distributed load using FEM is considered for various distributions of CNTs and different boundary 

conditions. Based on the Hamilton’s principle and von Karman type, the governing equations of 

equilibrium are obtained. Also the influences of various loadings, amplitude of the waviness, UD, 

USFG, and SFG distributions of CNT and different boundary conditions on the dimensionless 

transverse deflection and nonlinear frequency ratio are illustrated. 

 

 

2. Material properties of CNTRC beams  
 

The nano-composite beam has an initial sinusoidal curvature described by (Wang et al. 2013) 

     
0

x
(x) sin( )w

l


  (1) 

where μ is the amplitude of the waviness. 

The mixture of rule for FG nano-composite beam reinforced by SWCNT is obtained by the 

following equation (Yas and Samadi 2012) 

       
1CNT mV V   (2) 
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where VCNT and Vm are CNT and matrix volume fractions, respectively. VCNT is defined for 

different types of CNT distribution. In this paper, three kinds of CNT distribution are assumed as 

(Yas and Samadi 2012): 

Uniform distribution (UD) 

       CNT CNTV V  (3) 

Unsymmetrical functionally graded distribution of CNT (USFG) 

        

2
( ) 1CNT CNT

z
V z V

h

 
  
 

 (4) 

Symmetrically linear distribution of CNT (SFG) 

       

2
(z) 2

CNT CNT

z
V V

h

 
   

 

 (5) 

where 
CNTV  is 

       
( ) ( )

CNT

CNT

CNT CNT
CNT CNT

m m

W
V

W W
 

 



 

 
(6) 

WCNT, ρCNT and ρm are mass fraction of CNT, density of CNT and matrix, respectively. 

Similarly, Poisson’s ratio, mass density and Young's modulus in terms of Euler-Bernoulli 

composite beam model reinforced by FG-CNTs can be expressed as (Heshmati and Yas 2013, 

Mohammadimehr et al. 2016b, Mohammadimehr and Mostafavifar 2016) 

        

( )

( )

( )

CNT CNT m m

CNT CNT m m

CNT CNT m m

z V V

z V V

E z V E V E

  

  

 

 

 

 (7) 

 

 
3. Theory and formulations 
 

3.1 Equations of motion 
 
The Euler-Bernoulli theory (EBT) is based on the assumption that a straight line transverse to 

the axis of the beam remains straight, inextensible, and normal to the mid-plane after deformation. 

These assumptions amount to neglecting the Poisson ratio effect and the transverse strains. The 

displacement field for EBT beams can be written as the following form 

        

1

2 3

(x, z)
(x, z) u (x)

(x, z) 0 , (x, z) (x)

w
u z

x

u u w


 



 

 (8) 

where (u1, u2, u3) is the total displacements along the three coordinate directions (x,y,z), u and w 

denote the axial and transverse displacements of a point on the neutral axis, respectively. The 

nonlinear strain-displacement relationships of uniform beam with initial geometrical imperfection 
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undergoing large deflections are obtained as follows (Wang et al. 2013, Li 2014) 

      

2
2 0

2

1
( )

2
xx

wu w w w
z

x x x xx


   
   
   

 (9) 

where w0 is the initial geometrical imperfection. For imperfect beams, the initial geometrical 

imperfection w0 is assumed to be the form similar to the deformed shape with w, and have w0=μw, 

μ is the imperfection parameter (Li 2014).The strain and kinetic energy of the Euler-Bernoulli 

composite beam model reinforced by FG-CNTs are as follows 

      

2 2 2

1 2 3

0

0

1
( )(u u u )

2

1
( )

2

L

A

L

xx xx

A

T z dAdx

S dAdx



 

  



 

 

 (10a) 

      ( )xx xxE z 
 

(10b) 

where σxx is the normal stress of nano-composite beam. Also T and S denote the kinetic energy and 

strain energy, respectively. 

