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Abstract.  In this study, static bending of edge cracked micro beams is studied analytically under 

uniformly distributed transverse loading based on modified couple stress theory. The cracked beam is 

modelled using a proper modification of the classical cracked-beam theory consisting of two sub-beams 

connected through a massless elastic rotational spring. The deflection curve expressions of the edge cracked 

microbeam segments separated by the rotational spring are determined by the Integration method. The 

elastic curve functions of the edge cracked micro beams are obtained in explicit form for cantilever and 

simply supported beams. In order to establish the accuracy of the present formulation and results, the 

deflections are obtained, and compared with the published results available in the literature. Good agreement 

is observed. In the numerical study, the elastic deflections of the edge cracked micro beams are calculated 

and discussed for different crack positions, different lengths of the beam, different length scale parameter, 

different crack depths, and some typical boundary conditions. Also, the difference between the classical 

beam theory and modified couple stress theory is investigated for static bending of edge cracked 

microbeams. It is believed that the tabulated results will be a reference with which other researchers can 

compare their results. 
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1. Introduction 
 

With the great advances in technology in recent years, micro and nano structures have found 

many applications. In these structures, micro beams and micro tubes are widely used in micro- and 

nano electromechanical systems (MEMS and NEMS) such as sensors (Zook et al. 1992, Pei et al. 

2004), actuators (Senturia 1998, Rezazadeh et al. 2006), biosensors, atomic-force microscopes, 

vibration sensors, micro-probes. In investigation of micro and nano structures, the classical 

continuum mechanics which is scale independent theories, are not capable of explanation of the 

size-dependent behaviors. Nonclassical continuum theories such as higher order gradient theories 

and the couple stress theory are capable of explanation of the size dependent behaviors which 

occur in micro-scale structures.  

At the present time, the experimental investigations of the micro/nano materials are still a 

challenge because of difficulties confronted in the micro/nano scale. Hence, mathematical model 
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and atomistic simulations have been used for micro structural analysis. The process of the 

atomistic simulations are very difficult and take much time. So, the researchers have attempted to 

simplified models for mechanical analyzing of the micro/nano structures. In the mechanical 

modelling of the micro/nano structures, micro and nano systems are modelled structural elements 

such as plate, shell and beams. Also, Continuum theory is the most preferred method for the 

analysis of the micro and nano structures in the mechanical modelling. Size effects are very 

important parameter in the structural behavior of micro/nano structures, because the dimensions of 

these structures are smaller than the atomic/molecular distances. Classical continuum mechanics 

does not contain the size effect, because of its scale-free character. To take account of the size 

effect, The nonlocal continuum theory initiated by Eringen (1972) which has been widely used to 

mechanical behavior of nano-micro structures.  

Micro and nano structures are subjected to destructive effects in the form of initial defects 

within the material or caused by fatigue or stress concentration, for example, crack occurrence in 

ZnO nano-rods is due to thermal fabrication process (Fang et al. 2003a, b). As a result of 

destructive effects, cracks occur in the structural elements. It is known that cracks cause local 

flexibility and changes in structural stiffness. Understanding the mechanical behaviour edge-

cracked micro structures and detection of cracks are very important for safety of micro structures.  

The size effect plays an important role on the mechanical behavior of microstructures at the 

micrometer scale that the classic theory has failed to consider when the size reduces from macro to 

nano (Toupin 1962, Mindlin 1962, Mindlin 1963, Fleck and Hutchinson 1993, Yang et al. 2002, 

Lam et al. 2003). Therefore, higher-order theories modified couple stress theory and modified 

strain gradient are used in the mechanical model of the nano-micro structures (Yang et al 2002, 

Lam et al. 2003).  

The determination of the micro-structural material length scale parameters is very difficult 

experimentally. So, Yang et al. (2002) proposed the modified couple stress theory (MCST) in 

which the strain energy has been shown to be a quadratic function of the strain tensor and the 

symmetric part of the curvature tensor, and only one length scale parameter is included. After this, 

the MCST and the strain gradient elasticity theories have been widely applied to static and 

dynamic analysis of structures (Park and Gao 2006, Ma et al. 2008, Kong et al. 2008, Asghari et 

al. 2010, Wang 2010, Şimşek 2010, Kahrobaiyan et al. 2010, Xia et al. 2010, Ke et al. 2011, 

Akgöz and Civalek 2012, Ansari et al. 2012, Şimşek et al. 2013, Wang et al. 2013, Kocatürk and 

Akbaş 2013, Kong 2013, Alashti and Abolghasemi 2013, Ghayesh et al. 2013, Daneshmehr et al. 

2013, Akgöz and Civalek 2013). 

More recently, Darijani and Mohammadabadi (2014) proposed a new deformation beam theory 

for static and dynamic analysis of microbeams which includes unknown functions takes into 

account shear deformation and satisfies both of shear and couple-free conditions on the upper and 

lower surfaces of the beam based on a MCST. Tang et al. (2014) analyzed a theoretical model for 

flexural vibrations of microbeams in flow with clamped-clamped ends based on MCST. Sedighi et 

al. (2014) investigated the dynamic pull-in instability of vibrating micro-beams undergoing large 

deflection under electrosatically actuation. Beni and Zeverdejani (2015) studied free vibration of 

microtubules within elastic shell model by using MCST. Faraokhi et al. (2015) studied the three-

dimensional motion characteristics of perfect and imperfect Timoshenko microbeams under 

mechanical and thermal forces based on the MCST. Zeighampour and Beni (2014, 2015), 

Zeighampour et al. (2015) investigated the shell structures within MCST. Ansari et al. (2015) 

studied an exact solution of vibrations of postbuckled microscale beams based on the MCST. 

