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Abstract.  This research develops a finite element code for the transient dynamic analysis of tapered fiber 

reinforced polymer (FRP) poles with hollow circular cross-section and flexible joints used in power 

transmission lines. The FRP poles are modeled by tapered beam elements and their flexible joints by a 

rotational spring. To solve the time equations of transient dynamic analysis, precise time integration method 

is utilized. In order to verify the utilized formulations, a typical jointed FRP pole under step, triangular and 

sine pulses is analyzed by the developed finite element code and also ANSYS commercial finite element 

software for comparison. Thereafter, the effect of joint flexibility on its dynamic behavior is investigated. It 

is observed that by increasing the joint stiffness, the amplitude of the pole tip deflection history decreases, 

and the time of occurrence of the maximum deflection is earlier. 
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1. Introduction 
 

The unique characteristics of fiber reinforced polymers (FRP) such as their high strength-to-

weight ratio, resistance to corrosion, high energy absorption, and the lower transportation, 

installation and maintenance costs due to their light weight, made them suitable to use for 

manufacturing power transmission poles as a replacement of conventional materials (wood, 

concrete and steel). FRP transmission poles are made of polymer matrix with reinforcing fibers, 

mostly fabricated by filament winding technique. Polyester, vinylester or epoxy is mainly used as 

matrix and E-glass, S-glass, aramid or carbon fibers as reinforcement (Ibrahim et al. 2000). 

In contrast with conventional steel/wood transmission poles, there are little advanced design 

and analysis approaches focused on the FRP poles (Metiche and Masmoudi 2012, Metiche et al. 

2009). In general, transmission poles are mainly subjected to dynamic cantilever bending due to 

wind gusts and cable unilateral failure, or may also be subjected to vehicle impacts. The poles are 
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mostly tapered and thin-walled members. Many studies are performed on the dynamic behavior of 

thin-walled sections made of steel as well as composite materials, but only a few are on tapered 

sections. In fact, the previous studies are concerned with the dynamic behavior of tapered 

members made from homogeneous and isotropic materials (Polyzois et al. 1998). Because of the 

complexity of material properties, layer lay-ups, fiber orientations, tapered shape, and combination 

of loads of FRP transmission poles, the pure analytical method is incapable of providing 

acceptable solutions effectively, but the numerical analysis methods (specially the finite element 

method) are proved to be more efficient (Lin 1995). Navaratna et al. (1968) are among the early 

researchers to use the finite element method (FEM) to analyze the stability of the shells of 

revolution. The approach used by them to develop the geometric stiffness matrix is followed by 

Gould and Basu (1977) for the linear buckling and the incremental deformation analysis of 

rotational shells. Zabihollah and Ganesan (2010) conducted the buckling analysis of laminated 

tapered composite beams using a higher order finite element formulation that ensures the 

continuity of the stress distribution through the thickness of a laminate as well as across the 

element interfaces. There are also other researches dealing with the static and stability analysis of 

the thin-walled FRP poles by FEM (Fam et al. 2010, Polyzois and Raftoyiannis 2009, Saboori and 

Khalili 2011). 

Both the analytical methods and FE techniques have also been employed for the transient 

response analysis of various engineering problems (for example see (Bae et al. 2016, Han et al. 

2016)). Mabie and Rogers (1972, 1974) presented a closed-form solution to the free vibration of an 

isotropic double-tapered cantilever beam with rectangular cross-section and end mass. The beam 

was tapered linearly in the horizontal and vertical planes simultaneously, with the taper ratio in the 

horizontal plane equal to that in the vertical plane. Noor et al. (1991) assessed a group of 

computational methods for multilayered composite cylinders. The finite element models they 

surveyed are mostly two or three-dimensional elements. Khdeir et al. (1989) studied the vibration 

and buckling of cross-ply circular cylindrical shells with various shell theories. The different 

approaches of inclusion of transverse shear strains were discussed. Caracoglia and Jones (2007) 

performed a numerical and experimental study of vibration mitigation for highway tapered 

aluminum poles. The study was performed in order to identify the potential causes associated with 