The equilibrium equations of CNTs can be obtained by the energy principle and the variational 

approach. The variation strain energy can be calculated as 

       

  

  
 





       
       

        

  
  

  





0

2

2

( )

[ 2

]

L

xx xx

A

x x X

A

x

S dAdx

u w w w
S N N M

x x x x

w W
N dA

x x

 (11) 

where Nx and Mx are the resultant axial force and moment, respectively which is defined as 

      

 
/2

/2

, (1, )

h

x x x

h

N M z dz


 
 

(12) 

Substituting Eq. (12) into Eq. (11), one can be obtained the following equations (for details see 

Reddy 2004) 

       

 


 
 

       
   
 
 


2

2

11 11 112

1
[ ( )A ( ) ] 0

2
A

u u w w
A B dA

x x xx  
(13) 

      

 


 




 
 
  

   
    

  
 
   

 
 
 

   
    
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



2

11 11 2

2 2

11

2 2

2

11 11 112 2

(2 1) (2 1)

[ ]dx

1
(2 2 )A ( )

2

1
[ ( )( ) D ]dx 0

2

A

u w
A B

x xw w

x x
w

x

w u w w
B B

x xx x

 (14) 
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where stiffness coefficient are considered as 

      

2
2

11 11 11

2

[A B D ] ( )[1 ]

h

h

E z z z dz



   
(15) 

Also the variation kinetic energy can be calculated as 

      

  

1 1 3 3

0

, ,

0

2
2

0 1 2

2

( )(u u )

( )

[I I I ] ( )[1 z z ]

L

A

L

x x

A

h

h

T z u u dAdx

z u z w u z w w w dAdx

z dz
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   





 

    



 

 



 (16) 

 

3.2 Maxwell’s equation 
 

For Euler-Bernoulli composite beam model reinforced by FG-SWCNT subjected to a magnetic 

field, H, the exerted body force can be calculated as (Narendar et al. 2012, Mohammadimehr et al. 

2015b) 

       

0
(U H) (0, ,0)

0 0
0 0

( ,0, ) (0,0, )

x

x

x

x x x

u w
x y zh Curl wH

H
wH

wH wH wH
z x x

  

         

  
 
  

 
(17) 

For simplifying the analysis, a longitudinal vector is considered as H= (Hx, 0, 0). 

The current density (J) and the Maxwell equations are given by 

      

( ) (0, ( ),0)

0 0

x

x

x y z
J Curl h h wH

x x
wH

x

  

   
     

 



 
(18) 

      

2
2 2

0 0 0 0 2

0 0
f (J ) ( )

0 0

x

x x

x

wH w w
h H Hx x

x x x
H

   

  
    

        
  

 

(19) 

where μ0 is the magnetic field permeability. 

Therefore the component of Lorentz forces along the x, y and z directions are 

      

2
2

0 2
0, 0,x y z x

w
f f f H

x


 
    

 

 

(20) 

The variation of work done due to the external load such as magnetic field and distribution 
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load, for nano-composite beam is described by 

      
Lorentz Lorentz load z

A A

W W W f w dA q w dA         

 

(21) 

where fz and q are the work done due to the external load such as magnetic field and uniformly 

distributed load, respectively. 

In this investigation different boundary conditions of the beams such as simply-simply (S-S), 

simply-hinged (S-H), clamped-clamped (C-C), camped-simply (C-S) are considered. These 

conditions are described as 

clamped (C): 0
dw

u w
dx

    

(22) 
hinged (H): 0, 0

x
w M   

simply support (S): 0, 0
x

u w M    

 

3.3 Finite Element Method (FEM) 
 
In this paper, FEM is used to solve the governing equations of CNTRC beams. According to 

FEM the axial displacement u(x) and transverse deflection w(x) are interpolated as (Reddy 2004) 

      

2 4

1 1

(x) , (x)
u j j w j j

J J

u N u w N w
 

  

 

(23) 

Here Nu j, Nw j are the exact shape functions for axial, transverse and rotational degrees-of-

freedom, respectively. 