Shojaeian and Beni (2015) presented the electromechanical buckling of beam-type 
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nanoelectromechanical systems by considering the nonlinear geometric effect and intermolecular 

forces (based on MCST. Dai et al. (2015) developed a new nonlinear theoretical model for 

cantilevered microbeams and to explore the nonlinear dynamics based on the MCST, taking into 

account of one single material length scale parameter. Farokhi and Ghayesh (2015) investigated 

the three-dimensional motion characteristics of perfect and imperfect Timoshenko microbeams 

under mechanical and thermal forces. Sedighi and Bozorgmehri (2016) investigated dynamic 

instability of free-standing size-dependent nanowires by considering the Casimir force and surface 

effects with MCST. Beni et al. (2016) studied the functionally graded cylindrical thin shell by 

using MCST. Ataei et al. (2016) investigated Pull-in instability and free vibration of cantilever and 

clamped-clamped beam-type nanoactuators composud of functionally graded under the influence 

of electrostatic and intermolecular forces by using the modified strain gradient theory. Shojaeian et 

al. (2016) studied electromechanical buckling of beam-type nanoelectromechanical systems by 

using the modified strain gradient theory. 

In the literature, the studies of the cracked micro-nano structures are as follows; Loya et al. 

(2009) studied the flexural vibrations of cracked micro- and nanobeams with the rotational and 

linear spring model based on nonlocal elasticity. Hasheminejad et al. (2011) investigated the 

flexural vibrations of cracked micro- and nanobeams in the presence of surface effects with the 

rotational linear spring model. Torabi and Nafar Dastgerdi (2012) studied with the free transverse 

vibration of cracked nanobeams modeled based on Eringen’s nonlocal elasticity theory and 

Timoshenko beam theory with a rotational spring. Liu (2013) investigated vibration behavior of 

a cracked Euler-Bernoulli micro-cantilever beam under coupling action of nonlinear electrostatic 

force and squeeze film damping effect. Beni et al. (2015) examined the transverse vibration of 

cracked nano-beam based on MCST with rotational spring model. Akbaş (2016) studied the free 

vibration of functionally graded cracked micro beams based on MCST. 

It is seen from literature that cracked beams has not been broadly investigated. A better 

understanding of the mechanism of how the cracks change response of static of a micro beam is 

necessary, and is a prerequisite for further exploration and application of the cracked micro beams. 

This paper examines static bending of edge cracked microbeams analytically based on the 

MCST. The microbeams are subjected to uniformly distributed transverse loading. The microbeam 

model consist of the material length scale parameter which take into account the size effect. The 

cracked beam is modelled using a proper modification of the classical cracked-beam theory 

consisting of two sub-beams connected through a massless elastic rotational spring. The deflection 

curve expressions of the edge cracked microbeam segments separated by the rotational spring are 

determined by the integration method. The elastic curve functions of the edge cracked micro 

beams are obtained in explicit form for cantilever and simply supported beams. Some of the 

present results are compared with the previously published results to establish the validity of the 

present formulation. In the numerical study, the elastic deflections of the edge cracked micro 

beams are calculated and discussed for different crack positions, different lengths of the beam, 

different length scale parameter, different crack depths, and some typical boundary conditions. 

Also, the difference between the classical beam theory (CBT) and MCST is investigated for static 

bending of edge cracked microbeams. 

The main purpose of the this study is investigation of using the classical cracked-beam model 

for the micro beams and determine the geometrical ratios in order to classical cracked-beam model 

can be used in the problems of the MCST. It is believed that the tabulated results will be a 

reference with which other researchers can compare their results. 
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Fig. 1 Edge cracked circular micro beams with an open edge crack subjected to uniformly distributed 

transverse load (q) and cross-section. (a) Cantilever micro beam, (b) Simple supported micro beam 

 

 
2. Theory and formulations 
 

Fig. 1 shows cantilever and simple supported micro beams of length L, diameter D, containing 

an edge crack of depth a located at a distance from the left end L1 with circular cross section. It is 

assumed that the crack is perpendicular to beam surface and always remains open. The beams are 

subjected to uniformly distributed transverse load (q) as seen from Fig. 1. 

 

2.1 The modified couple stress theory 
 

The strain energy density for a linear elastic material which is a function of both strain tensor 

and curvature tensor is introduced by Yang et al. (2002) for the MCST 

𝑈 = ∫ (𝜎: 𝜀 + 𝑚: 𝜒)
𝑉

𝑑𝑉        (1) 

where σ is the stress tensor, ε is the strain tensor, m is the deviatoric part of the couple stress tensor, 

χ is the symmetric curvature tensor, defined by  

𝜎 = 𝜆 𝑡𝑟(𝜀)𝐼 + 2𝜇𝜀                              (2) 

 𝜀 =
1

2
[∇𝒖 + (∇𝒖)𝑇]               (3) 

𝑚 = 2𝑙2𝜇 𝜒                    (4) 

𝜒 =
1

2
[∇𝜃 + (∇𝜃)𝑇]                               (5) 

where λ and μ are Lame’s constants, l is a material length scale parameter which is regarded as a 

material property characterizing the effect of couple stress, u is the displacement vector and θ is 

the rotation vector, given by   
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𝜃 =
1

2
curl 𝒖                                 (6) 

The parameters λ and μ in the constitutive equation are given by 

𝜆 =
𝐸 𝜈

(1+𝜈 )(1−2𝜈)
 ,  𝜇 =

𝐸

2(1+𝜈)
                          (7) 

where E is the modulus of elasticity and ν is the Poisson ratio. 

