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Abstract.  In this paper, the problem of interfacial stresses in steel beams strengthened with a fiber 

reinforced polymer plates is analyzed using linear elastic theory. The analysis is based on the deformation 

compatibility approach developed by Tounsi (2006) where both the shear and normal stresses are assumed 

to be invariant across the adhesive layer thickness. The analysis provides efficient calculations for both shear 

and normal interfacial stresses in steel beams strengthened with composite plates, and accounts for various 

effects of Poisson’s ratio and Young’s modulus of adhesive. Such interfacial stresses play a fundamental 

role in the mechanics of plated beams, because they can produce a sudden and premature failure. The 

analysis is based on equilibrium and deformations compatibility approach developed by Tounsi (2006). In 

the present theoretical analysis, the adherend shear deformations are taken into account by assuming a 

parabolic shear stress through the thickness of both the steel beam and bonded plate. The paper is concluded 

with a summary and recommendations for the design of the strengthened beam. 
 

Keywords:  composites plates; interlaminar stresses; steel beam; strengthening; adherend shear 

deformations; adhesive 

 
 
1. Introduction 
 

Strengthening beams and column by bonding plates to their surfaces is an effective method for 

extending the life of ageing infrastructure. Plate bonding relies critically on the strength of the 

adhesive joint, which must be designed to have adequate strength. The reliability of structural 

adhesive joint depends on several factors. These factors include the design, materials and 

manufacturing methods of the joints as well as accurate analysis of the strength of the structural 

adhesive joints.  

The behaviour of the interface between the steel beam and FRP can influence the performance 

of hybrid beam and is influenced by many factors such as the properties and geometries of the 

steel beam, FRP and adhesive layer. The interface transfers the stresses from steel to FRP plate. 

Therefore, a comprehensive understanding on the stress state and the stress-transfer mechanism of 

the interface is necessary for the design and application of the hybrid structures. The interfacial 
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stress of the hybrid beam has been studied by experimental and theoretical methods. The 

experimental technologies were applied to test the interfacial stresses (Jones et al. 1988). However, 

the experimental test of interfacial stress fields seems to be difficult because of the complicated 

distribution of local stresses. The analytical studies (Tounsi 2006) tend to develop a closed-form 

solutions for the interfacial shear and normal stresses. The determination of interfacial stresses has 

been researched for the last decade for steel or concrete beams bonded with either steel or 

advanced composite materials. In particular, several closed-form analytical solutions have been 

developed (Tounsi et al. 2009, Touati et al. 2015). All these solutions are for linear elastic 

materials and employ the same key assumption that the adhesive is subject to normal and shear 

stresses that are constant across the thickness of the adhesive layer. It is this key assumption that 

enables relatively simple closed-form solutions to be obtained. In the existing solutions, two 

different approaches have been employed. The interfacial stress of the hybrid beam has been 

studied by experimental and theoretical methods (Guenaneche et al. 2014, Hassaine Daouadji 

2013, El mahi et al. 2014). The analytical studies (Benyoucef et al. 2014, Oller et al. 2015, 

Ziadani et al. 2015) tend to develop a closed-form solutions for the interfacial shear and normal 

stresses.  

We can also mention, in addition fiber composite matrix materials, and to reduce the maximum 

interfacial stress that we can offer plates bonded with properties classified as FGM plates. Is 

another alternative can be proposed to strengthen the structures that will be addressed in future 

research, it is therefore the use of functionally graded materials FGM (Abdelhak et al. 2015, 

Tounsi et al. 2013, Benferhat et al. 2015, Bourada et al. 2015, Belabed et al. 2014, Hassaine 

Daouadji 2013, Hebali et al. 2014, Ait yahia et al. 2015, Ait amar et al. 2014, Bennoun et al. 2016, 

Zidi et al. 2014, Bouderba et al. 2013, Tounsi et al. 2013, Bousahla et al. 2014), that in order to 

improve and ensure the material continuity through the thickness of the reinforcing plate, aiming 

as a parameter in the mechanical characteristics of FGM, all by passing laws adequately mixes to 

better meet industrial requirements and the environmental condition. 