Substituting Eq. (23), and δw0(x)=Nw i(x)
 
and δu0(x)=Nu i(x) into the Eqs. (13)-(14) and (16) we 

obtain 

      

2 4

11 12 1

1 1

2 4

21 22 2

1 1
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 
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(24) 

where 
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(25) 

Also 
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(26) 

The consistent force array is given by 

     0

{F}

L

w
q N dx 

 

(27) 

The consistent load vector for the uniformly distributed load (q) is calculated by substituting 

the shape functions into Eq. (27). 

 

3.4 Linearization procedure 
 
The linearization process can be accomplished with type two techniques, namely the Picard 

(direct iteration procedure) or the Newton-Raphson's method. For checking the convergence 

behaviour of both the methods of linearization’s with hp-spectral methods both of these were 

implemented. Some of the advantages of the Newton-Raphson method are a faster convergence 

rate. The linearized problem with the Newton's method is represented as follows (Reddy 2004) 

      
           

(r 1)(r 1) (r 1)

1
( ) R( )

r e ek F k
             

 

(28) 

where the tangent stiffness matrix [k1] associated with the Euler-Bernoulli beam element is 

calculated as follows 

      

 
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(r 1)
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R
k 

 
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(29) 
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The solution at the rth iteration is then given by: {Δ}r={Δ}(r−1)+{δ∆} 

For the check of the convergence criterion, it can be computed by using the increment of the 

solutions vector, i.e., {δ∆}, as follows 
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(30) 

It is noted that the calculations were carried out on a 36-digit precision computer and iterated 

until all percentage relative errors changed by less than 0.00001 between iterations (Reddy 

2004): 

Although the direct stiffness matrix [k] is unsymmetrical, it can be shown that the tangent 

stiffness matrix [k1] is symmetric. Therefore 
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(31) 

So the equations of motion can be obtained as matrix form 

     [M]{u} [k]{u} {f} 

 

(32) 

where 

      
[k] [k ] [k ]

linear nonlinear
 

 

(33) 

Therefore, the total order of the stiffness and mass matrices is 6×6 which is illustrated as 

follows 
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Fig. 1 A computer flow chart of  Matlab software for the nonlinear finite element analysis of 

Euler-Bernoulli composite beam model reinforced by FG-SWCNT 

 

 

The flowchart for nonlinear bending analysis of Euler-Bernoulli composite beam model 

reinforced by FG-SWCNT is shown in Fig. 1. 

According to FEM, the stiffness and mass matrices for Timoshenko beam theory are considered 

as follows: 

- Stiffness matrix 
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- Mass matrix 
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4. Numerical results and discussions 
 

In this paper, the nonlinear static and free vibration analysis of Euler-Bernoulli composite beam  
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Table1 The geometrical, mechanical and physical parameters of Euler-Bernoulli composite beam model 

reinforced by CNTs (Yas and Heshmati 2012)  

Parameter Value Parameter Value Parameter Value 

Em 10 GPa ECNT 649.12 GPa L 5 m 

Pm 1150 (kgm
-3

) PCNT 1400 (kgm
-3

) b=h 0.1 m 

 
Table 2 The effect of various boundary conditions on the dimensionless nonlinear deflection of nano-

composite beam for 1000
N

q
m

  

Various 

BC’s 

Distribution 

types of FG-

SWCNTs 

L/h=10 L/h=20 L/h=30 L/h=40 L/h=50 L/h=60 

C-C 

UD 3.1414e-06 2.5131e-05 8.4818e-05 2.0103e-04 3.9237e-04 6.7627e-04 

SFG 2.1669e-06 1.7335e-05 5.8506e-05 1.3867e-04 2.7079e-04 4.6753e-04 

USFG 4.0115e-06 3.2095e-05 1.0835e-04 2.5703e-04 5.0237e-04 8.6681e-04 

C-S UD 6.2829e-06 5.0263e-05 1.6962e-04 4.0172e-04 7.8097e-04 1.3262 -03 

S-S UD 1.5707e-05 1.2565e-04 4.2365e-04 9.9502e-04 1.859e -03 2.8509 e-03 

S-H UD 1.5707e-05 1.2566 e-04 4.2406 e-04 1.0044e-03 1.9530e-03 3.3202e-03 

 