 

2.2 Governing equations of microbeams 
 

According to the coordinate system (X,Y,Z) shown in Fig. 1, based on Euler-Bernoulli beam 

theory, the axial and the transverse displacement field are expressed as   

𝑢(𝑋, 𝑌) = −𝑌
𝜕𝑣0(𝑋)

𝜕𝑋
                             (8) 

𝑣(𝑋, 𝑌, 𝑡) = 𝑣0(𝑋, 𝑡)                         (9) 

𝑤(𝑋, 𝑌, 𝑡) = 0                             (10) 

where u, v, w are x, y and z components of the displacements, respectively. Also, u0 and v0 are the 

axial and the transverse displacements in the mid-plane.  

Because the transversal surfaces of the beam is free of stress, then 

𝜎𝑧𝑧 = 𝜎𝑦𝑦 = 0                 (11) 

By using Eqs. (3), (8) and (9) and strain- displacement relation can be obtained 

𝜀𝑥𝑥 =
𝜕𝑢

𝜕𝑋
= −𝑌

𝜕2𝑣0(𝑋)

𝜕𝑋2
                           (12a) 

𝜀𝑦𝑦 = 𝜀𝑧𝑧 = 𝑌
𝜈(𝑌)𝜕2𝑣0(𝑋)

𝜕𝑋2
                          (12b) 

𝜀𝑥𝑧 = 𝜀𝑦𝑧 = 𝜀𝑥𝑦 = 0                            (12c) 

By using Eqs. (6), (8), (9) and (10) 

𝜃𝑧 =
𝜕𝑣0(𝑋)

𝜕𝑋
,  𝜃𝑥 = 𝜃𝑦 = 0                          (13) 

Substituting Eq. (13) into Eq. (5), the curvature tensor χ can be obtained as follows 

    𝜒𝑥𝑧 =
1

2
 
𝜕2𝑣0(𝑋)

𝜕𝑋2
, 𝜒𝑥𝑥 = 𝜒𝑥𝑦 = 𝜒𝑦𝑦 = 𝜒𝑦𝑧 = 𝜒𝑧𝑧 = 0                    (14) 

According to Hooke’s law, constitutive equations of the micro beam are as follows 

𝜎𝑥𝑥 =   𝜀𝑥𝑥 =  *−𝑌
𝜕2𝑣0(𝑋)

𝜕𝑋2
+                                (15) 

where σxx and εxx are normal stresses and normal strains in the X direction, respectively. 

Substituting Eq. (14) into Eq. (4), the couple stress tensor can be obtained as follows 

𝑚𝑥𝑧 = 𝑙
2𝜇

1

2

𝜕2𝑣0(𝑋)

𝜕𝑋2
             (16a) 

𝑚𝑥𝑥 = 𝑚𝑥𝑦 = 𝑚𝑦𝑦 = 𝑚𝑦𝑧 = 𝑚𝑧𝑧 = 0                  (16b) 
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where μ is shear modulus which is defined by Eq. (7). Based on Euler-Bernoulli beam theory, the 

elastic strain energy (Ui) of the FG micro beam is expressed as 

𝑈𝑖 =
1

2
∫ ∫ (𝜎𝑖𝑗  𝜀𝑖𝑗 +𝑚𝑖𝑗  𝜒𝑖𝑗)𝐴

𝑑𝐴 𝑑𝑋
𝐿

0
                     (17) 

By substituting Eqs. (15), (16), (12a) and (14) into Eq. (17), elastic strain energy (Ui) can be 

rewritten as follows 

𝑈𝑖 =
1

2
∫ [ 𝐴 (

𝜕𝑢0

𝜕𝑋
)
2
+  𝐼 (

𝜕2𝑣0

𝜕𝑋2
)
2

+
1

4
𝑙2𝜇𝐴 (

𝜕2𝑣0

𝜕𝑋2
)
2

] 𝑑𝑋
𝐿

0
                 (18) 

where A is areas of the cross section, and I is the moment of inertia. The first variation of the strain 

energy is given as 

 𝑈 = ∫ * 𝐴 (
𝜕𝑢0

𝜕𝑋
) (

𝜕 𝑢0

𝜕𝑋
) +  𝐼 (

𝜕2𝑣0

𝜕𝑋2
) (

𝜕2 𝑣0

𝜕𝑋2
) +

1

2
𝑙2𝜇𝐴 (

𝜕2𝑣0

𝜕𝑋2
) (

𝜕2 𝑣0

𝜕𝑋2
)+ 𝑑𝑋

𝐿

0
        (19) 

The potential energy of the external load can be written as 

W= ∫  (𝑋) 𝑣0(𝑋)
𝐿

𝑥 0
𝑑𝑥                    (20) 

The first variation of work done by the external applied forces is given as 

 W= ∫  (𝑋)  𝑣0(𝑋)
𝐿

𝑥 0
𝑑𝑥                     (21) 

where q is uniformly distributed transverse load. Based on the minimum total potential energy 

principle, the first variation of the total potential energy is as follows 

 П=  (𝑈 −𝑊) = 0                        (22) 

where П is the total potential energy. Substituting Eqs. (19) and (21) into Eq. (22), integrating by 

parts and setting the coefficient  𝑢0 and  𝑣0 to zero lead to the following equilibrium equations 

( 𝐼 + 𝑙2𝜇𝐴) (
𝜕4𝑣0

𝜕𝑋4
) −  = 0                               (23) 

 

2.3 Crack modeling 
 

The cracked beam is modelled using a proper modification of the classical cracked-beam 

theory consisting of two sub-beams connected through a massless elastic rotational spring shown 

in Fig. 2. The crack is assumed as perpendicular to beam surface and always remains open. The 

crack is located at a distance L1 from the left end. 