In this paper, the influence of the characteristics of structural adhesives on the interfacial 

stresses in FRP plated steel beams is investigated theoretically (Bouakaz et al. 2014). These 

investigations are carried out by means of a new analytical method which takes into account the 

adherend shear deformations (Krour et al. 2013). The importance of including shear-lag effect of 

the adherends was shown firstly by Tsai et al. (1998) in adhesive lap joints. Tounsi (2006) has 

extended this theory to study concrete beam strengthened by FRP plate. The basic assumption in 

these two studies is a linear distribution of shear stress across the thickness of the adherends. 

However, it is well known that in beam theory, this distribution is parabolic through the depth of 

beam. In the present developed method this later assumption is taken into consideration. The 

methods predicts stress distributions along the adhesive joint and can be used to analyse failure of 

the adhesive, or the substrates in the immediate vicinity of the joint, failure modes typically 

observed in adhesive joints involving metallic or FRP substrates. 

 

 

2. Methods of analysing adhesive joints 
 

Bonded joints have been used since the 1930s, but it is only relatively recently that this 

technology has been transferred to the construction industry. Adhesive joints in construction are 

often on a larger scale than those in the automotive or aerospace industries, and behave in different 

ways. Furthermore, construction projects are one-offs and it is not economic to base design on test  
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Fig. 1 Simply supported beam strengthened with bonded composite plate 

 

 
results, unlike other industries with long production runs. Consequently, it is important to have 

realistic models for the adhesive joint strength. Two approaches can be used to predict the failure 

of adhesive joints: a stress analysis, or a fracture mechanics approach. Fracture mechanics 

examines the energy required for unstable crack propagation along the joint; however, this 

approach has yet to be successfully applied to infrastructure strengthening applications 

(Herakovich 1998). After the adhesive has cured, the strengthening plate and beam act 

compositely, with load transferred between them by a combination of shear stresses (parallel to the 

joint) and peel stresses (normal to the joint). A stress analysis can be used to predict the 

distributions of shear and peel stress along the strengthened beam, for comparison to the limiting 

strength of the adhesive joint. Several closed form stress analyses are available that predict the 

distribution of bond stresses along a plate bonded to a beam. These all assume that the adhesive is 

linear-elastic, but involve a variety of simplifying assumptions.The motivation behind the 

approach presented in this paper was the lack of guidance for designing FRP strengthening bonded 

to metallic structures. The reliability of structural adhesive joint depends on several factors. 

Among these factors, the adhesive characteristics play an important role in the integrity and 

reliability of hybrid structure.  
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Fig. 2 Forces in infinitesimal element of a soffit-plated beam 

 
 
3. Mathematical formulation of the present method 
 

A differential section dx, can be cut out from the FRP reinforced steel beam (Fig. 1), as shown 

in Fig. 2. The composite beam is made from three materials: steel beam, adhesive layer and FRP 

reinforcement. In the present analysis, linear elastic behaviour is regarded to be for all the 

materials; the adhesive is assumed to play a role only in transferring the stresses from the concrete 

to the FRP reinforcement and the stresses in the adhesive layer do not change through the direction 

of the thickness. 

 

3.1 Basic equation of elasticity 
 
The strains in the steel beam near the adhesive interface can be expressed as 
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Where u1(x) is the longitudinal displacement at the base of steel beam. ε1
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   xM
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Where M1(x) is the bending moment applied in the steel beam; E1 is Young’s moduli of the steel 

beam; I1 is the second moment area; y1 is the distance from the bottom of adherend 1 to its 

centroid. ε1
M

(x) is the unknown longitudinal strain of the steel beam, at the adhesive interface and 

it is due to the longitudinal forces. This strain is given as follow 

     
 

dx

xdu
x

N
N )(1

1   (3) 

Where u1
N
(x) represents the longitudinal force induced adhesive displacement at the interface 

between the steel beam and the adhesive. 