 

Fig. 2 Effects of aspect ratio (L/h) and magnetic field on the dimensionless nonlinear deflection for 

various distributions of nanotubes 

 

 

model reinforced by FG-SWCNTs with geometrical imperfection under uniformly distributed load 

using FEM is investigated. The physical, geometrical and mechanical parameters of Euler-

Bernoulli composite beam model reinforced by CNTs are considered in Table 1. 
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4.1 Static analysis  
 
In this part, the effect of geometrical imperfection and UD, USFG and SFG distributions of 

CNT on the axial non-dimensional deflection of beam is taken into account. Table 2 and Fig. 2 

depict the effect of various boundary conditions on the dimensionless nonlinear deflection of 

Euler-Bernoulli composite beam model reinforced by FG-SWCNTs for different boundary 

conditions. In this Table, letter C, S and H denote clamped, simply supported and hinged boundary 

conditions in the edge of the composite beam, respectively. According to Table 2 and Fig. 2, the 

dimensionless nonlinear deflection increases with an increase in the aspect ratio (L/h); also it is 

obvious that the nano-composite beam is stiffer as reinforced by SFG distribution type rather than 

other distribution types. It is shown from this figure that with considering magnetic field, the 

Euler-Bernoulli composite beam model reinforced by FG-CNT becomes stiffer, thus the 

dimensionless nonlinear deflection decreases for this state. 

Fig. 3 shows the non-dimensional nonlinear transverse deflection of nano-composite beam for 

different boundary conditions and the fixed geometrical defects. It can be seen from Fig. 3 that by 

increasing uniformly distributed load, the dimensionless nonlinear displacement increases. From 

this figure S-H beam deforms more as expected than other states. Moreover, it is concluded that 

with considering S-H boundary condition, the nano-composite beam becomes more flexible with 

respect to the other boundary conditions. Also, the clamped boundary condition with respect to 

simply supported and hinged free boundary conditions leads to increase stiffer of the Euler-

Bernoulli composite beam model. According to this figure with increasing uniformly distributed 

load of nano-composite beam, the difference of dimensionless nonlinear deflection between four 

cases increases; so the number of iterations for convergence system increases. 

 

 

 

Fig. 3 The effect of various boundary conditions on the dimensionless maximum nonlinear deflections 

of nano-composite beam for μ=0.2 and L/h=50 
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Fig. 4 The effect of various distributions of CNTs including UD, USFG and SFG on the dimensionless 

maximum deflection of nano-composite beam for μ=0.2 and L/h=50 

 

 

The effect of various distributions of CNTs including UD, USFG and SFG on the transverse 

deflection of Euler-Bernoulli composite beam model reinforced by FG-CNTs under different 

loadings for S-H boundary condition and L/h=50 is shown in Fig. 4. The results show that, the 

dimensionless nonlinear deflection of USFG nano-composite beam is more than other states. So 

one can be expressed SFG beam is stiffer than the other state. Also it can be seen that the 

deference between linear and nonlinear dimensionless deflection response for USFG beam is more 

than the other state and this difference between two cases increases by increasing aspect ratio 

(L/h). 

Figs. 5(a)-(b) depict the dimensionless nonlinear maximum deflection and nonlinear to linear 

maximum deflection ratio for S-H boundary conditions and L/h=50 in terms of the uniformly 

distributed load for various waviness at USFG state, respectively. It can be seen from Figs. 5(a) 

and 5(b) that the magnitudes of the transverse deflection decrease with an increase in the values of 

the waviness. Moreover, as the amplitude of waviness increases, the dimensionless nonlinear 

deflection of nano-composite beam is more sensitive to the von Karman type nonlinearity 
2( )

w

x





in Eq. (9). In the other hands, the difference between curves for various amplitude of waviness in 

Fig. 5(b) is more than that of in Fig. 5(a). It is illustrated from Fig. 5(a) that the dimensionless 

nonlinear maximum deflection increases with an increase in the uniformly distributed load, while 

for dimensionless nonlinear to linear maximum deflection ratio is vice versa in Fig. 5(b).   