 

 

 

Fig. 2 Rotational spring model 
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Fig. 3 The geometry of the cracked circular cross section 

 

 

In the crack section, the additional strain energy is obtained by using linear fracture mechanics. 

With using the energy release rate approach, cracked section’s flexibility G can be derived from 

Broek’s approximation (Broek 1986) 

(1−𝜈2)  
2

𝐸
=
 2

2

  

  
                                      (24) 

where M is the bending moment at the cracked section, a is crack of depth, KI is the stress intensity 

factor (SIF) under mode I bending load and is a function of the geometry and the loading 

properties as well. ν indicates Poisson’s ratio. For circular cross section, the stress intensity factor 

for KI a single edge cracked beam specimen under pure bending M can be written as follow (Tada 

et al. 1985) 

  =
4 

  4
  

 

2
√    (   𝑋

 )                               (25) 

where 

 (   𝑋
 ) = √

2  
 

  
𝑡 (

  

2  
 ) 

0  23+0 1  (1−𝑠𝑖 (
  

2  
 
))

4

  𝑠(
  

2  
 
)

                   (26) 

where a is crack of depth and  𝑋
′  is the height of the strip, is shown Fig. 3, and written as 

 𝑋
′ = 2√ 2 − 𝑥2                             (27) 

where R is the radius of the cross section of the beam. 

After substituting Eq. (25) into Eq. (24) and by integrating Eq. (24), the flexibility coefficient 

of the crack section G is obtained as 

 𝐺 =
32(1−𝜈2)

𝐸  8
∫ ∫ 𝑦( 2 − 𝑥2)  2

 𝑥
0

(   𝑋
′ )

𝑏

−𝑏
 𝑑𝑦 𝑑𝑥                 (28) 

where b and ax are the boundary of the strip and the local crack depth respectively, are shown in 

585



 

 

 

 

 

 

Şeref Doğuşcan Akbaş 

Fig. 3, respectively, and written as 

 = √ 2 − ( −  )2                            (29) 

 𝑥 = √ 
2 − 𝑥2 − ( −  )                           (30) 

The bending stiffness of the cracked section kT is related to the flexibility G by 

 𝑇 =
1

 
                                    (31) 

                                 

2.4 Analytical solution of cracked microbeams 
 

It is mentioned before that, there are two different portions in the beam because of the crack. 

Hence, there are two different expressions for static deflection equation of the cracked beam. Eq. 

(23) for deflection curve is written for each portion as follows 

( 𝐼 + 𝑙2𝜇𝐴) 𝑣1
′′′′(𝑥) −  = 0,     0     1                    (32a) 

( 𝐼 + 𝑙2𝜇𝐴) 𝑣2
′′′′(𝑥) −  = 0,      1                         (32b) 

where v1(x) is the function which defines the elastic curve for first portion (Between the left 

support and the crack) and v2(x) is the function which defines the elastic curve for second portion 

(Between the crack and the right support). The above two equations have eight unknown constants 

that must get satisfied by four boundary condition at two beam ends and four following 

compatibility conditions at the cracked section. The spring connects the adjacent left and right 

elements and couples the slopes of the two beam elements at the crack location. In the massless 

spring model, the compatibility conditions enforce the continuities of the transverse deflection, 

shear force bending moment and shear force across the crack at the cracked section (x=L1), 

Continuity of the vertical displacement 

𝑣1(𝐿1) = 𝑣2(𝐿1)                               (33) 

Continuity of the bending moment 

( 𝐼 + 𝑙2𝜇𝐴) 𝑣1
  (𝐿1) = ( 𝐼 + 𝑙

2𝜇𝐴) 𝑣2
  (𝐿1)                      (34) 

Continuity of the shear force 

( 𝐼 + 𝑙2𝜇𝐴) 𝑣1
   (𝐿1) = ( 𝐼 + 𝑙

2𝜇𝐴) 𝑣2
   (𝐿1)                     (35) 

Discontinuity of the slope 

kT(𝑣1
′(𝐿1) − 𝑣2

′ (𝐿1)) =  𝑇(∆𝜃) = 𝑀1                      (36) 

where M1 is the bending moment at the cracked section. 