the failures. It was concluded that, although the poles were designed according to standard 

specifications, an unusual event, in which the combination of wind and frozen precipitation was 

observed, could be responsible for large vibration amplitudes. Xiang et al. (2011) analyzed the free 

vibration characteristics of laminated composite cylindrical and spherical shells by the first-order 

shear deformation theory and a meshless global collocation method based on thin plate spline 

radial basis function. Polyzois et al. (1998) investigated the free vibration of tapered GFRP poles 

using tapered beam element. In their work, the natural frequency and period of the fundamental 

flexural vibration mode of the pole were computed for various cases of lamination angle, taper 

ratio, and mass at the top. Raftoyiannis and Polyzois (2007) surveyed the effect of semi-rigid 

connections on the free vibration of tapered GFRP poles by FEM. In their work, modal analysis 

was performed for design purposes to obtain the natural frequency and period of poles with 

various geometrical characteristics and material lay-up, as well as the effect of connection 

flexibility. Experimental results on the free vibration behavior of jointed composite poles were also 

presented. Finite element method was used by Ibrahim and Polyzois (1999) to analyze the cross-

section ovalization behavior of FRP poles under a bending load. Based on their study, 

circumferential layers tend to increase the critical ovalization load of FRP poles. In the work of 

Caracoglia (2007), two problems are analyzed: the susceptibility to across-wind galloping-type 
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vibration associated with the deposit of frozen-precipitation on the surface of the poles or the 

luminaire, installed at the top of the unit; and the influence of eccentric aerodynamic loading at the 

level of the luminaire on the dry-unit buffeting response. Caracoglia and Velazquez (2008) also 

compared the dynamic performance of steel, aluminum and GFRP light poles through 

experimental testing. The comparison of the performances was based on frequency and damping 

ratios corresponding to the first and the second-mode vibrations. 

The transient dynamic analysis of monolithic tapered FRP poles was investigated using FEM in 

an earlier research conducted by the authors (Khalili and Saboori 2010). Since for ease of 

manufacturing, transportation and erection, long transmission poles are produced modular, this 

paper explores the transient dynamic behavior of those FRP poles having flexible joints. In the 

current study, to analyze the dynamic response of tapered FRP poles, tapered beam finite element 

model is employed. It is assumed that the material behavior is linear elastic and the laminate of the 

cross-section of the wall is symmetric or anti-symmetric angle-ply. Components of the laminate 

stiffness matrices and the equivalent moduli used in the analysis are derived from the classical 

lamination theory. In order to model flexible joints of the jointed transmission poles, a simple 

model considering the joint as a rotational spring is utilized. The time equations of transient 

dynamic analysis are solved using precise time integration method. Then, a typical FRP pole with 

an adhesive joint is analyzed by the finite element (FE) code developed based on the mentioned 

formulation and also ANSYS finite element software. Once the results obtained from the provided 

FE code for the typical jointed pole under various pulses (step, triangular and sine pulses) were 

verified through the comparison with ANSYS results, the effect of joint stiffness on the dynamic 

behavior of the tapered FRP poles with flexible joints is investigated. 

 

 

2. Effective longitudinal modulus 
 

Using the classical lamination theory, the stiffness components of each generally orthotropic 

lamina can be determined and the constitutive equation for the laminate is (Jones 1999) 
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where {N} and {M} are the force and couple moment resultants, respectively. {ε} and {κ} are the 

strains of the mid plane and the laminated plate curvatures. The stiffness coefficients Aij, Bij, and 

Dij correspond to extensional, coupling, and bending stiffness coefficients and are defined as 

follows (Jones 1999) 
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where h is the laminate thickness and ijQ  are the transformed layer stiffness components. Inverting 

Eq. (1) results in the following 
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Fig. 1 General geometry of a tapered composite pole 
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(5) 

The effective longitudinal elasticity modulus Eeff can be calculated from Eq. (5) as 

 
ha

Eeff

11

1


 

(6) 

In some references (Polyzois et al. 1998, Raftoyiannis and Polyzois 2007), an approximate 

equation has been used for the effective modulus Eeff, but Eq. (6) is the precise expression of the 

effective longitudinal modulus. 