To determine the unknown longitudinal strain ε1
N
(x) shear deformations of the steel beam is 

incorporated in this analysis. It is reasonable to assume that the shear stresses, which develop in 

the adhesive, are continuous across the adhesive-adherend interface. In addition, equilibrium 

requires the shear stress be zero at the free surface. Using the same methodology developed by 

Tounsi (2006), Tsai et al. (1998), this effect is taken into account. A cubic variation of longitudinal  

displacement ),(1 yxU N  through the thickness of adherend 1 is assumed 

     )()()(),( 11
3

11 xCyxByxAyxU N   (4) 

Where y is a local coordinate system with the origin at the top surface of the upper adherend Fig. 

2. 

The shear stresses in adherend 1 is given by 

     )1(1)1( xyxy G    (5) 

With 

     
x

W

y

U NN

xy








 11

)1(  (6) 

G1 is the transverse shear modulus of the adherend 1. Neglecting the variations of transverse 

displacement W1
N
 (induced by the longitudinal forces) with the longitudinal coordinate x. 

     y

U N

xy



 1

)1(  (7) 

And the shear stresses are expressed as 

     
 )()(3 2

1)1( xByxAGxy   (8) 

The shear stresses must satisfy the following conditions 

     axy xtx   )(),( 1)1(  (9) 

     
0)0,()1( xxy  (10) 
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t1, is the thickness of adherend 1. 

Condition (9) follows from continuity and assumption of the uniform shear stresses (τ(x)=τa) 

through the thickness of adhesive. Condition (10) states there is no shear stresses at the top surface 

of the adherend 1 (i.e., at y=0). These conditions yield 

     

2

2
1

)1( y
t

a
xy


   (115) 

Then with a linear material constitutive relationship the adherend shear strain γ1 for the 

adherend 1is written as 

     

2

2
11

1)1( y
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xy


   (12) 

The longitudinal displacement functions NU1  for the upper adherend, due to the longitudinal 

forces, is given as 
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Where )0(1
NU  represents the displacement at the top surface of the upper adherend (due to the 

longitudinal forces).   

Note that due to the perfect bonding of the joints, the displacements are continuous at the  

interfaces between the adhesive and adherends. As a result, the 
Nu1  (the adhesive displacement at 

the interface between the adhesive and upper adherend) should be the same as the upper adherend  

displacement at the interface. Based on Eq. (13) the 
Nu1  can be expressed as 
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Using Eq. (14), Eq. (13) can be rewritten as 
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The longitudinal resultant force, N1 for the upper adherend, is 
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Where N

1  
is longitudinal normal stress for the upper adherend. By changing these stresses 

into functions of displacements and substituting Eq. (15) into the displacement, Eq. (16) can be 

rewritten as 

     
 





1

01

0 01

0

1
11

0

1
01

1
111

t

tt

Nt tt

t

NN

dy
dx

dU
bEdy

dx

dU
bEdy

dx

dU
bEN  

(17) 

Hence, the longitudinal strains induced by the longitudinal forces Eqs. (3) can be expressed as 
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Substituting Eqs. (18) and (2) into Eqs. (1), this latter becomes 
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(19) 

Where N(x) are the axial forces in each adherend, A1 the cross-sectional area.   

Since the composite laminate is an orthotropic material, its material properties vary from layer 

to layer. In current study, the laminate theory is used to determine the stress and strain behaviours 

of the externally bonded composite plate in order to investigate the whole mechanical performance 

of the composite-strengthened structure. The effective moduli of the composite laminate are varied 

by the orientation of the fibre directions and arrangements of the laminate patterns. The laminate 

theory is used to estimate the strain of the symmetrical composite plate, i.e. 

     2
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[A′]=[A
-1

] is the inverse of the extensional matrix [A]; [D′]=[D
-1

] is the inverse of the flexural 

matrix; b2 is a width of FRP plate. 

Using CLT, the strain at the top of the FRP plate 2 is given as 
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Substituting Eq. (20) in (21) gives the following equation 
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Where 

    
  xNxN 2

 and   xMxM 2
 (23) 

M(x), N(x) and V(x) are the bending moment, axial and shear forces in the adherend. 

By adopting the equilibrium conditions of the steel beam, we have: 

Along x-direction: 

     
2

1 )(
)(

bx
dx
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  (24) 

Where τ(x) is shear stress in the adhesive layer. 

Along y-direction: 

     
 qbx
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xdV
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Where V1(x) is shear force applied in the steel beam; σn(x) is normal stress in the adhesive layer 

and q is the uniformly distributed load. 