By integrating Eqs. (32a) and (32b) four times, the following equations are obtained with 

unknown coefficients 

For first portion (between the left support and the crack) 

( 𝐼 + 𝑙2𝜇𝐴) 𝑣1
′′′′(𝑥) =  ,     0    𝐿1                     (37a) 

( 𝐼 + 𝑙2𝜇𝐴) 𝑣1
′′′ =  𝑥 +  1                             (37b) 

( 𝐼 + 𝑙2𝜇𝐴) 𝑣1
′′ =

1

2
 𝑥2 +  1𝑥 +  2                         (37c) 
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( 𝐼 + 𝑙2𝜇𝐴) 𝑣1
′ =

1

 
 𝑥3 +

1

2
 1𝑥

2 +  2𝑥 +  3                     (37d) 

( 𝐼 + 𝑙2𝜇𝐴) 𝑣1 =
1

24
 𝑥4 +

1

 
 1𝑥

3 +
1

2
 2𝑥

2 +  3𝑥 +  4                (37e) 

For second portion (between the crack and the right support) 

( 𝐼 + 𝑙2𝜇𝐴) 𝑣2
′′′′(𝑥) =  ,     𝐿1    𝐿                    (38a) 

( 𝐼 + 𝑙2𝜇𝐴) 𝑣2
′′′ =  𝑥 +  1                            (38b) 

( 𝐼 + 𝑙2𝜇𝐴) 𝑣2
′′ =

1

2
 𝑥2 +  1𝑥 +  2                        (38c) 

( 𝐼 + 𝑙2𝜇𝐴) 𝑣2
′ =

1

 
 𝑥3 +

1

2
 1𝑥

2 +  2𝑥 +  3                    (38d) 

( 𝐼 + 𝑙2𝜇𝐴) 𝑣2 =
1

24
 𝑥4 +

1

 
 1𝑥

3 +
1

2
 2𝑥

2 +  3𝑥 +  4              (38e) 

where C1, C2, C3, C4, D1, D2, D3 and D4  are the constants of integration which is to adjusted to 

satisfy the conditions. In this paper, the elastic curve functions of the micro beams are obtained in 

explicit form for cantilever and simply supported beams. 

 

2.4.1 Cantilever beam 
For cantilever beam, the boundary conditions and evaluated constants of integration are 

expressed as 

𝑣1(0) = 0                                (39a) 

𝑣1
 (0) = 0                                 (39b) 

𝑣2
  ( ) = 0                                (39c) 

 𝑣2
   ( ) = 0                                (39d) 

C4 = 0                                 (39e) 

C3 = 0                                 (39f) 

D1 = − 𝐿                                (39g) 

D2 =  𝐿
2 2⁄                                 (39h) 

The other constants of integration are determined by using the boundary conditions of the crack 

section (x=L1) which is given Eqs. (33)-(36) 

C1 = − 𝐿                                 (40a) 

C2 =  𝐿
2 2⁄                                  (40b) 

D3 = −
1

2

(𝐸 +𝑙2𝜇𝐴) 

𝑘𝑇
 (𝐿 − 𝐿1)

2                          (40c) 

D4 =
1

2

(𝐸 +𝑙2𝜇𝐴) 

𝑘𝑇
 (𝐿 − 𝐿1)

2 𝐿1                         (40d) 

After substituting the determined constants of integration into Eq. (37e) and (38e), the elastic 

curves of the cracked cantilever microbeam are expressed as 

𝑣1(𝑥) =
𝑞

(𝐸 +𝑙2𝜇𝐴)
(
𝑥4

24
−
𝐿 𝑥3

 
+
𝐿2𝑥2

4
)                       (41a) 
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        𝑣2(𝑥) =
𝑞

(𝐸 +𝑙2𝜇𝐴)
(
𝑥4

24
−
𝐿 𝑥3

 
+
𝐿2𝑥2

4
+
1

2

(𝐸 +𝑙2𝜇𝐴)

kT
(𝐿 − 𝐿1)

2(𝑋 − 𝐿1))        (41b) 

 

2.4.2 Simple supported beam 
For simple supported beam, the boundary conditions and evaluated constants of integration are 

expressed as 

𝑣1(0) = 0                                (42a) 

𝑣1
  (0) = 0                                 (42b) 

𝑣2( ) = 0                                (42c) 

  𝑣2
  ( ) = 0                                (42d) 

C4 = 0                                 (42e) 

C2 = 0                                 (39f)  

The other constants of integration are determined by using the boundary conditions of the crack 

section (x=L1) which is given Eqs. (33)-(36) 

  C1 = − 𝐿 2⁄                               (43a) 

C3 =
𝑞𝐿3

24
+
1

2

(𝐸 +𝑙2𝜇𝐴) 

𝑘𝑇
 (𝐿 − 𝐿1)

2 𝐿1

𝐿
                      (43b) 

D1 = − 𝐿 2⁄                               (43c) 

D2 = 0                                 (43d) 

   D3 =
𝑞𝐿3

24
−
1

2

(𝐸 +𝑙2𝜇𝐴) 

𝑘𝑇
 (𝐿 − 𝐿1)

𝐿1
2

𝐿
                     (43e) 

D4 =
1

2

(𝐸 +𝑙2𝜇𝐴) 

𝑘𝑇
 (𝐿 − 𝐿1)𝐿1

2                        (43f) 

After substituting the determined constants of integration into Eqs. (37e) and (38e), the elastic 

curves of the cracked simple supported microbeam are expressed as 

𝑣1(𝑥) =
𝑞

(𝐸 +𝑙2𝜇𝐴)
(
𝑥4

24
−
𝐿 𝑥3

12
+ (

𝐿3

24
+
1

2

(𝐸 +𝑙2𝜇𝐴) 

𝑘𝑇
(𝐿 − 𝐿1)

2 𝐿1

𝐿
) 𝑥)            (44a) 

𝑣2(𝑥) =
𝑞

(𝐸 +𝑙2𝜇𝐴)
(
𝑥4

24
−
𝐿 𝑥3

12
+ (

𝐿3

24
−
1

2

(𝐸 +𝑙2𝜇𝐴) 

𝑘𝑇
(𝐿 − 𝐿1)

𝐿1
2

𝐿
) 𝑥 +

1

2

(𝐸 +𝑙2𝜇𝐴) 

𝑘𝑇
(𝐿 − 𝐿1)𝐿1

2) (44b) 

The dimensionless quantities can be expressed as 

X̅ =
𝑋 

𝐿
, Y̅ =

𝑌 

𝐿
, v̅ =

𝑣 

𝐿
, 𝜂 =

𝐿1 

𝐿
,  𝑟 =

  

𝐷
                      (45) 

where, 𝜂 is the ratio of crack location and  𝑟 is the ratio of crack depth. 