 

 

3. Tapered beam element 
 

The general geometry of a tapered composite pole is shown in Fig. l. In order to approximate 

the dynamic behavior of the tapered poles accurately, a tapered beam finite element has been 

developed (Polyzois et al. 1998). The tapered beam element of length L and circular hollow cross- 
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Fig. 2 Coordinate system and degrees of freedom of the tapered element 

 

 

section with uniform thickness h is shown in Fig. 2. The radii at the small and the large ends are R1 

and R2, respectively. Since the cross-section is thin-walled, the cross-sectional area and the 

moment of inertia are computed by A=2πRh and I=πR3h, where the radius R varies linearly over 

the length. This implies a linear variation of the area A and a cubic variation of the moment of 

inertia I with respect to the length L. Thus, it is convenient to adopt a coordinate system x-y as 

shown in Fig. 2, in which the area and the moment of inertia are expressed as follows 

 0 0,A A x I I x   (7) 

where A0 and I0 are coefficients defined as follows 
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The shift α with respect to the coordinate origin is defined geometrically by 
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By finite element formulating the tapered beam element in flexural vibration, its stiffness and 

mass matrices, [Kf] and [Mf], are derived as (Polyzois et al. 1998) 
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and the terms of [mf] are as follows 

 4 4

,11 0

1
( )

4
fm A L      (14a) 

 3 3

,12 0

1
( ) (3ln( ) 1) (3ln 1)

9
fm A L L           (14b) 

 2 2

,13 0

1
( )

2
fm A L      (14c) 

 3 3

,14 0

1
( )

3
fm A L      (14d) 

2 2 2 2

,22 0

1
{( ) (2ln ( ) 2ln( ) 1) (2ln 2ln 1)}

4
fm A L L L                (14e) 

,23 0{( )(ln( ) 1) (ln 1)}fm A L L           (14f) 

2 2

,24 0

1
{( ) (2ln( ) 1) (2ln 1)}

4
fm A L L           (14g) 

,33 0{ln( ) ln }fm A L      (14h) 

,34 0fm A L  (14i) 

 2 2

,44 0

1
( )

2
fm A L      (14j) 

and ρ is the mass density of the composite material and E is the effective longitudinal modulus. 

Thus, the equilibrium equation for the tapered beam element in flexural mode (neglecting the 

effect of damping) can be written in the matrix form as follows 

 QKM ff   ][][ 
 

(15) 

where   is the nodal displacement vector and  Q
 
is the nodal force vector. 

In the case of symmetric laminate, all the Bij terms, and in the case of anti-symmetric angle-ply 

laminate, all the Bij terms except B16 and B26 are equal to zero. Hence, for these two types of 
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laminates, bending-extension coupling vanishes (it is an approximate assumption for anti-

symmetric angle-ply laminate) and the axial vibration is uncoupled from the flexural vibration. 

Since the flexural vibration of the transmission poles is more important, in the present numerical 

investigation of the transient dynamic analysis, for the symmetric or anti-symmetric angle-ply 

laminates, the flexural mode is only evaluated. Thus, the nodal displacement vector of the tapered 

element in the flexural mode is 
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4. Flexible connection model 
 

In order to ease in manufacturing, transportation and installation, long transmission poles are 

produced modular and then are connected together. The joint type among the parts of the long 

poles can be adhesive, or by screw or a combination of mechanical and adhesive bonds. In the 

current research work, a joint technique developed at the University of Manitoba of Canada 

(Raftoyiannis and Polyzois 2007) has been considered which is constructed by connecting two 

tapered cylindrical parts, utilizing an overlapping part of the jointed elements with length l, as 

shown in Fig. 3.  