Moment equilibrium: 
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The equilibrium of the external FRP reinforcement along x-, y-direction and moment 

equilibrium can be also written as: 

Along x-direction: 

     
2

2 )(
)(

bx
dx

xdN
  (27) 

Along y-direction: 

     
2

2 )(
)(

bx
dx

xdV
n  (28) 

Moment equilibrium: 
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2 t
bxxV

dx
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Where V2(x) is shear force applied in the external FRP reinforcement.  

 

3.2 Shear stress distribution along the FRP-beam interface 
 

Here, it is considered that the bending stiffness of the external FRP reinforcement is far less 

than of the beam to be strengthened and the bending moment in the external FRP reinforcement 

can be neglected for simplicity in the derivation of shear stress. 

The shear stress in the adhesive can be expressed as follows 

           xuxuKxuKx ss 12)(   (30) 

Where Ks is shear stiffness of the adhesive per unit length and can be deduced as 
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Δu(x) is relative horizontal displacement at the adhesive interface; Ga is the shear modulus in the 

adhesive and ta is the thickness of the adhesive. 

Substituting Eqs. (19) and (22) into Eq. (30) and differentiating the resulting equation once 

yields 
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(32) 

Assuming equal curvature in the beam and the FRP plate, the relationship between the 

moments in the two adherends can be expressed as 

        xRMxM 21   (33) 

With 
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Moment equilibrium of the differential segment of the plated beam in Fig. 2 gives 

             aT tyyxNxMxMxM  2121
 (35) 

Where, MT(x) is the total applied moment and from Eqs. (24) and (27), the axial forces are 

given as 
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The bending moment in each adherend, expressed as a function of the total applied moment and 

the interfacial shear stress, is given as 
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The first derivative of the bending moment in each adherend gives 
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Differentiating Eq. (32) 
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 (41) 

Substitution of the shear forces (Eqs. (39) and (40)) and axial forces Eq. (36) into Eq. (41) 

gives the following governing differential equation for the interfacial shear stress. 
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Where 
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and ξ is a geometrical coefficient which is given as 
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For a rectangular section (b1=b0), ξ=1, however, for I-beam section (present case) we have ξ<1. 

For simplicity, the general solutions presented below are limited to loading which is either 

concentrated or uniformly distributed over part or the whole span of the beam, or both. For such 

loading, d
2
VT(x)/dx

2
=0, and the general solution to Eq. (42) is given by 

            xVmxBxBx T121 sinhcosh    (45) 
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B1 and B2 are constant coefficients determined from the boundary conditions.  

In the present study, a simply supported beam is investigated which is subjected to a uniformly 

distributed load. 

Considering the boundary conditions: 

1. Due to symmetry, the shear stress at mid-span is zero, i.e. 
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Where LP is the length of the FRP plate (see Fig. 1). 

2. At the end of the FRP plate, the longitudinal force [N1(0)=N2(0)] and the moment M2(0) are 

zero. As a result, the moment in the section at the plate curtailment is resisted by the beam 

alone and can be expressed as 
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Applying the above boundary condition in Eq. (30) 
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From the above three equations 
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For practical cases 10
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. So the expression for B1 can be 

simplified to 
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Substitution of B1 and B2 into Eq. (45) gives an expression for the interfacial shear stress at any 

point 
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Where q is the uniformly distributed load and x, a, L and Lp are defined in Fig. 1. 

In the case where the beam is subjected to a two symmetric point loads, the general solution for 

the interfacial shear stress is given by the following expressions Tounsi (2006) 
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Where P is the concentrated load and k=λ(b−a). The expression of m1 and m2 takes into 

considerations the shear deformation of adherends. 

 

 

4. Numerical verification and discussions 
 

The present analytical solution is verified in this section by comparing its predictions with 

experimental results obtained by Jones et al.. , with analytical solutions by Smith and Teng 2001, 

Tounsi 2006, Yang and Wu 2007 and Hassaine Daouadji 2013.  