 

 

3. Numerical results 
 

In the numerical examples, the effects of the location of crack (𝜂), the depth of the crack ( 𝑟), 

aspect ratio (L/D) and the dimensionless material length scale parameter (D/l) on the static  
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Fig. 4 Deflections of the cantilever beam based on the MCST 

 

 

Fig. 5 Deflections of the simple supported beam based on the MCST 

 

 

deflection of the micro beams are presented in both the MCST and the CBT in tables and figures. 

The beam is taken to be made of epoxy (E=1,44 GPa, 𝜈 = 0 38, 𝑙 =  17 6 𝜇m ). For investigation 

of the size effect in the micro beam, the dimensionless material length scale parameter (D/l) is 

described in the MCST.    

In order to establish the accuracy of the present formulation and the computer program 

developed by the author, the results obtained from the present study are compared with the 

available results in the literature. For this purpose, static deflections of a cantilever intact beam 

with rectangular cross section which is subjected to a point load are calculated for modified couple 

stress theory and compared with those of Park and Gao (2006). It is clearly seen that the curves of 

Fig. 4 of the present study are very close to those of Fig. 3 of Park and Gao (2006). 

To further verify the present results, the static deflections shapes of a simple supported intact 

microbeam with rectangular cross section which is subjected to uniform distributed load are 

calculated using the MCST and are compared with those of Alashti and Abolghasemi (2013) by 

inserting the material and load properties used in this reference. A comparison of Fig. 5 with Fig. 6  

589



 

 

 

 

 

 

Şeref Doğuşcan Akbaş 

Table 1 Maximum dimensionless of vertical displacements edge cracked cantilever and simple supported 

micro beams with different the crack depth ratios ( 𝑟) and the dimensionless material length scale parameter 

(D/l) for distributed load q=10 μN/μm, L/D=20 and 𝜂=0.5  

 
Edge Cracked Cantilever Micro Beam 

MCST CBT 

D/l Intact  𝑟=0.1  𝑟=0.2  𝑟=0.3 Intact  𝑟=0.1  𝑟=0.2  𝑟=0.3 

2 1.6409 1.6456 1.6653 1.7145 4.0191 4.0237 4.0435 4.0927 

3 1.6297 1.6328 1.6459 1.6787 2.6794 2.6825 2.6956 2.7799 

5 1.3050 1.3069 1.3148 1.3345 1.6076 1.6095 1.6174 1.6371 

8 0.9213 0.9225 0.9274 0.9397 1.0048 1.0059 1.0109 1.0232 

10 0.7598 0.7607 0.7646 0.7745 0.8038 0.8047 0.8087 0.8185 

15 0.5224 0.5230 0.5257 0.5322 0.5359 0.5365 0.5391 0.5457 

20 0.3962 0.3966 0.3962 0.4035 0.4019 0.4024 0.4043 0.4093 

30 0.2662 0.2665 0.2678 0.2711 0.2679 0.2682 0.2696 0.2728 

50 0.1604 0.1606 0.1614 0.1633 0.1608 0.1609 0.1617 0.1637 

 
Edge Cracked Simple Supported Micro Beam 

MCST CBT 

D/l Intact  𝑟=0.1  𝑟=0.2  𝑟=0.3 Intact  𝑟=0.1  𝑟=0.2  𝑟=0.3 

2 0.1709 0.1733 0.1831 0.2077 0.4187 0.4210 0.4308 0.4555 

3 0.1698 0.1713 0.1779 0.1943 0.2791 0.2806 0.2872 0.3036 

5 0.1359 0.1369 0.1408 0.1507 0.1675 0.1684 0.1723 0.1822 

8 0.0960 0.0966 0.0990 0.1052 0.1047 0.1052 0.1077 0.1139 

10 0.0791 0.0796 0.0816 0.0865 0.0837 0.0842 0.0862 0.0911 

15 0.0544 0.0547 0.0560 0.0593 0.0558 0.0561 0.0574 0.0607 

20 0.0413 0.0415 0.0425 0.0449 0.0419 0.0421 0.0431 0.0455 

30 0.0277 0.0279 0.0285 0.0302 0.0279 0.0281 0.0287 0.0304 

50 0.0167 0.0168 0.0172 0.0182 0.0167 0.0168 0.0172 0.0182 

 

 

of Alashti and Abolghasemi (2013) shows that the present results are close to those of Alashti and 

Abolghasemi (2013). 

In order to investigate the size effect and the crack depth ratios ( 𝑟 ), the maximum 

dimensionless vertical displacements of edge cracked cantilever and simple supported micro 

beams are presented with different the crack depth ratios ( 𝑟) and the dimensionless material 

length scale parameter (D/l) for MCST and CBT for distributed load q=10 μN/μm, L/D=20 and 

𝜂=0.5 in Table 1.    