Fig. 6 shows the effect of length-to-thickness ratio on the transverse deflections of Euler-

Bernoulli composite beam model is presented. It is shown that as the beam becomes thicker at a 

special length; its curves are closer to linear state, while thin beam shows nonlinearity more  
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(a) 

 
(b) 

Fig. 5 The effect of various waviness on (a) the dimensionless nonlinear maximum deflection (b) 

dimensionless nonlinear to linear maximum deflection for S-H boundary condition and L/h=50 
 

 

strongly. Also it is clear that the dimensionless nonlinear deflection of the nano-composite beam 

reduces as the aspect ratio (h/L) increases, which makes the beam stiffer.  

Figs. 7(a)-(b) depict the good agreement between the obtained results by FEM (ten elements) 

and exact solution of the isotropic EBBT for S-S and C-C boundary conditions, respectively, and 

L/h=50. These figures show that the C-C and S-S boundary conditions are satisfied as well as for  
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Fig. 6 Dimensionless nonlinear maximum deflection-load curves for μ=0.2 and USFG nano-composite 

beam for various values of the aspect ratio 

 

 

two theories. According to (Reddy 2004), Young’s modulus, geometric properties of beam is 

considered as E=30e6 Psi, P=1 lb/in, L=50 in, b=h=1 in.  

Exact solutions of isotropic Euler-Bernoulli beam theory for C-C and S-S boundary conditions 

are given by 

C-C: 

4

2 20

0 0

q
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24
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u w x

D L L
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4.2 Free vibration analysis  
 
In this part, the effects of the various distributions of SWCNTs and variation boundary 

condition on non-dimensional natural frequency are discussed. Also the influence of various 

amplitude of the waviness on the dimensionless natural frequency is presented. The dimensionless 

natural frequency is computed as follows 

(39)
 

m

m

L
E


  

Dimensionless natural frequency is computed using FEM for the Euler-Bernoulli composite  
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(a) simply-simply 

 
(b) clamped-clamped 

Fig. 7 Deformed shapes of the beam for (a) simply-simply and (b) the clamped-clamped boundary 

conditions 

 

 

beam model with various boundary conditions and the obtained results are listed in Table 3. 

According to (Eltaher et al. 2013), Young’s modulus, density, and geometric properties of beam is 

considered as E=30GPa,
3

1
kg

m
  , L/h=10. In this Table, the obtained natural frequencies from the 

present work (FEM) of the Euler-Bernoulli composite beam model are compared with the results  

0 5 10 15 20 25 30 35 40 45 50
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Length (in)

T
ra

n
s
v
e
re

 d
is

p
la

c
e
m

e
n
t 

is
o
tr

o
p
ic

 b
e
a
m

  
(i
n
)

 

 

FEM

exact

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7
x 10

-3

Length  (in)

T
ra

n
s
v
e
re

 d
is

p
la

c
e
m

e
n
t 

is
o
tr

o
p
ic

 b
e
a
m

  
(i
n
)

 

 

FEM

exact

447



 

 

 

 

 

 

M. Mohammadimehr and S. Alimirzaei 

Table 3 Comparison between the results of the present work (FEM) and the obtained results by Eltaher et al. 

(2013) 

Various boundary condition Present work Eltaher et al. 2013 

C-C 22.4404 22.4926 

S-S 9.9089 9.9106 

C-S 15.4693 15.4937 

C-F 3.5376 3.5228 

 

 

Fig. 8 The dimensionless nonlinear frequency of composite beam reinforced by UD-CNTs using TBT 

and EBBT versus L/h for C-C boundary conditions 

 

 

available in the literature (Eltaher et al. 2013). From Table 3, one can be observed that the present 

results are in good agreement with the obtained results by (Eltaher et al. 2013) for various 

boundary conditions. 

Fig. 8 depicts the dimensionless nonlinear frequency of composite beam reinforced by UD-

CNTs using the Timoshenko and Euler-Bernoulli beam theories (TBT and EBBT) versus the 

aspect ratio (L/h) for C-C boundary conditions. It can be concluded that the difference between the 

dimensionless nonlinear frequency predicted by EBBT and TBT is negligible for L/h>50. This is 

due to the fact that the shear stress effect is negligible for long nanotubes.  