 
4.1 Comparison with experimental results 
 

To validate the present method, a rectangular section (ξ=1) is used here. One of the tested 

beams bonded with steel plate by Jones et al. (1988), beam F31, is analysed here using the present 

improved solution. The beam is simply supported and subjected to four-point bending, each at the 

third point. The geometry and materials properties of the specimen are summarized in Table 1.  

The interfacial shear stress distributions in the beam bonded with a soffit steel plate under the 

applied load 180 kN in Fig. 3, are compared between the experimental results and those obtained 

by the present method. As it can be seen from Fig. 3, the comparison shows encouraging 

agreement with the experimental results. 

 

4.2 Comparison with approximate solutions 
 
The present simple solution is compared, in this section, with some approximate solutions 

 

 
Table 1 Dimensions and material properties 

Concrete b1=155 mm t1=225 mm E1=31000 MPa 

Steel b2=125 mm t2=6 mm E2=200000 MPa 

Adhesive ba=123 mm ta=1.5 mm Ea=280 MPa , Ga=108 MPa 
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Fig. 3 Comparison of interfacial shear stress of the steel plated RC beam with the 

experimental results from Jones et al. 

 
Table 2 Geometric and material properties 

Component 
Width 

(mm) 

Depth 

(mm) 

Young’s 

modulus (MPa) 

Poisson’s 

ratio 

Shear modulus 

MPa 

RC beam b1=200 t1=300 E1=30 000 0.18 - 

Adhesive layer RC beam ba=200 ta=4 Ea=3000 0.35 - 

GFRP plate (bonded RC beam) b2=200 t2=4 E2=50 000 0.28 G12=5000 

GFRP plate (bonded steel beam) b1=150 t2=2 E2=50 000 0.28 G12=5000 

GFRP plate (bonded Aluminium beam) b2=20 t2=2 E2=50 000 0.28 G12=5000 

CFRP plate (bonded RC beam) b2=200 t2=4 E2=140 000 0.28 G12=5000 

CFRP plate (bonded steel beam) b1=150 t2=2 E2=140 000 0.28 G12=5000 

CFRP plate (bonded Aluminium beam) b2=20 t2=2 E2=140 000 0.28 G12=5000 

Steel plate (bonded RC beam) b2=200 t2=4 E2=200 000 0.3  

Aluminium plate (bonded RC beam) b2=200 t2=4 E2=65 300 0.3  

Aluminium beam (wall thickness 2mm) b1=20 t2=30 E2=65 300 0.3  

Adhesive layer (Aluminium beam) b2=20 t2=2 E2=2 000 0.35  

Steel I- beam (IPE300) b1=150 t1=300 E2=200 000 0.3  

 

 

available in the literature. These include Smith and Teng (2001), Tounsi (2006), Yang and Wu 

(2007), Hassaine Daouadji (2013) solutions uniformly distributed loads. A comparison of the 

interfacial shear and normal stresses from the different existing closed-form solutions and the 

present solution is undertaken in this section. An undamaged beams bonded with GFRP, CFRP, 

Steel and Aluminium plate soffit plate is considered. The beam is simply supported and subjected 

to a uniformly distributed load. A summary of the geometric and material properties is given in 

Table 2. The results of the peak interfacial shear and normal stresses are given in Table 3 for the 

beams strengthened by bonding GFRP, CFRP, Steel and Aluminium plate. As it can be seen from 

the results, the peak interfacial stresses assessed by the present theory are smaller compared to 

those given by Smith and Teng (2001), Tounsi (2006), Yang and Wu (2007), Hassaine Daouadji 

(2013) solutions. This implies that adherend shear deformation is an important factor influencing  
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Table 3 Comparison of peak interfacial shear and normal stresses (MPa): Uniformly Distributed Load- UDL 

Reinforced Concrete Beam bonded with a thin plate subjected to a uniformly distributed load 