As seen from Table 1, with the increase in the crack depth, the displacements increase, as 

expected. This is because by increasing the crack depth ratio, the beam becomes flexible. It can be 

noticed that the results predicted by the MCST are always smaller than those of the CBT. Further, 

the difference between the two results is remarkable for thin microbeams with D/l <10. Also, it is 

seen from Table 1 that with the decrease in the crack depth, the difference between the results of 

the MCST and CBT decrease considerably. It shows that an increase in the D/l ratio leads to a 

decline on effects of size effect and difference between the results of MCST and CBT diminishes  
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Table 2 Maximum dimensionless vertical displacements of edge cracked cantilever and simple supported 

micro beams with different the crack locations (𝜂) and the dimensionless material length scale parameter 

(D/l) for distributed load q=10μN/ μm, L/D=20 and  𝑟=0.3 

 
Edge Cracked Cantilever Micro Beam 

MCST CBT 

D/l Intact 𝜂=0.5 𝜂=0.3 𝜂=0.1 Intact 𝜂=0.5 𝜂=0.3 𝜂=0.1 

2 1.6409 1.7145 1.8429 2.0702 4.0191 4.0927 4.0191 4.4483 

3 1.6297 1.6787 1.7643 1.9159 2.6794 2.7284 2.8140 2.9656 

5 1.3050 1.3345 1.3858 1.4767 1.6076 1.6371 1.6884 1.7793 

8 0.9213 0.9397 0.9718 1.0286 1.0048 1.0232 1.0553 1.1121 

10 0.7598 0.7745 0.8002 0.8456 0.8038 0.8185 0.8442 0.8897 

15 0.5224 0.5322 0.5493 0.5797 0.5359 0.5457 0.5628 0.5931 

20 0.3962 0.4035 0.4164 0.4391 0.4019 0.4093 0.4221 0.4448 

30 0.2662 0.2711 0.2797 0.2948 0.2679 0.2728 0.2814 0.2966 

50 0.1604 0.1633 0.1685 0.1776 0.1608 0.1637 0.1688 0.1779 

 

 

Edge Cracked Simple Supported Micro Beam 

MCST CBT 

D/l Intact 𝜂=0.5 𝜂=0.3 𝜂=0.1 Intact 𝜂=0.5 𝜂=0.3 𝜂=0.1 

2 0.1709 0.2077 0.1899 0.1736 0.4187 0.4555 0.4374 0.4213 

3 0.1698 0.1943 0.1823 0.1715 0.2791 0.3036 0.2916 0.2809 

5 0.1359 0.1507 0.1434 0.1370 0.1675 0.1822 0.1749 0.1685 

8 0.0960 0.1052 0.1007 0.0966 0.1047 0.1139 0.1093 0.1053 

10 0.0791 0.0865 0.0829 0.0797 0.0837 0.0911 0.0875 0.0843 

15 0.0544 0.0593 0.0569 0.0548 0.0558 0.0607 0.0583 0.0562 

20 0.0413 0.0449 0.0431 0.0415 0.0419 0.0455 0.0437 0.0421 

30 0.0277 0.0302 0.0290 0.0279 0.0279 0.0304 0.0292 0.0281 

50 0.0167 0.0182 0.0175 0.0168 0.0167 0.0182 0.0175 0.0169 

 

 

for D/l > 30. 

In Table 2, the maximum dimensionless vertical displacements of edge cracked cantilever and 

simple supported micro beams are presented with different the crack locations (𝜂) and the 

dimensionless material length scale parameter (D/l) for MCST and CBT for distributed load 

q=10μN/μm, L/d=20 and  𝑟=0.3.    

It is seen from Table 2 that when the crack locations get closer to the left end of the beam, the 

displacements increase for cantilever beam. This is because the crack at the left end of the beam 

has a most severe effect in the cantilever beam. Whereas, the crack locations get closer to the 

midpoint of the beam, the displacements increase for simple supported beam because the crack at 

the midpoint of the beam has a most severe effect for simple supported beam. As stated before, the 

material parameter has a very important role on the static behavior of the edge cracked micro 

beams, and it should be considered in the static and dynamic analysis of micro beams. Also, it is 

believed that the tabulated results will be a reference with which other researchers can compare 

their results. 
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Fig. 6 Maximum vertical displacements of edge cracked cantilever micro beam with different the  𝑟 and 

the L/D) for q=10μN/μm and 𝜂=0.5 

 

 

Fig. 7 Maximum vertical displacements of edge cracked simple supported micro beam with different the 

 𝑟 and the L/D for q=10μN/μm and 𝜂=0.5 

 

 

Also it is seen from Table 2 that with change the crack locations, the results of the MCST are 

more sensitive than the results of the CBT. This is because the using the classical cracked-beam 

theory. On the other hand, increase in the D/l ratio, the difference between results of the MCST 

and CBT decrease considerably for different ratio of the crack locations (𝜂). It is observed from 

tables that for the higher ratio of D/l, the classical cracked-beam theory can be used for the cracked 

problems of the microbeams. 

In Figs. 6 and 7, the effect of the aspect ratios (L/D) and the crack depth ratios ( 𝑟) on the  
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Fig. 8 Maximum vertical displacements of edge cracked cantilever micro beam with different the 𝜂 and 

the L/D) for q=10μN/μm and  𝑟=0.3 

 

 

Fig. 9 Maximum vertical displacements of edge cracked simple supported micro beam with different the 

𝜂 and the L/D for q=10μN/μm and  𝑟=0.3 

 

 

maximum the vertical displacements of the micro beams are shown for q=10μN/ μm and 𝜂=0.5 for 

cantilever and simple supported beams, respectively. Also, the relationship between the L/D and 

D/l is investigated in Figs. 6 and 7. 

