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Abstract.  A circular plate with constant thickness, finite radius and stiff edge lying on an elastic half-

space is considered. The half-space consists of a soft functionally graded (FGM) layer with arbitrary varying 

elastic properties and a homogeneous elastic substrate. The plate bends under the action of arbitrary 

axisymmetric distributed load and response from the elastic half-space. A semi-analytical solution for the 

problem effective in whole range of geometric (relative layer thickness) and mechanical (elastic properties 

of coating and substrate, stiffness of the plate) properties is constructed using the bilateral asymptotic 

method (Aizikovich et al. 2009). Approximated analytical expressions for the contact stresses and 

deflections of the plate are provided. Numerical results showing the qualitative dependence of the solution 

from the initial parameters of the problem are obtained with high precision. 
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1. Introduction 
 

The problem of plate bending on an isotropic homogeneous elastic foundation was considered 

by Gorbunov-Posadov (1940). The solution was constructed by providing the contact stresses in 

the form of a power series with subsequent determination of the coefficients of expansion from 

infinite system of algebraic equations. The similar problem was also solved using collocation 

method (Shatskih 1972, Aleksandrov and Salamatova 2009) and approach based on 

approximations of the integral equations kernels by orthogonal polynomials (Aleksandrov et al. 

1973, Bosakov 2008). The convergence of the solution to the exact one was not investigated. 

Singular and regular asymptotic methods were used to construct solutions effective for big or 
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small values of the geometric parameter of the problem (Aleksandrov 1973, Aleksandrov and 

Salamatova 2009, Aleksandrov and Solodovnik 1974). Most of the known solutions are applicable 

only for rigid plates. And very few, particularly those described in (Aleksandrov 1973, Bosakov 

2008, Aleksandrov and Solodovnik 1974) are applicable either for flexible or rigid plates. There 

are a number of recent investigations in this area (Silva et al. 2001, Guler 2008, Pak et al. 2008, 

Selvadurai et al. 2010). Woodward and Kashtalyan (2011, 2012) considered only specific 

harmonic loading of a rectangular plate that makes it possible to construct an analytical solution of 

the three-dimensional problem. 

Many modern researches focus on elasticity problems for a functionally graded materials and 

coatings (Guler 2008, Guler et al. 2012, Liu et al. 2008). Often some special assumptions about 

the variation of elastic properties in the layer are accepted to make it possible obtaining analytical 

solutions of the corresponding differential equations. Let us also mention the analysis of 

deformations of plates and shells made of functionally graded materials within the first-order shear 

deformable plate theory (Altenbach and Eremeyev 2008, 2009, Arefi and Allam 2015) and higher-

order plates and shells models (Arciniega and Reddy 2007). Plasticity and impact analysis of 

circular plates (Babaei et al. 2015 and others) are also of high practical interest. 

In this work we construct an approximated analytical solution for problem of bending of a plate 

in unified form, applicable for any values of geometric and mechanical properties. The problem 

considered in the paper is of practical interest in modeling of the interaction of thin-walled 

elements of designs, the foundations of buildings, tank bottoms, sunk wells, etc. as well as in 

modeling nano- or macro- sized thin films. Our approach based on the bilateral asymptotic method 

(Aizikovich et al. 2009) of solving a certain type of dual integral equations, in particular, allows to 

consider arbitrary type of variation of elastic moduli in depth, any thickness of the coating and 

value of the plate stiffness. 

 
 
2. Mathematical formulation of the problem 

 
Circular plate of radius R and constant thickness h lying on the boundary of an elastic half-

space, consisting of inhomogeneous layer (coating) with thickness H and homogeneous half-space 

(substrate). We use a cylindrical coordinate system r, φ, z, where z axis is perpendicular to the 

surface of the coating and passes through the center of the plate. Plate is bent under the action of 

an axisymmetric distributed load p*(r) and response from the elastic layer. 

Young‟s modulus E and Poisson‟s ratio ν of the foundation vary with depth according to the 

following 
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where E1(z), ν1(z) are arbitrary continuously differentiable functions. Hereafter, indexes 1 and 2 

correspond to the coating and to the substrate, respectively. 