 

 

 
Fig. 3 The joint geometry 
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Fig. 4 Joint kinematics and shear stress distribution due to bending 

 

 

A thin film with the thickness of tj of resin (West System Epoxy 105 with hardener 206, in the 

mentioned case) is applied to the interface which after curing, acts as an adhesive to hold the two 

parts together. All member forces are transferred through the joint in the form of shear stresses τ, 

acting on the joint surfaces. In order to model the bending stiffness of the joint, a relation between 

shear strains γ of the interface resin and the joint rotation β is given by 

  jj Rt 
 

(17) 

Rj is the radius of the interface at the joint position, which is shown in Fig. 4. The infinitesimal 

force dF in the adhesive joint due to shear stresses from the bending of the pole which is acting on 

the joint circumference, is 

  dcosd jlRF 
 

(18) 

and since the moment arm is Rjcosφ, the corresponding moment dM is 

  dcosdcosd 22
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(19) 

Introducing Eq. (18) as well as the stress-strain relation τ=Gγ (with G being the shear modulus 

of the applied resin) into Eq. (19) and integrating over the circumference, gives the following 

equation 
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Considering the joint as a rotational spring, the term in the parenthesis is the spring constant cf, 

corresponding to the bending stiffness of the joint that is (Raftoyiannis and Polyzois 2007) 
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Finally, the dimensionless rotational spring stiffness Cf, is introduced as follows: 
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where the denominator in Eq. (22) corresponds to the mean bending stiffness of both segments at 

the joint position. 
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5. Precise time integration method 
 

Neglecting the damping effect, the forced vibration equation is (Rao 1995) 

 )(][][ tQKM  
 

(23) 

where [M] and [K] are the total mass and stiffness matrices, respectively and  , is the 

displacement vector. 

One of the highly precise methods for solving the time equations of dynamic analysis is the 

precise time integration method (Zhong and Williams 1994). This method cannot only give the 

precise numerical results, but also has an explicit integral scheme and unconditional stability. 

Assume the following 

 ][Mp 
 

(24) 

The second-order differentials in Eq. (23) can be transformed into the first-order form as 
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By considering Eq. (25), it is possible to obtain its general solution 
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where T=eHλ. 

Considering that the nonlinear term is approximately linear within a very small time step (tk, 

tk+1) (Tang 2008) 
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Using the straight line equation within the time step 
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Thus 
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Now, substituting Eq. (30) into Eq. (29) gives the precise time integration equation as follows 
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6. Numerical results and discussion 
 

In the numerical analysis presented in this study, to model the dynamic loads applied to the 

transmission poles, two locations on the poles are considered. One at the pole tip to model the 

tension force of the cables that may be applied dynamically due to the factors such as wind gusts 

or cable unilateral failure, and the other at about 80 cm from the pole base. The second location for 

the application of the load is adopted, because the transmission poles are mainly located near the 

streets and roads, and they are subjected to impact of the passing vehicles. 

The impulse loads considered in the current study are step, triangular and sine pulses whose 

time functions are as follows (T1 is the fundamental period of the pole) 
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6.1 Impulse loads at the pole tip 
 

By combining the formulation of the tapered beam element, the flexible connection model and 

the precise time integration method, a computer code for the transient dynamic analysis of jointed 

FRP poles (neglecting the damping effect) is provided by MATLAB 7.1 software. Fig. 6 shows the 

algorithm of the developed FE code. 

A typical jointed pole named as pole “A” with the geometric characteristics listed in Table 1, 

made from E-glass/polyester having the fiber volume fraction of 0.65 (whose material properties 

are available in Table 2), with [(-10/10)2] lay-up with respect to the pole axis, is considered. This 

pole contains a flexible joint at the half of its length whose characteristics are found in Table 3. At 

the first step, the pole “A” subjected to step, triangular and sine pulses having a maximum force of 

1 kN (Fig. 5) is analyzed by the present finite element model (the fundamental period of the 

typical pole is 0.156 sec). 
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Fig. 5 Step, triangular and sine pulses applied at the tip of the typical pole “A” 

 

 

Fig. 6 The algorithm of the developed FE code using MATLAB software 

 
Table 1 Geometric characteristics of the jointed pole “A” 

Number 

of laminae 

Wall 

thickness, 

t (mm) 