Model 

RC beam with 

CFRP plate 

RC beam with 

GFRP plate 

RC beam with 

steel plate 

RC beam with 

aluminum plate 

Shear Normal Shear Normal Shear Normal Shear Normal 

Present Model 1.998 1.188 1.121 0.913 2.340 1.282 1.439 1.002 

Tounsi et al. (2009) 1.968 1.169 1.194 0.899 2.304 1.261 1.417 0.985 

Smith and Teng (2001) 2.740 1.484 1.975 1.244 3.696 1.713 1.973 1.251 

Hassaine Daouadji (2013) 1.962 1.162 1.108 0.893 2.297 1.253 1.413 0.980 

Yang and Wu (2007) 2.168 1.225 1.255 1.112 2.539 1.321 1.561 1.033 

Steel Beam bonded with a thin plate subjected to a uniformly distributed load 

Model 
Steel beam with CFRP plate Steel beam with GFRP plate 

Shear Stress Normal Stress Shear Stress Normal  Stress 

Present Model 2.385 1.355 1.477 1.055 

Tounsi et al. (2009) 2.349 1.332 1.454 1.037 

Yang and Wu (2007) 2.580 1.397 1.597 1.087 

Hassaine Daouadji (2013) 2.342 1.325 1.459 1.031 

Smith and Teng (2001) 3.270 1.691 2.025 1.316 

Aluminium Beam bonded with a thin plate subjected to a uniformly distributed load 

Model 
Aluminium beam with CFRP plate Aluminium beam with GFRP plate 

Shear Stress Normal Stress Shear Stress Normal Stress 

Present Model 1.610 0.889 0.903 0.683 

Tounsi et al. (2009) 1.586 0.875 0.962 0.672 

Yang and Wu (2007) 1.748 0.917 0.987 0.832 

Hassaine Daouadji (2013) 1.580 0.869 0.891 0.667 

Smith and Teng (2001) 2.091 1.081 1.172 0.980 

 

 

the adhesive interfacial stresses distribution.  

Fig. 4 plots the interfacial shear and normal stresses near the plate end for the example steel 

bonded with a CFRP plate for the uniformly distributed load case. Overall, the predictions of the 

different solutions agree closely with each other. The interfacial normal stress is seen to change 

sign at a short distance away from the plate end. The present analysis gives lower maximum 

interfacial shear and normal stresses than those predicted by Tounsi 2006, indicating that the 

inclusion of adherend shear de formation effect in the beam and soffit plate leads to lower values 

of σmax and max. However, the maximum interfacial shear and normal stresses given by Tounsi 

2006 method’s is lower than the results computed by the present solution. This difference is due to 

the assumption used in the present theory which is in agreement with the beam theory. Hence, it is 

apparent that the adherend shear deformation reduces the interfacial stresses concentration and 

thus renders the adhesive shear distribution more uniform. The interfacial normal stress is seen to 

change sign at a short distance away from the plate end.  

The results of the peak interfacial shear and normal stresses are given in Table 3 for the RC 

beam with a GFRP, CFRP, Steel and Aluminum soffit plate. Table 3 shows that, for the UDL case,  
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Fig. 4 Comparison of interfacial shear and normal stresses for an RC beam with a bonded 

CFRP soffit plate subjected to a uniformly distributed load 
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Fig. 5 Interfacial maximum stress versus Young’s 

modulus of adhesive for Poisson’ ratio υa=0.3 

Fig. 6  Interfacial maximum stress versus Young’s 

modulus of adhesive for Poisson’ ratio υa=0.35 

 

 

the present solution gives results which generally agree better with those from Smith’s and Teng 

2001, Yang’s and Wu 2007, Tounsi’s 2006, Hassaine Daouadji’s 2013 solutions. The latter two 

again give similar results. In short, it may be concluded that all solutions are satisfactory for RC 

beams bonded with a thin plate as the rigidity of the soffit plate is small in comparison with the 

that of the RC beam. Those solutions which consider the additional bending and shear 

deformations in the soffit plate due to the interfacial shear stresses give more accurate results. The 

present solution is the only solution which covers the uniformly distributed loads and considers 

this effect and the effects of other parameters. 