Figs. 9(a)-(b) and Table 4 indicate the non-dimensional linear and nonlinear natural frequency 

of C-C nano-composite beam for three types of CNT distributions. Increasing the aspect ratio (h/L) 

leads to increase the dimensionless natural frequency for UD, USFG and SFG beam. Also at the 

specified value of (h/L), the dimensionless natural frequency for SFG beam is more than the other 

state. It means that the USFG beam causes to decrease the first natural frequency. Also it can be 

seen that the difference between linear and nonlinear natural frequency response for USFG beam 

is more than the other state. 
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Table 4 Effects of (h/L) and various distribution of CNT on the natural frequency for C-C boundary 

conditions of nano-composite beam reinforced by CNT 

 CNT h/L=0.05 0.06 0.07 0.08 0.09 0.1 

Linear 

Solution 

UD 0.50219726 0.60255180 0.70286011 0.80311447 0.90330728 1.00343089 

USFG 0.42956977 0.51540083 0.60118672 0.68691998 0.77259314 0.858198759 

SFG 0.60466788 0.72549772 0.84627105 0.96697850 1.08761072 1.208158407 

Nonlinear 

Solution 

UD 0.50229990 0.60258047 0.70286985 0.80311831 0.90330896 1.00343170 

USFG 0.46089357 0.53527270 0.61428161 0.69590200 0.77898367 0.862892205 

SFG 0.60470847 0.72550906 0.84627491 0.96698001 1.08761139 1.208158725 

 

 

 
Fig. 9 The effect of various distributions of CNTs on (a) dimensionless nonlinear natural 

frequency (b) dimensionless linear natural frequency 
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Fig. 10 The effect of waviness amplitude on the dimensionless nonlinear to linear natural 

frequency ratio for USFG composite beam 

 

 

The influences of aspect ratio (h/L) on the nonlinear to linear natural frequency ratio for 

different amplitudes of the waviness USFG nano-composite beam and C-C boundary conditions 

are shown in Fig.10. According to this figure, the frequency ratio decreases with an increase of 

aspect ratio. Also, with increasing amplitude of the waviness, the natural frequency ratio increases. 

Moreover, the stiffness of structure reinforced by CNTs increases with considering the waviness 

amplitude. Also, it is shown from the results that the effect of waviness amplitude on the system is 

nonlinear. On the other hands, with increasing this parameter, the nonlinear stiffness of system 

increases while the rigidity of linear system does not change.  

Fig. 11 shows the influence of various boundary conditions on the frequency ratio. It can be 

observed that the natural frequency ratio of USFG composite beam for C-C boundary conditions is 

more than the other state. On the other hands, the C-C boundary condition leads to increase more 

the stiffness of composite beam reinforced by FG-CNTs with respect to the other state. 

It is known that for linear modal analysis, it is now possible to what the linear natural 

frequencies for Euler-Bernoulli composite beam are. In this case, the linear natural frequencies 

come from [M
-1

][klinear] according to Eqs. (32)-(34). However, Eq. (33) has additional, coupled, 

and nonlinear terms (that are obtained from the geometrical nonlinear von Karman’s kinematic 

equations with initial geometrical imperfection (Eq. (9)) which will mean, in practice, that the 

natural frequencies are not the same as the linear ones.  

It is also possible that the nonlinear coupling terms may cause additional resonances in the 

composite beam model, which cannot be predicted by the linear equations. For example, sub-

harmonic resonance is a form of nonlinear resonance and also, other types of nonlinear resonance 

phenomena include parametric and auto-parametric resonance. In this research, the nonlinear 

natural frequencies are obtained by nonlinear FEM solutions. 
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Fig. 11 The effect of various boundary conditions on the dimensionless nonlinear to linear natural 

frequency ratio for μ=0.2 and USFG composite beam 

 

 

Fig. 12 The effect of various volume fraction of USFG-CNT on the dimensionless nonlinear 

natural frequency for μ=0.2 and C-C boundary conditions 

 

 

This point has been shown in Figs. 10 and 11, that in lower h/L (or higher L/h), the difference 

between nonlinear and linear natural frequency is noticeable. 