Base diameter 

of bottom part, 

d2 (mm) 

Tip diameter 

of top part, 

d1 (mm) 

Tapered 

angle of 

each part 

Material type 

Length of 

each part 

(mm) 

4 2.4 210 119 0.477˚ 

E-glass/polyester 

(with fiber volume fraction 

= 0.65) 

3050 
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Table 2 Properties of E-glass/polyester unidirectional lamina with fiber volume fraction Vf=0.65 (Polyzois et 

al. 1998) 

Density, ρ 

(kg/m3) 

Major Poisson’s 

ratio,νLT 
Shear modulus, 

GLT (GPa) 

Transverse modulus, 

ET (GPa) 

Longitudinal modulus, 

EL (GPa) 

1904 0.235 5.17 13.30 48 

 
Table 3 Joint characteristics (Raftoyiannis and Polyzois 2007) 

Joint length 

(mm) 

Adhesive 

thickness, 

tj (mm) 

Adhesive: 

West System Epoxy 105 with hardener 206 

Density 

 (kg/m3) 

Poisson’s 

ratio 

Tensile strength 

(MPa) 

Elasticity modulus 

(GPa) 

305 0.45 1180 0.3 50.47 3.172 

 

 

Fig. 7 Joint region of the jointed pole “A” for ANSYS model 

 

 

In order to validate the results obtained from the present model, the jointed pole with total 

length of 5795 mm was also analyzed by ANSYS 11.0 commercial finite element software.  

In the ANSYS model, each part of the pole is discretized by the total number of 2000 elements 

of the type SHELL99 and the joint adhesive region by 400 elements of the type SOLID95. 

Surface-to-surface contact from bonded type is defined in the software between the adhesive outer 

surface and the pole inner surface for the upper part, and also between the adhesive inner surface 

and the pole outer surface for the lower part, using CONTACT174 and TARGET170 elements 

(ANSYS 2007) (Fig. 7). Then, a cohesive zone material model is added to the contact elements 

material properties, which has only provided with the new versions of ANSYS software (version 

11.0 and the newer ones). For comparison, the deflection of the pole tip (the maximum deflection) 

within the applied duration of each pulse, for both the tapered beam finite element and the ANSYS 

models, are shown in Figs. 8 to 10. Using a computer with a 3.06 GHz processor and 1.5 gigabytes 

of physical memory, in the case of triangular impulse loading, the run time of the ANSYS model 

is computed as 4422 sec (about 74 minutes), while the analysis duration of the provided code by 

the tapered element model is computed to be only 2 sec. 

As it is observed in Figs. 8 to 10, there is an excellent agreement between the presented 

formulation and the ANSYS models. The maximum discrepancy within the duration of the applied 
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Fig. 8 Tip deflection history of the pole “A” with [(-

10/10)2] lay-up under step pulse at the pole tip 

Fig. 9 Tip deflection history of the pole “A” with [(-

10/10)2] lay-up under triangular pulse at the pole tip 

 

  

Fig. 10 Tip deflection history of the pole “A” 

with [(-10/10)2] lay-up under sine pulse at the 

pole tip 

Fig. 11 Comparison of tip deflection history of 

the pole “A” with [(-10/10)2] lay-up under 

various pulses at the pole tip 

 

 

pulse occurred in the case of step pulse and it is 11%. For other cases, the discrepancy is less. The 

other conclusion obtained from these figures is that the maximum deflection of the pole in the case 

of step pulse is greater than the maximum deflection obtained in the cases of triangular and sine 

pulses, having the same maximum force amplitude. This is because, the area under the force-time 

diagram which is a measure of the impact quantity, is greater for the step pulse compared to the 

other two pulses (Fig. 5). In addition, the trends of the tip deflection history of the pole under the 

triangular and the sine pulses are similar to each other, but are different from the step pulse. The 

maximum deflection corresponding to the sine pulse is greater than the maximum deflection of the 

triangular pulse. These results are shown in Fig. 11. The maximum deflection of the pole occurred 

at earlier time for step pulse compared to the other pulses. It is exactly at the half time of the 

impulse duration. 