The layer and the substrate are assumed to be glued without sliding 

         ,  , 21212121   : , uuwwHz zzzrzr    (2) 

Outside of the punch, the surface is traction-free 
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The stresses and the displacements vanish at r→∞ and z→∞. 

The quantities of primary interest are the contact stresses under the plate 
0

)(


 
zzrq  , the 

deflections of the plate w
*
(r), radial and tangential torques Mr, Mφ. 

We consider two types of the boundary conditions on the edges of the plate 
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First boundary condition describe quite stiff contours of the plate. It may arise in the calculation of 

tank bottoms, sunk wells, etc. (Tseitlin 1969, Selvadurai et al. 2010). 
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Such boundary conditions arise in modeling foundations, free-lying plates, etc. 

We use the following notations: νplate is the Poisson‟s ratio of the plate, 
dr

d

rdr

d 1
2

2

   is the 

Laplace operator. Second boundary condition in (4), (5) means absence of a shear force Pr. 

 
 
3. Solution of the problem 

 
3.1 Dual integral equation 

 
To reduce the problem to the solution of the dual integral equation we use the classical 

approach based on the Hankel‟s integral transformations technique 
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Using Eqs. (7) we rewrite equation Eq. (6) in the form 
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Substituting Eqs. (5) into Eq. (8) we get 
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Let us introduce the dimensionless variables and functions: 
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where D is the cylindrical stiffness of the plate, parameter s is the dimensionless bending stiffness 

of the plate. Function L(u) is the kernel transform of the integral equation, independent of the 

applied loading p*(r) and characterizes the compliance of the elastic foundation. The kernel 

transform L(u) is equal to that appearing in the contact problem of the indentation of a rigid stamp 

(Aizikovich and Aleksandrov 1984). 

Omitting the primes in Eq. (9) we get the Fredholm integral equation of the first kind over the 

function q(ρ) 
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Eq. (10) is equivalent to the following dual integral equation 

 
























                       
0

0

0

0

1  ,0)(J)(

10  ),()(J)()(

rdrQ

rrswdrLQ





 (11) 

According to the Kirchhoff‟s plate model the deflection of the plate w(r) has to satisfy the 

differential equation of bending of the plate 
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3.2 Solution of the problem 

 
In the present paper we construct the solution only for a case of the plate with a stiff edge (see 

Eqs. (4)).  

We represent the deflection function in terms of series with respect to eigenfunctions of 

oscillations of a circular plate with free edges (similar to Tseitlin 1969) 
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where km are the roots of the equation J1(km)=0, and ,...2,1,0),(/J2 0  mkA mm . 
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Due to the linearity of the problem the contact stresses q(r) and it‟s Hankel transform Q(α) can 

be represented as 
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Substituting Eqs. (13) and (14) into Eq. (11) we get the dual integral equation over the function 

Qm(α) 
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Let us apply to the first equation in Eq. (15) the integral operator 
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We used the following notation 
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The kernel transform L(α) depends on the properties of the nonhomogeneous materials. In 

(Aizikovich and Aleksandrov 1982) it was shown that L(α) possesses the following properties 
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where A, B, C and D are certain constants which values depend on the material properties. It was 

shown (Aizikovich and Vasiliev 2013, Vasiliev et al. 2014) that the kernel transform L(α) can be 

precisely approximated by the expression 
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where aj and bj are certain constants obtained by approximation of the kernel transform L(α). A 

detailed description of the process of determining coefficients aj, bj (j=1...N) is described in 

(Aizikovich and Vasiliev 2013). 

It was also shown in (Aizikovich et al. 2009) that the solution of approximate dual integral 

equation resulting from replacing transform L(α) in Eq. (16) by its approximation LN(α) is 

asymptotically exact for both thin and thick coatings, i.e., for λ→0 and λ→∞. 