Fig. 12 and Table 5 indicate the effect of various volume fraction of USFG-CNT on the  
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Table 5 The effects of various volume fraction of USFG-CNT on the dimensionless nonlinear natural 

Frequency for C-C boundary condition and μ=0.2
 

L/h 20 R 30 R 40 R 50 R 

VCNT=0 0.3229 - 0.2159 - 0.1646 - 0.1401 - 

VCNT=0.05 0.5965 84.69 0.4108 90.27 0.3282 99.37 0.2858 104.097 

VCNT=0.10 0.7581 134.75 0.5184 140.12 0.4095 148.73 0.3528 151.88 

VCNT=0.14 0.8629 167.16 0.5876 172.17 0.4609 179.95 0.3942 181.43 

 

 

dimensionless nonlinear natural frequency for μ=0.2 and C-C boundary conditions. It is shown that 

with increasing the volume fraction of USFG-CNT, the dimensionless nonlinear natural frequency 

increases. Moreover, the considering volume fraction of FG-CNT leads to enhance the stiffness of 

structure. The R parameter is defined as the relative increasing percentage of dimensionless 

nonlinear natural frequency for various volume fractions of USFG-CNT that is illustrated in Table 

5. It is concluded that the R parameter increases with increasing of volume fraction while the rate 

of this parameter decreases. Thus one can be obtained the optimum value of USFG-CNT volume 

fraction to prevent from resonance phenomenon. 

 

 

5. Conclusions 
 

In this paper, the nonlinear static and free vibration analysis of Euler-Bernoulli composite beam 

model reinforced by FG-SWCNTs with geometrical imperfection under uniformly distributed load 

using FEM is studied. The effects of variation values of μ, UD, USFG, SFG distributions of CNT 

on the nonlinear displacements and natural frequency are illustrated. Also the influence of various 

loading and boundary conditions on the dimensionless nonlinear deflection and natural frequency 

is studied. Meanwhile the obtained results are in good agreement with the reported results by 

Eltaher et al. (2013) for various boundary conditions. The result of this research can be listed as 

follows: 

1. With increasing value of the waviness, the non-dimensional nonlinear frequency ratio 

increases for UD, SFG and USFG beam.  

2. For the same loading, the dimensionless nonlinear deflection for USFG beam is more than 

the other state. So one can be expressed SFG beam is stiffer than the other state. 

3. The dimensionless normalized deflection of FG nano-composite Euler-Bernoulli beam for 

pinned-hinged boundary condition is more than the other states. 

4. At the specified value of μ, the dimensionless nonlinear deflection of USFG beam is more 

than the other state. 

5. Euler-Bernoulli beam becomes stiffer with increasing aspect ratio (h/L) and the non-

dimensional deflection the beam reduces. 

6. The specified value of aspect ratio, the dimensionless natural frequency for SFG beam is 

more than the other state. 

7. The natural frequency ratio of USFG nano-composite beam for C-C boundary conditions is 

more than the other state. On the other hands, the C-C boundary condition leads to increase 

more the stiffness of composite beam reinforced by FG-CNTs with respect to the other state. 

8. It can be concluded that the difference between the dimensionless nonlinear frequency 
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predicted by EBBT and TBT is negligible for L/h>50. This is due to the fact that the shear 

stress effect is negligible for long nanotubes. 

9. It is shown that with increasing the volume fraction of USFG-CNT, the dimensionless 

nonlinear natural frequency increases. On the other hands, the stiffness of structure increases 

with the considering volume fraction of FG-CNT.  

10. It is concluded that the R parameter increases with increasing of volume fraction while the 

rate of this parameter decreases. Thus one can be obtained the optimum value of USFG-CNT 

volume fraction to prevent from resonance phenomenon. 
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