In Figs. 8 and 9, the effect of the aspect ratio and the crack location ratios (𝜂) on the maximum 

the vertical displacements of the micro beams are shown for q=10μN/ μm and  𝑟 =0.3 for 
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cantilever and simple supported beams, respectively.  

As seen from Figs. 6, 7, 8 and 9, the material length scale parameter has no effect on the 

displacements for the classical beam theory, which is unable to capture the size effect. However, 

the displacements of the non classical beam model increases as the material length scale parameter 

increases. The static deflections estimated by the CBT is always larger than those of the MCST. It 

is observed from figures that the difference between the two models is significant when the ratio of 

L/D increases for the smaller ratio of D/l. Whereas, with increase in the ratio of L/D, the difference 

between the static deflections of the MCST and CBT decrease considerably for the higher ratio of 

D/l. Also, it is seen from Figs. 6, 7, 8 and 9 that with increase in values of the crack depth and 

locations, the deflections increase in small amounts with all values of the ratio of L/D.    

Figs. 10 and 11 display the crack depth ratios ( 𝑟) on the deflected shape of the beams for the 

crack location ratio 𝜂=0.5 and for q=10μN/ μm for different ratios of L/D and D/l for cantilever 

and simple supported micro beams, respectively. 

It is observed from Figs. 10 and 11 that with increase in the ratio of D/l, the effects of the 

cracks on the static responses of the micro beams are decrease significantly. With increase in the 

ratio of D/l, the difference among the crack depth ratios diminishes. It shows that the material 

parameter has a very important role on the effects of the cracks on the static responses of the micro 

beams. Also, it is seen from Figs. 10 and 11 that when the ratio of L/D increases, the effects of the  

 

 

 

Fig. 10 The effect of the  𝑟 on the deflected shape of the cantilever micro beam for (a) L/D=5, D/l=2, 

(b) L/D=30, D/l=2, (c) L/D=5, D/l=10, (d) L/D=30, D/l=10 
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Fig. 11 The effect of the  𝑟 on the deflected shape of the simple supported micro beam for (a) L/D=5, 

D/l=2, (b) L/D=30, D/l=2, (c) L/D=5, D/l=10, (d) L/D=30, D/l=10 

 

 

Fig. 12 The effect of the 𝜂 on the deflected shape of the cantilever micro beam for (a) L/D=5, D/l=2, (b) 

L/D=30, D/l=2, (c) L/D=5, D/l=10, (d) L/D=30, D/l=10 
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Fig. 13 The effect of the 𝜂 on the deflected shape of the simple supported micro beam for (a) L/D=5, 

D/l=2, (b) L/D=30, D/l=2, (c) L/D=5, D/l=10, (d) L/D=30, D/l=10 

 

 

crack depth ratios on the static responses of the micro beams are decrease significantly.      

In Fig. 12 and 13, the crack location ratios (𝜂) on the deflected shape of the micro beams for 

the crack depth ratio  𝑟 = 0 3 and for q=10μN/ μm for different ratios of L/D and D/l for 

cantilever and simple supported beams, respectively. 

As seen from Figs. 12 and 13 that with increase in the ratio of D/l and L/D, the difference 

among the crack location ratios decreases. It is clearly seen from Figs. 10-13 that, the geometry 

properties of the micro beam play an important role in on the effects of the cracks on the static 

responses of the micro beams and distinguish the difference between the results of MCST and 

CBT. It is observed from figures that after a certain value of the ratio of D/l and L/D, the classical 

cracked-beam model can be used for the cracked problems of the micro beams. 

 

 

4. Conclusions 
 

This paper examines the static bending of edge cracked micro beams analytically based on 

MCST. The micro beam is modelled in consist of the material length scale parameter which take 

into account the size effect. The cracked micro beam was modelled using a rotational spring which 

promotes a discontinuity in the slope. The elastic curve functions of the edge cracked micro beams 

are obtained in explicit form for cantilever and simply supported beams. The elastic deflections of 

the edge cracked micro beams are calculated and discussed for different crack positions, different 

lengths of the micro beam, different length scale parameter, different crack depths, and some 

typical boundary conditions. In order to establish the accuracy of the present formulation and 
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results, the deflections are obtained, and compared with the published results available in the 

literature. Good agreement is observed. 

The following conclusions are reached from the obtained results: 

(1) It is found that the deflections of the microbeam by the CBT are always larger than those by 

the MCST. 

(2) The geometry properties and the material length scale parameter have a very important role 

on the static behavior of the edge cracked microbeams. 

(3) With increase in the material length scale parameter leads to a decline on effect of size 

effect, the crack, and difference between the results of MCST and CBT. 

(4) The classical cracked-beam theory can be used for the cracked problems of the microbeams 

for the higher ratio of D/l. 

(5) With increase in values of the crack depth and locations, the deflections increase in small 

amounts with all values of the ratio of L/D.    

(6) For the smaller ratio of L/D, the MCST must be used instead of the CBT. 

(7) MCST displays important size-dependence in small values of the L/D and D/l ratios. 

(8) It is believed that the tabulated results will be a reference with which other researchers can 

compare their results. 
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