Let us introduce the functions 
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then using operational analysis (Aleksandrov 1973) and Eqs. (19), (20), we represent first equation 

in Eq. (16) in operator form 
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The solution of the differential equation (21) for dm has the form 
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where coefficients m
iC  and m
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Using Eqs. (20) and (22) Eq. (16) can be rewritten as follows 
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Inverting the Fourier‟s transform in Eq. (23) we obtain 
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Inverting the Hankel transform in Eq. (24) and using Parseval‟s identity gives 
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where i is the imaginary unit, Ψ and Φ are given by expressions 












1

22

1

222

)ch()sh(

1

),,(
),,,(

rr rt

dtAt
AD

rt

dtAt
CA

r

ADC
DCAr


 

 






1

22
 

sh

1

ch
),(

2
r

rt

Atdt
A

r

A
Ar  

To determine constants Ci, Di we substitute Eq. (25) into Eq. (16). The set of constants 
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Contact stresses qm(r) and pressure applied to the plate p(r) can be represented as a following 

series 
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Substituting Eqs. (13), (14), (27) and (28) into Eq. (12) we get the infinite system of a linear 

algebraic equations over wm 
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In particular, 
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After determining parameters wm (m=0,1,...,K) for a fixed value K and substituting them in Eq. 

(14) we finally get the contact stresses q(r) and from Eq. (13) we get the deflections of the plate 

w(r). 
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where D is the is cylindrical stiffness of the plate. 

Using Eqs. (13) and (31) we get the expressions for the torques 
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Let us consider the case of the plate with free edge defined by Eq. (5). The solution of this 

problem is presented in the paper (Aizikovich et al. 2011), but it contains a misprint in expressions 

(2.15), (2.16). Here we present the corrected expressions:  

 
















 






N

j

j

m

j

N

N arC
rL

srq
1

1

2
0 ),(

1)0(

122
)( 


 (33) 

 ,2,1  ,),(
)(

),(

)(I

)(J

)(

),(2
)(

1

1

1

1 

















 




marC

kiL

kr

k

k

kL

ikr
sArq

N

j

j

m

j
mN

m

m

m

mN

m
m

N
m 


 (34) 

The way of determining the parameters m
jC  are similar to that we used in the present paper: we  
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Axisymmetric bending of a circular plate with stiff edge on a soft FGM layer 

  

 

Fig. 1 Graphs of pressure distribution q(r) versus r. The graphs are presented for soft coatings with 

β=100, plate of intermediate flexibility s=5 and some large and intermediate values of coating thickness λ 

 

 

substitute Eqs. (33) and (34) into dual integral equation (Eq. (16)) and get the system of linear 

algebraic equations. Values of parameters Am and km corresponding to the plate with free edge are 

presented in (Tseitlin 1969). 

 

 

4. Numerical results 

 
4.1 Soft homogeneous layer 

 
Let us consider the bending of the plate lying on a layer with constant elastic moduli (E1=const, 

ν1=const) under the action of a uniformly distributed unit load: p(r)=1, r<1. We assume that the 

layer is much softer than the substrate (E2<<E1(H)) and use parameter β=E2/E1(−H)
 
to characterize 

softness of the layer. Let us consider case of the coating much softer than the substrate with 

β=100. The numerical results are provided for a case of the plate with a stiff edge (see Eqs. (4)). 

According to (Gorbunov-Posadov 1940) the plate assumed to be flexible (or of infinite radius) 

if s>10 and stiff if s<1. Numerical examples below are provided for three values of parameter s: 

s=100, s=0.01 and s=5. 

Fig. 1 contains graphs of the contact pressure under the plate of intermediate flexibility (s=5) 

lying on coatings of large or intermediate thickness λ. It is seen that the pressure on thick coatings 

(for instance, λ=10) are minimal under the center of the plate (r=0) and monotonically increases 

when r approaches the edge of the plate. For intermediate thickness of the coating (0.1<λ<1) the 

pressure under the center increases while the minimum value is reached near the edge of the plate 

(r=0.7..0.9). 