In order to evaluate the influence of the joint stiffness on the dynamic response of the poles, the  
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Fig. 12 Tip deflection history of the pole “A” with [(-10/10)2] lay-up under triangular pulse at the 

pole tip, for various dimensionless joint stifnesses 

 

  

Fig. 13 Deflection history of the pole “A” with  

[(-10/10)2] lay-up under step pulse applied at the 

height of 80 cm from the base 

Fig. 14 Deflection history of the pole “A” with 

[(-10/10)2] lay-up under triangular pulse applied at 

the height of 80 cm from the base 

 

 

tip deflection history of the pole “A” with [(-10/10)2] lay-up, under triangular pulse with the 

maximum load of 1 kN is illustrated for various dimensionless flexural stiffnesses of the joint in 

Fig. 12. It is observed that by increasing the joint stiffness, the amplitude of the pole tip deflection 

history decreases and the time of occurrence of the maximum deflection is earlier; as for the case 

Cf =∞, which indicates the continuous pole, the pole tip deflection amplitude has the minimum 

value. 

 

6.2 Impulse loads at the height of 80 cm from the base 
 

To model the probable impacts imparted to the transmission poles by passing vehicles, the  
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Fig. 15 Deflection history of the pole “A” with [(-10/10)2] lay-up under sine pulse applied at the 

height of 80 cm from the base 

 

 

location of the application of various pulses is considered at the height of 80 cm from the base. 

Thus, the typical pole “A” with [(-10/10)2] lay-up, subjected to step, triangular and sine pulses with 

the maximum load of 30 kN, applied to the pole at the height of 80 cm from the base, is analyzed 

and the deflection histories of the entire pole are illustrated in Figs. 13, 14 and 15, respectively. 

Comparing these figures with Figs. 8 to 10 reveals that if the location of the applied impact load is 

at the distance of 80 cm from the base, a greater impulse load (30 times), can create the same 

maximum deflection as to apply impulse load at the pole tip. It is observed that by applying the 

load at the distance of 80 cm from the base, the maximum deflection occurs at the pole tip. The 

maximum deflection occurs for step, sine, and then triangular pulses, respectively. 

It is to be noted that in the case of step pulse loading at the height of 80 cm from the pole base, 

at some of the time intervals, the maximum deflection occurs in a position other than the pole tip 

(Fig. 13). That is, applying the step pulse causes the pole to vibrate, while the second mode shape 

is dominant at some of the time intervals, unlike the application of the impulse load at the tip, in 

which the pole vibrates with the fundamental mode shape as the dominant mode shape. 

 

 

7. Conclusions 
 

For transient dynamic analysis of the jointed FRP poles, a computer code was provided using a 

tapered beam element, a simple model considering the pole joint as a rotational spring and precise 

time integration method. Thereafter, the tip deflection history of a typical FRP pole with a flexible 

joint at the half of its length, under step, triangular and sine pulses were obtained from both the 

provided FE code and ANSYS model. Comparison of the resulted transient responses represented 

a good agreement between them. However, the analysis duration of the tapered beam finite 

element model found to be significantly less than the ANSYS run time. The results of the provided 

FE code indicated that the maximum deflection of the pole due to the step pulse is the greatest. In 

addition, the maximum deflection due to the sine pulse is greater than the maximum deflection 

corresponding to the triangular pulse, with identical peak value of the applied load. It was also 

observed that the jointed poles with stiffer joints have the smaller maximum deflection amplitudes. 
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Moreover, it was found that the deflection amplitude of the pole tip due to the applied impulse 

load at the height of 80 cm from the pole base is much less compared to the amplitude of the tip 

deflection for an impulse load with the same peak value applied to the pole tip. In the case of 

applied impulse at the height of 80 cm from the base, the maximum deflection occurs at the top of 

the pole and it is for step pulse. Furthermore, applying the impulse load at the height of 80 cm 

causes the pole to vibrate in a mixed mode condition in which the second mode shape is dominant 

at some of the time intervals. 
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