 
4.3 Parametric studies 
 
For each of the five Poisson’s ratios of the adhesives, results for edge stresses, corresponding to 

various Young’s modulus of adhesive Ea, ranging between 0.001 and 30 GPa are presented in 

graphical forms.  
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Fig. 7 Interfacial maximum stress versus Young’s 

modulus of adhesive for Poisson’ ratio υa=0.40 

Fig. 8 Interfacial maximum stress versus Young’s 

modulus of adhesive for Poisson’ ratio υa=0.45 
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Fig. 9 Interfacial maximum stress versus Young’s 

modulus of adhesive for Poisson’ ratio υa=0.50 

Fig. 10 Interfacial maximum shear stress versus 

Poisson’s ratio of adhesive 

 

 

4.3.1 Effect of Young’s modulus 
The two edge stresses (shear and normal stress) corresponding to Poisson’s ratio υa=0.3 are 

shown in Fig. 5. From Fig. 5, it is seen that both shear and normal interfacial stress increase 

gradually as the Young’s modulus of adhesive increase from 0.001 to 30 GPa. Figs. 6 to 9 show 

that when Poisson’s ratio υa=0.35, 0.4, 0.45 and 0.5, similar variations of the maximum interfacial 

stress with Young’s modulus as in the case of υa=0.3 (Fig. 5) are obtained. The interfacial stresses 

shown in Fig. 5 for Poisson’s ratio υa=0.3 and Young’s modulus, Ea, greater than 5 GPa are 

representative of those that will be obtained when very hard adhesives such as ceramic glue are 

used. Similarly, the interfacial stresses shown in Figs. 6 and 7 for Poisson’s ratios υa= 0.35 and 0.4 

and for Young’s modulus, Ea, within the range 0.05-5 GPa apply to adhesives comprising of 

multiple part epoxies. On the other hand, the interfacial stresses shown in Figs. 8 and 9 for 

Poisson’s ratios υa=0.45 and 0.5 and for Young’s modulus, Ea, less than 0.05 GPa are 

representative of those manifested by rubber-like or elastomeric adhesives.               
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4.3.2 Effect of Poisson’s ratio 
The two maximum adhesive stresses (shear and normal stress) versus Poisson’s ratio of 

adhesive for different value of Young’s modulus of adhesive (Ea=1, 2, 5, 10 and 30 GPa) are 

shown in Fig. 10. It can be seen from the presented results that the Poisson’s ratio of adhesive has 

almost no effect on the variation of the maximum adhesive stresses. However, these stresses 

increase gradually with the Young’s modulus of adhesive. We note that the adhesives with Young’s 

modulus smaller than 1 GPa are not commonly used in practice. In addition, the adhesives with 

Young’s modulus Ea=30 GPa is used only for theoretical comparison.   

 

 

5. Conclusions 
 

A systematic rigorous general approach for the analysis of interfacial stresses in steel beams 

strengthened with externally bonded hygrothermal aged FRP plate has been presented. This 

approach is based on elastic foundation model in which the adherend shear deformations have 

been included by assuming a linear shear stress through the depth of the steel beam. By comparing 

with   experimental results, the present closed-solution provides satisfactory predictions to the 

interfacial shear stress in the plated beams. The influence of adhesive properties on the adhesive 

stresses in beams strengthened with FRP plates has been investigated using an improved analytical 

model. The adherend shear deformations are taken into account by assuming a parabolic shear 

stress through the thickness of both the steel beam and bonded plate. By comparing with 

experimental results, the present closed-solution provides satisfactory predictions to the interfacial 

shear stress in the plated beams. The maximum interfacial stresses have been analysed using 

adhesives of various Young’s modulus and Poisson’s ratio properties. In general, the maximum 

interfacial stress increase with an increase in the Young’s modulus of adhesive, but does not appear 

to change significantly with an increase in the Poisson’s ratio. 

In conclusion, we can say that in addition to matrix composite fiber materials, another 

alternative may be proposed for strengthening structures, this will involve the use of functionally 

graded materials FGM (Abdelhak et al. 2015, Tounsi et al. 2013, Benferhat et al. 2015, Bourada et 

al. 2015, Belabed et al. 2014, Hassaine Daouadji 2013, Hebali et al. 2014, Ait yahia et al. 2015, 

Ait amar et al. 2014, Bennoun et al. 2016, Zidi et al. 2014, Bouderba et al. 2013, Tounsi et al. 

2013, Bousahla et al. 2014) in order to ensure continuity properties lift through the thickness of the 

reinforcement plate. 
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