The pressure distribution for small values of relative layer thickness λ has complicated 

nonmonotonic behavior (see Fig. 2): near the edges of the contact region one can observe an 

increase and decrease in pressure, i.e., pressure spikes. With decrease in the relative thickness of 

the coating λ these pressure maxima and minima become higher, occupy less space, and move  

235



 

 

 

 

 

 

Sergey S. Volkov, Alexander N. Litvinenko, Sergey M. Aizikovich, Yun-Che Wang and Andrey S. Vasiliev 

 

 

Fig. 2 Graphs of pressure distribution q(r) versus r. The graphs are presented for soft coatings with 

β=100, plate of intermediate flexibility s=5 and some small coating thicknesses λ 

 

 

Fig. 3 Graphs of relative deflections of the plate wrel(r) versus r. The graphs are presented for soft 

coatings with β=100, plate of intermediate flexibility s=5. 

 

 

toward the end points of the contacts. Relative deflections (wrel(r)=w(r)/w(0)) of the plate 

corresponding to the pressure provided on Figs. 1 and 2 are illustrated on the Fig. 3.   

For flexible plates the pressure under the center increases while near the edge its values 

sufficiently decrease (see Fig. 4), for stiff plates the opposite situation is observed (see Fig. 5). 

To illustrate how the layer thickness influences the pressure we provide a dependence of the 

values q(0) and q(0.5) from the relative layer thickness λ (see Fig. 6). The graphs are provided for 

β=2, 5, 10, 100 and s=5. The pressure has local maximum for λ=(0.1..0.5). For λ>4 the pressure 

almost doesn‟t depend on the value of β. For λ<0.005 the pressure practically does not change with  
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Axisymmetric bending of a circular plate with stiff edge on a soft FGM layer 

  

 

Fig. 4 Graphs of pressure distribution q(r) versus r. The graphs are presented for soft coatings with 

β=100, flexible plate with s=100 and some small coating thicknesses λ 

 

 

Fig. 5 Graphs of pressure distribution q(r) versus r. The graphs are presented for soft coatings with 

β=100, stiff plate with s=0.01 and some small coating thicknesses λ 

 

 

decreasing λ (the coating is so thin that practically has no effect on the pressure redistribution). 

The pressure for the plates with free and stiff edges (see Eqs. (5) and (4)) are illustrated in 

Fig. 7. It is seen that the pressure for the plate with free boundaries are greater in the neibourhood 

of r=0 and smaller near its edge than for the plate with stiff edge. The qualitative differences were 

not found.  
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Fig. 6 Graphs of pressure q(0) and q(0.5) versus λ. The graphs are presented for soft coatings with β=2, 5, 

10, 100, plate of intermediate flexibility s=5 

 

 

Fig. 7 Graphs of pressure distribution q(r) versus r. The graphs are presented for soft coatings with 

β=100, plate of intermediate flexibility s=5 and some small coating thicknesses λ 

 

 

4.2 Soft functionally graded layer 
 

Let the Young‟s modulus of the coating varies with depth according to one of the following 

laws: 
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Fig. 8 Graphs of pressure q(0) versus λ. The graphs are presented for soft homogeneous and functionally 

graded coatings with β=100 and plate of intermediate flexibility s=5 

 

 

Fig. 9 Graphs of pressure distribution q(r) versus r. The graphs are presented for soft functionally graded 

coatings with β=100, plate of intermediate flexibility s=5 and some large and intermediate coating 

thicknesses λ 

 

 

The pressure under the center of the plate q(0) versus λ and pressure distribution versus r for 

functionally-graded coatings 1 and 2 and homogeneous coating for β=100 and s=5 are presented in 

the Figs. 8 and 9. It is seen that the functionally graded properties of the coating sufficiently 

redistribure the pressure expecially for λ=1..10. 

 
 
5. Conclusions 

 
Analytical expressions for the contact stresses appearing under the plate and the deflection 
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function are constructed using the bilateral asymptotic method. The method allows to consider the 

elastic layer lying on a much stiffer substrate. Using approximations for the kernel transform of 

high accuracy it is possible to obtain a solution of the problem which is applicable for all possible 

values of λ and any stiffness of the plate. Same method was successfully applied to a wide class of 

contact problems for materials with functionally-graded coatings (Aizikovich and Aleksandrov 

1984, Vasiliev et al. 2012, 2014, 2015, 2016, Kudish et al. 2016). 
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